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Overview

pomegranate is more flexible than other packages, faster, is
intuitive to use, and can do it all in parallel



Overview: this talk

Overview
Major Models/Model Stacks

1. General Mixture Models

2. Hidden Markov Models

3. Bayesian Networks

4. Bayes Classifiers
Finale: Train a mixture of HMMs in parallel



Overview: supported models

Six Main Models: Two Helper Models:

S o ol

Probability Distributions 1. k-means++/kmeans||
General Mixture Models 2. Factor Graphs
Markov Chains

Hidden Markov Models

Bayes Classifiers / Naive Bayes

Bayesian Networks



@ Overview: model stacking in pomegranate
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The APl iIs common to all models

model.log_probability(X) / model.probability(X)
model.sample()

model.fit(X, weights, inertia) All models have these methods!
model.summarize(X, weights)

model.from_summaries(inertia)

model.predict(X)

All models composed of
distributions (like GMM, HMM...)
mode|_predict_|og_proba()() have these methods too!

model.predict_proba(X)

Model.from_samples(X, weights)



pomegranate supports many models

Univariate Distributions

©CONOOAWN =

UniformDistribution
BernoulliDistribution
NormalDistribution
LogNormalDistribution
ExponentialDistribution
BetaDistribution
GammabDistribution
DiscreteDistribution
PoissonDistribution

Kernel Densities

1.
2.

GaussianKernelDensity
UniformKernelDensity

3. TriangleKernelDensity

Multivariate Distributions

1.

ok Wb

IndependentComponentsDistribution
Multivariate GaussianDistribution
DirichletDistribution
ConditionalProbability Table
JointProbability Table



Models can be created from known values

mu, sig = 0, 2 X
a = NormalDistribution(mu, sig) a

[0, 1, 1, 2, 1.5, 6, 7, 8, 7]
GaussianKernelDensity(X)
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Models can be learned from data

X = numpy.random.normal(@, 1, 100)
NormalDistribution.from samples(X)
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pomegranate can be faster than numpy

Fitting a Normal Distribution to 1,000 samples

data = numpy.random.randn(1000)

print "numpy time:"

%timeit -n 100 data.mean(), data.std()

print

print "pomegranate time:"

%timeit -n 100 NormalDistribution.from samplesidata)

numpy time: '
100 loops, best of 3:|46.6 us|per loop

pomegranate time:
100 loops, best of 3:|22.2 us|per loop

12



pomegranate can be faster than numpy

Fitting Multivariate Gaussian to 10,000,000 samples of 10
dimensions

data = numpy.random.randn(10000000, 10)

print "numpy time:"

%timeit -n 10 data.mean(), numpy.cov(data.T)

print

print "pomegranate time:"

%timeit -n 10 MultivariateGaussianDistribution.from samples data)

numpy time:

10 loops, best of 3: per loop

pomegranate time:

10 loops, best of 3: per loop
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pomegranate uses BLAS internally

scipy.linalg.cython blas cimport dgemm

d, ‘beta, pair sum, &d)
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pomegranate will soon have GPU support

[WIP] Add GPU support for models #/C

jmschrei wants to merge 1 commit into master from epu

[%J Conversation 3 O Commits 1 Files changed 3

H jmschrei commented 12 days ago Owner

This PR will add GPU support for all models, starting with multivariate gaussian distributions, GMMs, and
HMMs, using the package cupy . Stay tuned!
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@ pomegranate uses additive summarization

pomegranate reduces data to sufficient statistics for updates
and so only has to go datasets once (for all models).

Here is an example of the Normal Distribution sufficient

statistics
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pomegranate supports out-of-core learning

Batches from a dataset can be reduced to additive summary
statistics, enabling exact updates from data that can’t fit in memory.

it [data] 0.35
.summarize(datal:1000]) &
.summarize(data[1000:2000])
.summarize(data[2000:3000])
.summarize(data[3000:4000])
.summarize(datal[4000:])
.from summaries()

Probability

TCToOoToTUoTOoTw

Fit Mean: -B8.8174828965846, Fit STD: 8.986767322871
Summarize Mean: -98.9174820965846, Summarize STD: @.986767322871 7



Parallelization exploits additive summaries

New Parameters
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pomegranate supports semisupervised learning

Summary statistics from supervised models can be added to
summary statistics from unsupervised models to train a single model
on a mixture of labeled and unlabeled data.
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pomegranate supports semisupervised learning

