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Overview

pomegranate is more flexible than other packages, faster, is 
intuitive to use, and can do it all in parallel
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Overview
The API

Major Models/Model Stacks

1. General Mixture Models
2. Hidden Markov Models
3. Bayesian Networks
4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel
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All models share most methods
model.log_probability(X) / model.probability(X)

model.sample()

model.fit(X, weights, inertia)

model.summarize(X, weights)

model.from_summaries(inertia)

model.predict(X)

model.predict_proba(X)

model.predict_log_proba(X)

Model.from_samples(X, weights)

All models have these methods!

All models composed of distributions 
(like GMM, HMM...) have these methods 
too!

All models except HMMs have this (coming 
soon!) 8
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pomegranate supports many distributions
Univariate Distributions

1. UniformDistribution

2. BernoulliDistribution

3. NormalDistribution

4. LogNormalDistribution

5. ExponentialDistribution

6. BetaDistribution

7. GammaDistribution

8. DiscreteDistribution

9. PoissonDistribution

Kernel Densities

1. GaussianKernelDensity

2. UniformKernelDensity

3. TriangleKernelDensity

Multivariate Distributions

1. IndependentComponentsDistribution

2. MultivariateGaussianDistribution

3. DirichletDistribution

4. ConditionalProbabilityTable

5. JointProbabilityTable 10



Models can be created from known values

mu, sig = 0, 2
a = NormalDistribution(mu, sig)

X = [0, 1, 1, 2, 1.5, 6, 7, 8, 7]
a = GaussianKernelDensity(X)
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X = numpy.random.normal(0, 1, 100)
a = NormalDistribution.from_samples(X)

Models can also be learned directly from data
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Fitting a Normal Distribution to 1,000 samples 

pomegranate can be faster than numpy 
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pomegranate can be faster than numpy 

Fitting Multivariate Gaussian to 10,000,000 samples of 10 
dimensions
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pomegranate can be faster than numpy 

pomegranate reduces data to sufficient statistics for updates 
and so only has to go datasets once (for all models).

Here is an example of the Normal Distribution sufficient 
statistics
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pomegranate supports out of core learning

Due to the use of sufficient statistics that are additive, pomegranate can 
natively support out-of-core/online learning, where you may not have the 
entire dataset in memory at a time
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pomegranate can be faster than scipy 

scipy: 96.3 us
pomegranate: 560 ns
pomegranate (w/ precreated object): 119 ns
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pomegranate can be faster than scipy 

pomegranate uses aggressive caching of values required for 
probability calculations to speed them up
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Example ‘blast’ from Gossip Girl

Spotted: Lonely Boy. Can't believe the love of his life has 
returned. If only she knew who he was. But everyone knows 
Serena. And everyone is talking. Wonder what Blair Waldorf 
thinks. Sure, they're BFF's, but we always thought Blair's 
boyfriend Nate had a thing for Serena.
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Example ‘blast’ from Gossip Girl

Why'd she leave? Why'd she return? Send me all the deets. 
And who am I? That's the secret I'll never tell. The only one. 
—XOXO. Gossip Girl.
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Better lock it down with Nate, B. Clock's ticking.

+1 Nate
-1 Blair

How do we encode these blasts?
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Better lock it down with Nate, B. Clock's ticking.

+1 Nate
-1 Blair

This just in: S and B committing a crime of fashion. Who 
doesn't love a five-finger discount. Especially if it's the middle 
one.

-1 Blair
-1 Serena

How do we encode these blasts?
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Simple summations don’t distinguish well
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Beta distributions can model uncertainty well
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Beta distributions capture our certainty about the 
identity of Gossip Girl 
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The distributions converge as the show progresses
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General Mixture Models (GMMs) can model 
multi-component distributions
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GMMs use Expectation-Maximization (EM) to fit 

1. Initialize clusters using kmeans++ or kmeans||
2. Assign weights to all points equal to the posterior P(M|D) (E step)
3. Update distribution using weighted points (M step)
4. Repeat 2 and 3 forever until convergence
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General Mixture Models (GMMs) can model 
multi-component distributions

model = GeneralMixtureModel.from_samples(NormalDistribution, 2, X)
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GMMs are not limited to Gaussian distributions
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A single exponential distribution does not model this 
data well

model = ExponentialDistribution.from_samples(X)
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A mixture of two exponentials models the data much 
better

model = GeneralMixtureModel.from_samples(ExponentialDistribution, 2, X)
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Heterogeneous mixtures are natively supported

model = GeneralMixtureModel.from_samples([ExponentialDistribution, UniformDistribution], 2, X)
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general mixture models are faster than sklearn
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GACTACGACTCGCGCTCGCGCGACGCGCTCGACATCATCGACACGACACTC

CG enrichment detection HMM
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GACTACGACTCGCGCTCGCGCGACGCGCTCGACATCATCGACACGACACTC

example: CG enrichment detector
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example: CG enrichment detector

40



example: CG enrichment detector
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hidden markov models
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hidden markov models
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example: GMM-HMM
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hidden markov models are faster than hmmlearn
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Bayesian networks

Bayesian networks are powerful inference tools which define a 
dependency structure between variables.

BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC
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Bayesian networks

Two main non-trivial tasks:
(1) Inference given incomplete information
(2) Learning the dependency structure from data

BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC
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Inference given incomplete information

BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC
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Inference given incomplete information

BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC
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Sometimes we want to learn structure from data

???
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Sometimes we want to learn structure from data

???

Three primary ways:
● “Search and score” / Exact
● “Constraint Learning” / PC
● Heuristics
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Sometimes we want to learn structure from data

???

pomegranate supports
● “Search and score” / Exact
● “Constraint Learning” / PC
● Heuristics
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Structure learning can be super-exponential in time
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pomegranate supports 4 structure learning algos
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Constraint graphs can merge expert knowledge with 
data

BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC

genetic conditions

diseases

symptoms
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Structure learning with Constraint Graphs

genetic conditions

diseases

symptoms
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Structure learning with constraint graphs

genetic conditions

diseases

symptoms

Constraint graphs can also encode possible dependencies as 
layers. 
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Constraint graphs can model the global stock market
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Bayes’ Rule

P(M|D) = P(D|M)P(M) / P(D)

Posterior = Likelihood * Prior / Normalization
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Let’s build a simple classifier on this data
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The likelihood function itself ignores class imbalance
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The prior probabilities can model class imbalance
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The posterior models the original data more faithfully
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The ratio of the posterior is a good classifier
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model = NaiveBayes.from_samples(NormalDistribution, X, y)
posteriors = model.predict_proba(idxs)



Naive Bayes assumes all dimensions are independent

P(M|D) = ∏P(D|M) P(M) / P(D)

Posterior = Likelihood * Prior / Normalization

67



Gaussian naive Bayes produces spherical distributions

68
model = NaiveBayes.from_samples(NormalDistribution, X, y)



Naive Bayes does not need to be homogenous
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Different features fall under different distributions

70



Explicitly modeling these distributions yields better 
classifiers

71

model = NaiveBayes.from_samples(NormalDistribution, X_train, y_train)
print "Gaussian Naive Bayes: ", (model.predict(X_test) == y_test).mean()

clf = GaussianNB().fit(X_train, y_train)
print "sklearn Gaussian Naive Bayes: ", (clf.predict(X_test) == y_test).mean()

model = NaiveBayes.from_samples([NormalDistribution, LogNormalDistribution, 
ExponentialDistribution], X_train, y_train)
print "Heterogeneous Naive Bayes: ", (model.predict(X_test) == y_test).mean()

Gaussian Naive Bayes:  0.798
sklearn Gaussian Naive Bayes:  0.798
Heterogeneous Naive Bayes:  0.844



pomegranate is just as fast as sklearn
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Bayes Classifiers are more general than naive Bayes

P(M|D) = P(D|M) P(M) / P(D)

Posterior = Likelihood * Prior / Normalization
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Gaussian Bayes Classifiers model the full covariance

74

naive training accuracy: 0.9286
bayes classifier training accuracy: 0.9657



Real data isn’t as clean (which is why we get paid)
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Creating mixture model Bayes classifiers is simple
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gmm_a = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 0])
gmm_b = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 1])
model_b = BayesClassifier([gmm_a, gmm_b], weights=numpy.array([1-y.mean(), y.mean()]))



Creating any Bayes classifiers is simple
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mc_a = MarkovChain.from_samples(X[y == 0])
mc_b = MarkovChain.from_samples(X[y == 1])
model_b = BayesClassifier([mc_a, mc_b], weights=numpy.array([1-y.mean(), y.mean()]))

hmm_a = HiddenMarkovModel…
hmm_b = HiddenMarkovModel...
model_b = BayesClassifier([hmm_a, hmm_b], weights=numpy.array([1-y.mean(), y.mean()]))

bn_a = BayesianNetwork.from_samples(X[y == 0])
bn_b = BayesianNetwork.from_samples(X[y == 1])
model_b = BayesClassifier([bn_a, bn_b], weights=numpy.array([1-y.mean(), y.mean()]))
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pomegranate has built in parallelization
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pomegranate has built in parallelization
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Mixture of Hidden Markov Models
Creating a mixture of HMMs is just as simple as passing the 
HMMs into a GMM as if it were any other distribution
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parallel training of a mixture of hmms
Creation is just as simple as passing the HMMs into the GMM 
object. In this case, each model has 307 edges and 39 states to 
train
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Parallel Training of a Mixture of HMMs

84fit(model, X, n_jobs=n)



Overview
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Tutorials for each model are available on github

86
https://github.com/jmschrei/pomegranate/tree/master/tutorials



Thank you for your time.
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