
A short manual for GenX

M. Björck, G. Andersson

Version 0.91

August 2, 2007

1 Introduction

This manual is intended as an introduction to the GenX program. The program
is an implementation of the Differential Evolution algorithm for constrained
fitting of a general function to data. The Differential Evolution algorithm has
proven to be a robust method for multidimensional optimization of non-linear
functions.

By separating the function to be fitted and the model it is readily extensible
to many problems. At present it has been used to fit x-ray reflectivity and
diffraction data. The models are written in the script language Python together
with the SciPy package. Using a script language makes the program a bit
slower a compilable programming language such as C, but instead it permits a
fast implementation of new ideas. The main idea of the program is to provide
a flexible and extensible environment for fitting a model to data.

The manual starts with an explanation of the user interface. It continues
by explaining how to write models. Finally it briefly explains how to use the
existing package for simulating x-ray reflectivity.

2 Installation

The program will run on all operating systems on which Python and wxPython
is implemented. These are at present, according to wxPython homepage: 32-
bit Microsoft Windows, most Unix or Unix-like systems, and Macintosh OS X.
Currently GenX has been tested on Windows XP, Mac OS X and Linux. To
install the program the following Python components need to be installed:

• Python 2.3.5, www.python.org

• SciPy 0.3.2, www.scipy.org

• Numeric 23.5, numpy.scipy.org

• wxPython 2.6, www.wxpython.org

The versions in this list are the most up-to-date versions the program has been
tested with. For Windows user there exists a package called Python Enthought
Edition, code.enthought.com, which contains all the packages mentioned in the

1

Figure 1: The main window of GenX, showing the menus and the different
folders.

list above and even some more. It should be said that SciPy might need to be
reinstalled on top of that installation to get it working properly.

When all the packages are installed. Unzip the program and run the file
GenX.py with the Python interpreter. For Windows users it should be enough
to double click on the file.

3 The User Interface

This section will briefly explain what the different menus and buttons in the
user interface do.

3.1 Main window

The main window, figure 1, is controlled by menus at the top of the window or
using the buttons on the toolbar. There are also different plot folders which are
chosen by clicking on the respective folder at the bottom of the window.

3.1.1 File menu

Open Session This opens a previously saved session. The user is asked to give
a file with the extension *.dbm and the session file contains the values in
the Parameters window, the data and a path to the Python file containing
the model. The command also loads the model file. The path in the
session file is relative to the session file, i.e. moving the model file relative

2

to the session file will make it unloadable1.

Save Session This saves the current session, see Open session.

Load Data Opens a window for importing and processing data. See section
Data window.

Load Model This loads a Python file that should contain the model. The
Python file will be executed in the global namespace. Any errors during
the execution will be reported. In addition the file must contain a function
called Sim which takes a data structure as argument and returns a list of
calculated values. See section Making a Model for more details.

Export Data This exports the data to a three-column format. The first col-
umn is the x-data and the two remaining columns is the loaded data and
the simulation, respectively.

Page Setup A native (i.e depends on the operating system) dialog box for
setting up the printing. These changes only apply to the printing of the
different plots.

Print Preview Print a preview of the graph in the active tab.

Print Prints the active graph in the notebook. Uses the settings defined in
Page Setup

Print Parameters Prints the parameters from the Parameters window as a
spreadsheet. This does no use the settings in Page Setup.

Exit Exits the program.

3.1.2 Windows Menu

This menu controls the auxiliary windows used for creating the model, loading
the data and defining the parameters.

Edit Opens an editor. Its main use is to edit the model file. It should be noted
that saving the file only saves the file and does not load the model into
the program. This has to be done using Load Model in the file menu or
the button on the toolbar.

Parameters Opens the Parameter window. This window defines which param-
eters should be fitted and their minimum values, maximum values and the
guessed start/refined value. See section Parameter window.

Data Opens a window for importing and processing data. See section Data
window.

1Note it is possible to load a broken file by firstly load the model file and then open the
session and after that load the model again. This makes it possible to load moved sessions
and relink the model file.

3

3.1.3 Fit Menu

This menu controls the fitting process.

Start Starts and initializes the fitting. Initialization means that any changes
made in the Parameter window are transferred to the fitting algorithm. It
will also create a new (random) population of parameter vectors.

Stop Stops the fitting.

Resume Resumes the fit without the initialization. The fitting will proceed
with the same population. Note that if the minimum and maximum values
in the spreadsheet has changed it will not be loaded into the fitting routine.

3.1.4 Misc Menu

Nice Graph This is intended for producing publication quality plots. At
present this is under development. Using this requires the package mat-
plotlib, matplotlib.sourceforge.net. It is at present prone to crash the
program!

Enable Zoom Turns the zoom on and off in the active plot in the notebook.

About.. Shows some information about the program.