Supervised Accuracy: 0.93

Test Data, Supervised Boundaries

15

10

Test Data, Semi-supervised Boundaries
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pomegranate can be faster than scipy

mu, cov = numpy.random.randn(2000), numpy.eye(2000)

d = MultivariateGaussianDistribution(mu, cov)

X = numpy.random. randn(2000, 2000)

print "scipy time: ",

%timeit multivariate normal.logpdf(X, mu, cov)

print "pomegranate time: ",

%timeit MultivariateGaussianDistribution(mu, cov).log probability(X)
print "pomegranate time (w/ precreated object): ",

%timeit d.log probability(X)

scipy time: 1 loop, best of 3: |1.67 s|per loop
pomegranate time: 1 loop, best of 3:[801 ms|per loop
pomegranate time (w/ precreated object): 1 loop, best of 3:[216 ms |per loop
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pomegranate uses aggressive caching

logP(Xlu,6) = — lﬂg(\/ﬂﬁ) -

(x — p)?
P

logP(Xlu,0) = a —
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Example ‘blast’ from Gossip Girl

Spotted: Lonely Boy. Can't believe the love of his life has
returned. If only she knew who he was. But everyone knows
Serena. And everyone is talking. Wonder what Blair Waldorf
thinks. Sure, they're BFF's, but we always thought Blair's
boyfriend Nate had a thing for Serena.

24



Example ‘blast’ from Gossip Girl

Why'd she leave? Why'd she return? Send me all the deets.
And who am I? That's the secret I'll never tell. The only one.
—XOXO. Gossip Girl.
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How do we encode these ‘blasts’?

Better lock it down with Nate, B. Clock's ticking.

-1 Blair
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How do we encode these ‘blasts’?

This just in: S and B committing a crime of fashion. Who
doesn't love a five-finger discount. Especially if it's the middle
one.

-1 Blair
-1 Serena
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Simple summations don’t work well
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Beta distributions can model uncertainty

0 heads, 0 tails

0 heads, 2 tails

1 head, 2 tails

25 heads, 25 tails

Probability
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Beta distributions can model uncertainty

Jenny
Serena
Vanessa
Dan
Blair
Chuck

.
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Beta distributions can model uncertainty
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GMMs can model complex distributions

33



GMMs can model complex distributions

Probability

ma e 0 2 4 6 8 10 12

model = GeneralMixtureModel.from_samples(NormalDistribution, 2, X)
34



GMMs can model complex distributions
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An exponential distribution is not right

1.5

Probability
[
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model = ExponentialDistribution.from_samples(X)
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A mixture of exponentials is better

2.0

B
[

Probability

2
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0.5
20

S 5 10 - 15
model = GeneralMixtureModel.from_samples(ExponentialDistribution, 2, X)
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Heterogeneous mixtures natively supported

Probability
= =
] =

0.4
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0.0

model = GeneralMixtureModel.from_samples([ExponentialDistribution, UniformDistribution], 2, X)
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GMMs faster than sklearn

|

pomegranate is x times faster
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@ CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA

CG-detector-start CG-detector-end

41



dl
d2

51
52

hmm

hmm .

hmm
hmm

hmm

CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA

DiscreteDistribution({'A': 0.25, 'C': 8.25, 'G': 8.25, 'T': B8.25})
DiscreteDistribution({'A': ©.10, 'C': 0.40, 'G': 0.40, 'T': 0.10})

State(dl, name="background")
State(d2, name="CG island")

= HiddenMarkovModel ("CG-detector”)
add states(sl, s2)

.add transition(hmm.start, sl, 0.5)
.add transition(hmm.start, s2, 0.5)
hmm .

.add transition(sl, s2,

hmm.

hmm

.add_transition(s2, s2,

hmm.

add transition(sl, sl, ©.9)

add transition(s2, sl,

oo o

1)
1)
.9)

bake() 42



pomegranate HMMs are feature rich

Algorithms
Priors v
Sampling v o
Log Probability Scoring v V
Feature pomegranate | hmmlearn Forward-Backward Emissions S v
Graph Structure Forward-Backward Transitions v
Silent States v Viterbi Decoding v o
Optional Explicit End State o MAP Decoding v
Sparse Implementation 4 Baum-Welch Training W
Arbitrary Emissions Allowed on States | Viterbi Training v
Discrete/Gaussian/GMM Emissions |+ J Labeled Training v
Large Library of Other Emissions v Tied Emissions v/
Build Model from Matrices J J et e i s al
Build Model Node-by-Node 7 Emissian inestia ¥
Serialize to JSON v Transition Inertia o
Serialize using Pickle/Joblib # J Erision Frecznyg ! d
Transition Freezing S
Multi-threaded Training S 43




