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Overview

pomegranate is more flexible than other packages, faster, is
intuitive to use, and can do it all in parallel



Overview: supported models

Six Main Models: Two Helper Models:

S o ol

Probability Distributions 1. k-means++/kmeans||
General Mixture Models 2. Factor Graphs
Markov Chains

Hidden Markov Models

Bayes Classifiers / Naive Bayes

Bayesian Networks



pomegranate supports many distributions

Kernel Densities
1. GaussianKernelDensity

Univariate Distributions 2. UniformKernelDensity
1. UniformDistribution 3. TriangleKernelDensity
2. BernoulliDistribution
3. NormalDistribution - Multivariate Distributions
4. LogNormgID|§tr|put|9n 1. IndependentComponentsDistribution
5. ExponentialDistribution o _ S
6. BetaDistribution 2. MultivariateGaussianDistribution
7.  GammaDistribution 3. DirichletDistribution
8. DiscreteDistribution 4. ConditionalProbabilityTable
9. PoissonDistribution 5. JointProbabilityTable



Models can be made in two ways...

...from data ...from known values
d = NormalDistribution.from_samples(X) d = NormalDistribution(5, 2.3)
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Models can be made in two ways...

...from data ...from known values

d = BayesianNetwork.from_samples(X) nl = Node(...)

n2 = Node(...)
model = BayesianNetwork()

model.add nodes(nl, n2...)
model.add edges(...)




The APl iIs common to all models

model.log_probability(X) / model.probability(X)
model.sample()

model.fit(X, weights, inertia) All models have these methods!
model.summarize(X, weights)

model.from_summaries(inertia)

Model.from_samples(X, weights)

model.predict(X)
All models composed of

model.predict_proba(X) distributions (like GMM, HMM...)

|
model.predict_log_proba(X) have these methods too!



Overview: model stacking in pomegranate

GeneralMixtureModel.from samples(NormalDistribution, n_components=3, X=X)

GeneralMixtureModel.from samples(ExponentialDistribution, n_components=3,
X=X)

BayesClassifier.from_samples( > X5 )

dl = GeneralMixtureModel.from_samples...
d2 = GeneralMixtureModel.from samples...
model = BayesClassifier([dl, d2])



pomegranate can be faster than numpy

Fitting Multivariate Gaussian to 10,000,000 samples of 10
dimensions

data = numpy.random.randn(10000000, 10)

print "numpy time:"

%timeit -n 10 data.mean(axis=0), numpy.cov(data, rowvar=False, bias=True)
print "\n" "pomegranate time:"

%timeit -n 10 MultivariateGaussianDistribution.from samples(data)

numpy time:
10 loops, best of 3:(3.52 s| per loop

pomegranate time:
10 loops, best of 3:(2.87 s|per loop
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@ pomegranate uses additive summarization

pomegranate reduces data to sufficient statistics for updates
and so only has to go datasets once (for all models).

Here is an example of the Normal Distribution sufficient

statistics
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pomegranate supports out-of-core learning

Batches from a dataset can be reduced to additive summary
statistics, enabling exact updates from data that can’t fit in memory.
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pomegranate supports mini-batching

Instead of going through the full dataset before updating parameters,
one could update parameters at each step.
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pomegranate supports parallelization

Multiple batches can be loaded at the same time and processed by
different threads using n_jobs in either fitting or prediction methods
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Training a mixture of HMMSs in parallel

Time to Train HMM Mixture
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model.fit(X, n_jobs=n) 15



pomegranate supports semisupervised learning

For many tasks, there is limited labeled data but a deluge of
unlabeled data, and one wants to utilize both.
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pomegranate supports semisupervised learning

Summaries from MLE on the labeled data can be added to
summaries from EM on the unlabeled data

Labeled MLE Summarles
Data

New Parameters

— B
EM Summaries

Sufficient Statistics
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pomegranate supports semisupervised learning

Supervised Accuracy: 0.93

Test Data, Supervised Boundaries
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Test Data, Semi-supervised Boundaries
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Semisupervised Accuracy: 0.96
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pomegranate will soon support missing data

Many real world tasks involve data sets with missing data. The next version of
pomegranate will include handling for all models by ignoring missing data, mean
imputation, and EM imputation.