3.1.5 The Toolbar

The toolbar allows fast access to the functions most used. The description that
follows lists the different buttons starting from the left.

Open Session Opens a Session. See description in the File menu.

Save Session Saves a Session. See description in the File menu.

Data Opens the Data window.

Load Model Loads a model. See description in the File menu.

Edit Opens the editor. See description in the File menu.

Reload Model Reloads the modelfile.

Parameters Shows the parameterwindow.

Start Starts the fitting. See description in the Fit menu.

Stop Stops the fitting. See description in the Fit menu.

Resume Resumes the fitting. See description in the Fit menu.

Choiche list Changes the y-axis scale. The different scaling functions are de-
fined in the file Settings.py

Line/Points Changes between lines and points for plotting the data.

Enable Zoom Enables the zoom. See description in the Misc menu.

4

Figure 2: A picture of the Error folder. The red curve is the error as a function
of the number of generations.

3.1.6 The Plots

In the bottom of the window there are several different tabs,see figure 1, that
are used to display the data produced by the fitting routine. They are chosen
by clicking on the respective tab.

Data Plot to show the data and the simulation. The scale of the y-axis is
changed by choice list in the toolbar. The red line corresponds to the
data and the blue is the simulation. This plot is updated after every
iteration/generation.

Error The plot, see figure 2, shows the evolution of the Figure of Merit (FOM)
as a function of the iteration/generation.

Parameters The y-axis corresponds to the normalized parameter space. The
plot,see figure 3, shows the best value of each parameter, red dot, and
the maximum and minimum of the parameter in the population, blue bar.
Each parameter has its own red dot and blue bar, and the x-axis corre-
spond to the row number in the spreadsheet. A normalized parameter
space means that the plot is normalized between 0 and 1 where 0 is the
minimum allowed value for the parameter and 1 is the maximum allowed
value. This is quite useful during fitting since it allows the user to check
that the minimum and maximum values do not limit the fitting routine.
It can also be used for seeing how fast certain parameters converge. In
addition it can be used to determine that all the parameters have con-
verged when the blue bars have vanished or are small. In that case more
generations/iterations will not improve the fit.

5

Figure 3: A picture of the Parameters plot. The red dots represents the best
value so far and the blue bars represents the population spread. See text for
details.

Escan This plot is used by the Escan button in the parameter window. It is
used to display the dependence of the error function on one parameter.
The y-axis corresponds to the error function and the x-axis to the param-
eter value which is represented by a blue line. The point that corresponds
to the value in the grid is represented by a red dot and a red line is also
included to indicate a 5 % increase in the errorfunction. See the section
for the parameter window for more details and figure 5.

3.2 Parameter Window

The parameter window, figure 4, is used for defining which parameters are to
be fitted and for setting the allowed minimum values, maximum values and
the best guess values. In addition it contains some auxiliary functions such as
simulation of the values and scanning of a parameter.

3.2.1 The Spreadsheet

The spreadsheet consists of 6 columns and an arbitrary number of rows. Each
row represents one parameter and the values associated with it. The first column
defines the parameter by a function that sets the parameter. This function has
to take a single float number as input. The use of a function instead of supplying
a parameter may seem a bit tedious, but it improves the flexibility and makes
less room for hard to find reference errors in the programming. Also, if the right
mouse button is clicked on a cell in the first column a pop-up menu will appear
allowing the user to choose from member functions in the Layer, Stack, Sample

6

Figure 4: The parameter window with the spreadsheet and the auxillary buttons
at the bottom.

and Instrument objects defined in the model file2. The second column, Value,
represents either the first guess value as well as the best fit value supplied by
the fitting algorithm. The third column, Fit, is a tick box. If this is ticked
the parameter will be fitted. The fourth and fifth columns contain the allowed
minimum and maximum values the parameter is allowed to take. The last
column represents the error of the parameter for a 5% increase in the FOM or if
the Chi2Fom, Chi2BarsFom or the Log2Fom a ”real” confidence interval with a
certain confidence set by the user in the menu Settings-Conf level. See section
on the figure of merit function for more information. The rows in spreadsheet
grows automatically as soon as the last row has a value.

If the first column is left blank the program will ignore the line. But if there
is something written, and it is not a python object the program will give an
error message in the form of a dialog box. Also when starting the fit all the
variables (functions) in the spreadsheet are set to the corresponding value in
the Value column whether or not the tick box in the Fit column is ticked.

3.2.2 Buttons

At present there are three buttons at the bottom of the window for extra func-
tion, see figure 4. The first from the left is Simulate. This executes a simulation
by first setting all the parameters defined to the value in the value column.
Then it calls the Sim function and plots the simulation together with the data.