GMM-HMM easy to define

dl = GeneralMixtureModel([NormalDistribution(5, 2), NormalDistribution(5, 4)])
d2 = GeneralMixtureModel([NormalDistribution(15, 1), NormalDistribution(15, 5)])
sl = State(dl, name="GMM1")

s2 = State(d2, name="GMM2")

model = HiddenMarkovModel()

model.add_states(sl, s2)

model.add_transition(model.start, sl1, ©.75)

model.add_transition(model.start, s2, ©.25)

model.add_transition(sl, sl1, ©.85)

model.add_transition(sl, s2, ©.15)

model.add_transition(s2, s2, ©.90)

model.add_transition(s2, s1, ©.10)

model.bake() m



HMMs are faster than hmmlearn

Log Probability

Viterbi
Maximum A Posterfoni
Training

pomegranate is x times faster

10 20 30 40 50 60 70 80 20 100 1o 45
# Components
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Bayesian networks

Bayesian networks are powerful inference tools which define a
dependency structure between variables.

47



Bayesian networks

Two main difficult tasks:
(1) Inference given incomplete information
(2) Learning the dependency structure from data

48



Bayesian network structure learning

Three primary ways:

e “Search and score” / Exact
e “Constraint Learning” / PC
e Heuristics




Bayesian network structure learning

pomegranate supports:

e “Search and score” / Exact
e “Constraint Learning” / PC
e Heuristics

50



Exact structure learning is intractable

Time (s)

Bayesian Network Structure Learning Time

104
103
102
101
100

10-1

10-2
Naive
Parent Independence
DP

DP BIC max parents

10-3

104

10-
2 4 6 8 10 12 14 16 18 20

Number of Nodes
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pomegranate supports four algorithms

80 Time to Learn Structure o A DM with Resulting Model
oo — Exact Shortest —— Exact Shortest
—— Exact A* 4000 —FExact A*
%0 — Greedy — Greedy
o Chow-Liu el —— Chow-Liu
ol
w 40 = -6000
)= 3
|_
0 -7000
20
8000
10
—
0 -an00
B 10 12 14 16 18 & 10 12 14 16 13
Variables Variables
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Constraint graphs merge data + knowledge
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Constraint graphs merge data + knowledge

Time To Learn Bayesian Network

:
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Modeling the global stock market

TSE @ Opening
@ Closing

FTaE

NYSE

AAPL-open KEISEl-open

A
BWNG-open

BWNG-close

4__——"—-/
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Constraint graph published in Peerd CS

Finding the optimal Bayesian network
given a constraint graph

Jacob M. Schreiber' and William S. Noble*

' Department of Computer Science, University of Washington, Seattle, WA, United States of America
* Department of Genome Science, University of Washington, Seattle, WA, United States of America

ABSTRACT

Despite recent algorithmic improvements, learning the optimal structure of a Bayesian
network from data is typically infeasible past a few dozen variables. Fortunately, domain
knowledge can frequently be exploited to achieve dramatic computational savings, and
in many cases domain knowledge can even make structure learning tractable. Several
methods have previously been described for representing this type of structural prior
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Bayes classifiers rely on Bayes' rule

_ P(DIM)P(M)
P(M|D) Y P(D|IM)P(M)
M
| Laikelihood x Prior
Posterior =

Normalization



Naive Bayes assumes independent features

d
I P(D;|M)P(M)

P(M|D) = ——
D H P(D;|M)P(M)
M 1=
| Laikelihood x Prior
Posterior =

Normalization
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Naive Bayes produces ellipsoid boundaries

pomegranate naive Bayes sklearn naive Bayes

0 0

2 2

-4 —4
v 0 2 4 6 8 10 i 0 2 4 6 8 10

model = NaiveBayes.from_samples(NormalDistribution, X, y) «



Naive Bayes can be heterogenous

0 500 1000 1500 2000 2500

Time (s)
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Data can fall under different distributions

Mean Standard Deviation Curation




Using appropriate distributions is better

model = NaiveBayes.from_samples(NormalDistribution, X train, y_train)
print "Gaussian Naive Bayes: ", (model.predict(X test) ==y test).mean()

clf = GaussianNB().fit(X_train, y_train)
print "sklearn Gaussian Naive Bayes: ", (clf.predict(X_test) ==y _test).mean()

model = NaiveBayes.from_samples([NormalDistribution, LogNormalDistribution,
ExponentialDistribution], X train, y_train)
print "Heterogeneous Naive Bayes: ", (model.predict(X_test) == y_test).mean()