Error in Multivariate Gaussian Covariance Matrix
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pomegranate uses Cupy for GPU support

Multivariate Gaussian with GPU Acceleration

Gaussian Mixture Model with GPU Acceleration
16
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MGDFit  MGDFt(GPU) ~ MGDlogp  MGD logp (GPU) GMMFit ~ GMMFit(GPU) GMMlogp GMM logp (GPU)
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pomegranate can be faster than scipy

mu, cov = numpy.random.randn(2000), numpy.eye(2000)

d = MultivariateGaussianDistribution(mu, cov)

X = numpy.random. randn(2000, 2000)

print "scipy time: ",

%timeit multivariate normal.logpdf(X, mu, cov)

print "pomegranate time: ",

%timeit MultivariateGaussianDistribution(mu, cov).log probability(X)
print "pomegranate time (w/ precreated object): ",

%timeit d.log probability(X)

scipy time: 1 loop, best of 3: |1.67 s|per loop
pomegranate time: 1 loop, best of 3:[801 ms|per loop
pomegranate time (w/ precreated object): 1 loop, best of 3:[216 ms |per loop
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pomegranate uses aggressive caching

logP(Xlu,6) = — lﬂg(\/ﬂﬁ) -

(x — p)?
P

logP(Xlu,0) = a —

22






Example ‘blast’ from Gossip Girl

Spotted: Lonely Boy. Can't believe the love of his life has
returned. If only she knew who he was. But everyone knows
Serena. And everyone is talking. Wonder what Blair Waldorf
thinks. Sure, they're BFF's, but we always thought Blair's
boyfriend Nate had a thing for Serena.
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Example ‘blast’ from Gossip Girl

Why'd she leave? Why'd she return? Send me all the deets.
And who am I? That's the secret I'll never tell. The only one.
—XOXO. Gossip Girl.
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How do we encode these ‘blasts’?

Better lock it down with Nate, B. Clock's ticking.

-1 Blair
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How do we encode these ‘blasts’?

This just in: S and B committing a crime of fashion. Who
doesn't love a five-finger discount. Especially if it's the middle
one.

-1 Blair
-1 Serena
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Simple summations don’t work well
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Beta distributions can model uncertainty

0 heads, 0 tails

0 heads, 2 tails

1 head, 2 tails

25 heads, 25 tails

Probability
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Beta distributions can model uncertainty

Jenny
Serena
Vanessa
Dan
Blair
Chuck
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Beta distributions can model uncertainty
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Overview: this talk

Overview
Major Models/Model Stacks
1. Hidden Markov Models
2. Bayes Classifiers
3. Bayesian Networks
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@ CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA

CG-detector-start CG-detector-end
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dl
d2

51
52

hmm

hmm .

hmm
hmm

hmm

CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA

DiscreteDistribution({'A': 0.25, 'C': 8.25, 'G': 8.25, 'T': B8.25})
DiscreteDistribution({'A': ©.10, 'C': 0.40, 'G': 0.40, 'T': 0.10})

State(dl, name="background")
State(d2, name="CG island")

= HiddenMarkovModel ("CG-detector”)
add states(sl, s2)

.add transition(hmm.start, sl, 0.5)
.add transition(hmm.start, s2, 0.5)
hmm .

.add transition(sl, s2,

hmm.

hmm

.add_transition(s2, s2,

hmm.

add transition(sl, sl, ©.9)

add transition(s2, sl,

oo o

1)
1)
.9)

bake() 34



pomegranate HMMs are feature rich

Algorithms
Priors v
Sampling v o
Log Probability Scoring v V
Feature pomegranate | hmmlearn Forward-Backward Emissions S v
Graph Structure Forward-Backward Transitions v
Silent States v Viterbi Decoding v o
Optional Explicit End State o MAP Decoding v
Sparse Implementation 4 Baum-Welch Training W
Arbitrary Emissions Allowed on States | Viterbi Training v
Discrete/Gaussian/GMM Emissions |+ J Labeled Training v
Large Library of Other Emissions v Tied Emissions v/
Build Model from Matrices J J et e i s al
Build Model Node-by-Node 7 Emissian inestia ¥
Serialize to JSON v Transition Inertia o
Serialize using Pickle/Joblib # J Erision Frecznyg ! d
Transition Freezing S
Multi-threaded Training S 35