The second button is the Escan button. This will scan a selected parameter
and plot the error function versus the parameter value. The limits of the scan
are determined by the minimum and maximum values. Before the error function
is scanned all the defined parameters will be set to the values in Value column.
The output is plotted in the Escan folder of the notebook. Before clicking on

2Note that user defined functions have to be entered manually

7

Figure 5: A screenshot of the procedure for an EScan run. Note that a row is
selected in the Parameter window.

the Escan button a row has to be selected by clicking on the row numbering to
the right of the spreadsheet, see figure 4. This function can be used to estimate
the uncertainty of the fit by using the above mentioned 5% level. However,
this needs a word of caution: it is not strictly the uncertainty in the parameter
that is measured, since it is only a one-dimensional scan through the parameter
space! If a correlation between the parameters exists, and it most probably
does, this method will give a wrong number for the uncertainty.

The third button, Eproject, works similair to the Escan button. It will
plot all evaluated FOM values from the fitting algorithm as a function of the
selected parameter. It can be used to view the projected FOM as a function of
one parameter.

3.3 Data Window

The data window represents a collection of routines for loading and processing
of the data. The data that can be loaded is column based ASCII data. The
program also supports the loading of multiple data sets. This can be used to
fit multiple data sets or to cut out different regions of an existing data set. The
window, see figure 6, is divided into two parts. The upper part is a toolbar and
the lower part is called working area in this manual.

3.3.1 Toolbar

The toolbar consists of four buttons and a drop-down choice list. The choice
list is used to choose on which data set the operations should be conducted.
The first button from the left loads data from a file to the active data set. The
second button adds a new empty data set to the list. The third button deletes
the active data set. The button furthest to the right plots the data in the main
window.

8

Figure 6: The Data window with the toolbar, top, and the working area, the
rest of the window. To be changed

3.3.2 Working area

The two upper input fields in the working area are labeled x col, y col and
e col3. The values in these fields represent which columns of the file contains
the x data, y data and errors of the y data, respectively. This information is
used when new data is loaded. The first column in the data file is denoted by 0.
The text fields labeled x=, y=, error= is used for writing Python expressions
that operate on the raw data, as read from the file. By clicking on the Apply
button the typed command is executed. At the end of this section some useful
expressions are presented. There is a tick box labeled use for fitting at the
bottom right of the window. If this box is checked the active data set will be
plotted and used for fitting. At the bottom right there is another tick box that
controls whether or not to plot the error bars of the data.

In this paragraph some useful expressions for treating the raw data are pre-
sented. Any Python expression will work and, in addition, if a special function
is written in the model file this can be called to process the data. First of all to
reset the data to the raw data write, x in the x field and y in the y field. The
general syntax for selecting data from an array is

x[start:end:stride]

If a special interval of the data needs to be fitted;

x[20:-300]

where the first value is the starting point (number of elements from the begin-
ning) and the last is the end point. A negative value means that the end point
is calculated from the end of the array. In addition, if the number of data points
has to be decreased the expression above can be extended to include the stride.

x[20:-300:2]

Consequently with this expression only every second data point is included. The
operations shown here also need to be performed on the y values. This is done
by typing the same expression into the text field for the y values and exchanging
x against y. It is also possible to conduct simple arithmetic operations on the
data. For example transforming the x data from degrees to Qz (scattering vector
in reciprocal Ångstrom), assuming that a wavelength of 1.54 Å is used:

3If no errors for the data are available set e col=y col

9

4*pi/1.54*sin(x*pi/180)

This would then be typed into the text field for the x data. The examples
presented here are rather limited but hopefully it shows the flexibility of treating
the data. For a more detailed list of functions and syntax the reader is referred
to the tutorials and manuals found at www.scipy.org.

4 Making a model

As said before, the only mandatory thing the model file has to contain is a
function called Sim taking a member of the class Data as input parameter.
However, to make the model useful, functions for setting the values have to be
incorporated. Since writing a model actually involves writing a script in Python
it is good to have some basic knowledge of the syntax. However, if you have
some basic knowledge about programming it should be fairly easy to just look
at the examples and write your own models without having to learn to program
in Python. On the other hand, there exists a number of free introductory books
as well as tutorials on the internet for the interested reader, see below.

• Python’s homepage contain most of the available tutorials online,
www.python.org.

• A Byte of Python is an introductory text for the absolute beginner,
www.byteofpython.info:8123.

• How to Think Like a Computer Scientist: Learning with Python is a text-
book for the beginner written for computer science students,
www.greenteapress.com/thinkpython.

• Dive Into Python is an introduction to Python book for the more experi-
enced programmer, diveintopython.org.