Gaussian Naive Bayes: 0.798
sklearn Gaussian Naive Bayes: 0.798

Heterogeneous Naive Bayes: 0.844 *



This additional flexibility is just as fast

—— pomegranate
—— sklearn

0 20 A &0 80 100
Number of Dimensions 64



Bayes classifiers don’t require independence

naive accuracy: 0.929 bayes classifier accuracy: 0.966

5 o]
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Gaussian mixture model Bayes classifier

a
-10.0 -1.5 -5.0 -2.5 a0 25 50 7.5 0.0 -10.0 -1.5 5.0 -2.5 oo 25 50 75 0.0 66



Creating complex Bayes classifiers is easy

gmm_a = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 0])
gmm_b = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 1])
model_b = BayesClassifier([gmm_a, gmm_Db], weights=numpy.array([1-y.mean(), y.mean()]))

67



Creating complex Bayes classifiers is easy

mc_a = MarkovChain.from_samples(X[y == 0])
mc_b = MarkovChain.from_samples(X[y == 1])
model_b = BayesClassifier([mc_a, mc_b], weights=numpy.array([1-y.mean(), y.mean()]))

hmm_a = HiddenMarkovModel.from_samples(X[y == 0])
hmm_b = HiddenMarkovModel.from_samples(X[y == 1])
model_b = BayesClassifier(([hmm_a, hmm_Db], weights=numpy.array([1-y.mean(), y.mean()]))

bn_a = BayesianNetwork.from_samples(X[y == 0])
bn_b = BayesianNetwork.from_samples(X[y == 1])
model_b = BayesClassifier([bn_a, bn_b], weights=numpy.array([1-y.mean(), y.mean()])) 68
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@ Training a mixture of HMMSs in parallel

Creating a mixture of HMMs is just as simple as passing the
HMMs into a GMM as if it were any other distribution

model C = create_profile hmm(dC, I)
model mC = create_profile_hmm(dmC, I)
model hmC = create_profile hmm(dhmC, I)

model = GeneralMixtureModel([model C, model mC, model hmC])
return model
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Training a mixture of HMMSs in parallel

Time to Train HMM Mixture

120
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Time
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Number of Threads

fit(model, X, n_jobs=n) 71



Overview

pomegranate is more flexible than other packages, faster, is
intuitive to use, and can do it all in parallel
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Documentation available at Readthedocs

# pomegranate
Docs » Home ¢) Edit on GitHub

Search docs

pémegranate

Home

Qut of Core build 'passing @ build | passing

ty Distributions

Home

pomegranate is a python package which implements fast, efficient, and extremely flexible
probabilistic models ranging from probability distributions to Bayesian networks to mixtures of
hidden Markov models. The most basic level of probabilistic modeling is the a simple probability

distribution. If we're modeling language, this may be a simple distribution over the frequency of all
73

possible words a person can say.



Tutorials available on github

Branch: master v+ | pomegranate / tutorials /

ﬁjmschrei ADD bayes backend

[E] GGBlasts.xlsx

E) PyData_2016_Chicago_Tutorialipynb

[E) README.md

E] Tutorial_0_pomegranate_overview.ipynb
[E] Tutorial_1_Distributions.ipynb

E] Tutarial_2_General_Mixture_Models.ipynb
[E] Tutorial_3_Hidden_Markov_Models.ipynb

[E| Tutorial_4_Bayesian_MNetworks.ipynb

[E] Tutorial_4b_Bayesian_Network_Structure_Leamning.i...

[E] Tutorial_5_Bayes_Classifiers.ipynb
[E] Tutorial_6_Markov_Chain.ipynb

&) Tutorial_7_Parallelization.ipynb

PyData Chicago 2016

FIX markov chain notebooks

Update README.md

Minor typos

ENH tutorials

FIX hmm dimensionality

edit tutorial 3 to remove deprecated bake
ENH pomegranate vs libpgm tutorial
EMNH a* search

ADD bayes backend

FIX markov chain notebooks

ADD tutorial 7 parallelization

Create new file

Upload files = Find file = History

Latest commit 724518d 10 hours ago

8 months ago

w

months ago

2 years ago

w

months ago

2 years ago

=l

months ago

~

menths ago

7 months ago

28 days ago
10 hours ago
3 months ago

8 months ago

https://github.com/jmschrei/pomegranate/tree/master/tutorials
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Thank you for your time.
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