GMM-HMM easy to define

dl = GeneralMixtureModel([NormalDistribution(5, 2), NormalDistribution(5, 4)])
d2 = GeneralMixtureModel([NormalDistribution(15, 1), NormalDistribution(15, 5)])
sl = State(dl, name="GMM1")

s2 = State(d2, name="GMM2")

model = HiddenMarkovModel()

model.add_states(sl, s2)

model.add_transition(model.start, sl1, ©.75)

model.add_transition(model.start, s2, ©.25)

model.add_transition(sl, sl1, ©.85)

model.add_transition(sl, s2, ©.15)

model.add_transition(s2, s2, ©.90)

model.add_transition(s2, s1, ©.10)

model.bake() 36



HMMs are faster than hmmlearn

Log Probability

Viterbi
Maximum A Posterfoni
Training

pomegranate is x times faster

10 20 30 40 50 60 70 80 20 100 1o 37
# Components



Overview: this talk

Overview
Major Models/Model Stacks
1. Hidden Markov Models
2. Bayes Classifiers
3. Bayesian Networks
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Naive Bayes produces ellipsoid boundaries

pomegranate naive Bayes sklearn naive Bayes

v 0 2 4 6 8 10 i 0 2 4 6 8 10

model = NaiveBayes.from _samples(NormalDistribution, X, y) s



Naive Bayes assumes independent features

Laikelihood x Prior

Normalization

Posterior =

d
11 P(D;|M)P(M)
P(M|D) = =

d
> I P(D;i|M)P(M)
ﬂ/ir 1=1 40







Data can fall under different distributions
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Data can fall under different distributions
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Data can fall under different distributions
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Using appropriate distributions is better

dists = [LogNormalDistribution, PoissonDistribution,
ExponentialDistribution, PoissonDistribution]

modell = NaiveBayes.from samples(NormalDistribution, X, y)
model2 = NaiveBayes.from samples(dists, X, y)
model3 = GaussianNB().fit(X, y)

Gaussian Naive Bayes: 0.711
sklearn Gaussian Naive Bayes: 0.711
Heterogeneous Naive Bayes: 0.726
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This additional flexibility is just as fast

—— pomegranate
—— sklearn

0 20 A &0 80 100
Number of Dimensions 46



Bayes classifiers don’t require independence

naive accuracy: 0.929 bayes classifier accuracy: 0.966

5 o]

47



Gaussian mixture model Bayes classifier

a
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Overview: this talk

Overview
Major Models/Model Stacks
1. Hidden Markov Models
2. Bayes Classifiers
3. Bayesian Networks
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Bayesian networks

Bayesian networks are powerful inference tools which define a
dependency structure between variables.
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Bayesian networks

Two main difficult tasks:
(1) Inference given incomplete information
(2) Learning the dependency structure from data
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Bayesian network structure learning

Three primary ways:

e “Search and score” / Exact
e “Constraint Learning” / PC
e Heuristics




Bayesian network structure learning

pomegranate supports:

e “Search and score” / Exact
e “Constraint Learning” / PC
e Heuristics
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pomegranate supports four algorithms

80 Time to Learn Structure o A DM with Resulting Model
oo — Exact Shortest —— Exact Shortest
—— Exact A* 4000 —FExact A*
%0 — Greedy — Greedy
o Chow-Liu el —— Chow-Liu
ol
w 40 = -6000
)= 3
|_
0 -7000
20
8000
10
—
0 -an00
B 10 12 14 16 18 & 10 12 14 16 13
Variables Variables

54



BNSL is hard due to acyclicity requirement

Global Parameter Independence:

given that they don’t form a cycle
In the resulting graph

Hard! Exponential Time!
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Medical diagnosis Bayesian network
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Constraint graphs merge data + knowledge




Constraint graphs merge data + knowledge

:

diseases

!

Global Parameter Independence:

given that they don't
form a cycle in the resulting graph

58



Constraint graphs merge data + knowledge

The parents of some variable A are independent of the parents of
some variable B

Task #1 Task #2 Task #3

:

} -
e
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Constraint graphs merge data + knowledge

Time To Learn Bayesian Network

:

diseases

:

60



Modeling the global stock market

TSE @ Opening
@ Closing

FTaE

NYSE

AAPL-open KEISEl-open

A
BWNG-open

BWNG-close

4__——"—-/
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Constraint graph published in Peerd CS

Finding the optimal Bayesian network
given a constraint graph

Jacob M. Schreiber' and William S. Noble*

' Department of Computer Science, University of Washington, Seattle, WA, United States of America
* Department of Genome Science, University of Washington, Seattle, WA, United States of America

ABSTRACT

Despite recent algorithmic improvements, learning the optimal structure of a Bayesian
network from data is typically infeasible past a few dozen variables. Fortunately, domain
knowledge can frequently be exploited to achieve dramatic computational savings, and
in many cases domain knowledge can even make structure learning tractable. Several
methods have previously been described for representing this type of structural prior
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Overview

pomegranate is more flexible than other packages, faster, is
intuitive to use, and can do it all in parallel
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Conversion from Cython to numba

Linear Gaussian Bayesian networks

Research in ancestral constraints for Bayesian network
structure learning
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Paper preprint available on arxiv!

pomegranate: fast and flexible probabilistic modeling
in python

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington
Seattle, WA 98195
jmschr@cs.washington.edu

Abstract

We present pomegranate, an open source machine learning package for proba-
bilistic modeling in Python. Probabilistic modeling encompasses a wide range of
methods that explicitly describe uncertainty using probability distributions. Three
widely used probabilistic models implemented in pomegranate are general mix-
ture models, hidden Markov models, and Bayesian networks. A primary focus
of pomegranate is to abstract away the complexities of training models from their
This allows nusers to foens on snecifvine the eomrect model for their

65
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pomegranate is now NumFOCUS aftiliated

Home

pémegranate

NUMFOCUS

OPFM GODE = BETTER SCIFNCE

About ~ Open Source Projects v Community ~ Programs v Blog

pomegranate

pomegranate is a Python module for fast and flexible probabilistic modeling inspired by the design of scikit-
learn. A primary focus of pomegranate is to abstract away the intricacies of a model from its definition,
allowing users to easily prototype with complex models and training strategies. Its modular implementation
allows for probability distributions to be swapped in or out for each other with ease and for models to be
stacked within each other, yielding such delights as a mixture of Bayesian networks or a Gaussian mixture
model Bayes classifier.

https://www.numfocus.org/open-source-projects/affiliated-projects/
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Documentation available at Readthedocs

# pomegranate ] ]
Docs » Home ) Edit on GitHub

Search docs

pémegranate

build | passing | ) build | passing

Home

pomegranate is a python package which implements fast, efficient, and extremely flexible
probabilistic models ranging from probability distributions to Bayesian networks to mixtures of
hidden Markov models. The most basic level of probabilistic modeling is the a simple probability
distribution. If we're modeling language, this may be a simple distribution over the frequency of all

possible words a person can say.
1. Probability Distributions
The next level up are probabilistic models which use the simple distributions in more complex ways.

A markov chain can extend a simple probability distribution to say that the probability of a certain
word depends on the word(s) which have been said previously. A hidden Markov model may say

that the prabability of a certain words depends on the latent/hidden state of the previous word,

https://pomegranate.readthedocs.io/en/latest/ -



Tutorials available on github

Branch: master v+ | pomegranate / tutorials /

ﬁjmschrei ADD bayes backend

[E] GGBlasts.xlsx

E) PyData_2016_Chicago_Tutorialipynb

[E) README.md

E] Tutorial_0_pomegranate_overview.ipynb
[E] Tutorial_1_Distributions.ipynb

E] Tutarial_2_General_Mixture_Models.ipynb
[E] Tutorial_3_Hidden_Markov_Models.ipynb

[E| Tutorial_4_Bayesian_MNetworks.ipynb

[E] Tutorial_4b_Bayesian_Network_Structure_Leamning.i...

[E] Tutorial_5_Bayes_Classifiers.ipynb
[E] Tutorial_6_Markov_Chain.ipynb

&) Tutorial_7_Parallelization.ipynb

PyData Chicago 2016

FIX markov chain notebooks

Update README.md

Minor typos

ENH tutorials

FIX hmm dimensionality

edit tutorial 3 to remove deprecated bake
ENH pomegranate vs libpgm tutorial
EMNH a* search

ADD bayes backend

FIX markov chain notebooks

ADD tutorial 7 parallelization

Create new file

Upload files = Find file = History

Latest commit 724518d 10 hours ago

8 months ago

w

months ago

2 years ago

w

months ago

2 years ago

=l

months ago

~

menths ago

7 months ago

28 days ago
10 hours ago
3 months ago

8 months ago

https://github.com/jmschrei/pomegranate/tree/master/tutorials
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PyMC3, Edward, PyStan?

Pomegranate implements probabilistic models that do not require
samplers perform inference with, whereas these packages focus on
the implementation of efficient samplers

Model hyperparameters in pomegranate are numbers, whereas they
are typically distributions in these other packages. This allows
uncertainty in model parameters to be explicitly captured.

Pomegranate focuses on discrete latent state (but discrete/continuous
observed state) whereas these focus on continuous latent state
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