• In addition there are a number of tutorials on the SciPy homepage,
www.scipy.org, which deal with numerical computations. There is also a
migration guide for those who are familiar with MatLab r©

In order to write the Sim class it is necessary to know the structure of the
class Data which is taken as a parameter. The variables which could be useful
in the Sim function are:

x A list of 1-D arrays (vectors) containing the x-values of the processed data

y A list of 1-D arrays (vectors) containing the y-values of the processed data

xraw A list of 1-D arrays (vectors) containing the raw x-values (the data loaded
from the data file)

yraw A list of 1-D arrays (vectors) containing the raw y-values (the data loaded
from the data file)

use A list of booleans (True or False) denoting if the data should be fitted

10

Knowing what the Data class contains we will start with a simple example,
making a model that fits one Gaussian to the first data set. The free parameters
of the Gaussian are; the center of the peak, Xc, the peak width, W, and the
amplitude of the peak, A. Writing a model for it would produce a code as shown
below. Note that a # produce a comment.

1 # Create a class for user variables
2 MyVar=UserVars()
3 # Create your variables + set the initial values
4 MyVar.newVar(’A’,1.0)
5 MyVar.newVar(’W’,2.0)
6 MyVar.newVar(’Xc’,0.0)
7

8 # Define the function for a Gaussian
9 # i.e. definition of the model

10 def Gaussian(x):
11 return MyVar.A*exp((x-MyVar.Xc)**2/MyVar.W**2)
12

13 # Define the function Sim
14 def Sim(data):
15 # Calculate the Gaussian
16 I=Gauss(data.x[0])
17 # The returned value has to be a list
18 return [I]
19

The following is a brief description of the code above. First an object of the class
UserVars is created. This object is used to store user defined variables. Then
the variables are initialized (created) with their names given as strings. After
that a function for calculating a Gaussian variable is created. The function takes
an array of x values as input parameters and returns the calculated y-values.
At last the Sim function is defined. The function Gauss is called to calculate
the y-values with the x-data as the input argument. The x-values of the first
data set are extracted as data.x[0], and those of the second data set would
be extracted by data.x[1]. Note that a list is returned by taking the array
(vector) I and making a list with one element. Note that this requires that
only one data set has been loaded. In order to fit the parameters created in by
MyVar the user only has to right click on a cell in the grid of the Parameter
Window and choose the MyVar.set[Name] function, i.e. MyVar.setA.

The code above is usually sufficient for prototyping and simple problems.
For more complex models it is recommended to write a library. This is what
has been done for the simulation of x-ray reflectivity data. Also, instead of
writing a lot of functions for each model, a class, or several, can be written to
make the model simple to use. As a more elaborate example the previous simple
example can be transformed into a class:

1 # Definition of the class
2 class Gauss:
3 # A class for a Gaussian
4 # The creator of the class
5 def __init__(self,w=1.0,xc=0.0,A=1.0):

11

6 self.w=w
7 self.xc=xc
8 self.A=A
9

10 # The set functions used in the parameters column
11 def setW(w):
12 self.w=w
13

14 def setXc(xc):
15 self.xc=xc
16

17 def setA(A):
18 self.A=A
19

20 # The function to calculate the model (A Gaussian)
21 def Simulate(x):
22 return A*exp((x-self.xc)**2/self.w**2)
23

24 # Make a Gaussian:
25 Peak1=Gauss(w=2.0,xc=1.5,A=2.0)
26

27 def Sim(data):
28 # Calculate the Gaussian
29 I=Peak1.Simulate(data.x[0])
30 # The returned value has to be a list
31 return [I]
32

This code is quite similar to the first version with only functions. It starts
with the definition of the class Gauss. This class has a constructor, __init__, to
initialize the parameters of the object and functions to set the member variables,
denoted as self.*. It also contains a member function to calculate a Gaussian
with the member variables. After the class definition an object, Peak1, of the
Gauss class is created. Then the Sim function is defined as in the previous ex-
ample but with the function call exchanged to Peak1.Simulate(data.x[0]) in
order to simulate the object Peak1. The function names that should go into the
parameter column in the parameter window will be: Peak1.setW, Peak1.setXc
and Peak1.setA. Making the model based on a class makes it easier to extend.
For example if two peaks should be fitted the class does not have to be changed.
Instead an additional object of the class Gauss, for example called Peak2, can
be created and the two contributions are then added in the Sim function. The
code would then be modified to (omitting the class definition):

1 #Insert the class definition from above
2 # Make Gaussians:
3 Peak1=Gauss(w=2.0,xc=1.5,A=2.0)
4 Peak2=Gauss(w=2.0,xc=1.5,A=2.0)
5

6 def Sim(data):
7 # Calculate the Gaussian
8 I=Peak1.Simulate(data.x[0])+Peak2.Simulate(data.x[0])

12

9 # The returned value has to be a list
10 return [I]

Thus, for fitting the parameters for the second Gaussian the functions used
should be Peak2.setW, Peak2.setXc and Peak2.setA. When the base class is
created it can be extended with more problem oriented constraints by using
functions as in the first example. For example, in some cases it might be known
that the width of the two Gaussians should be the same. This can be solved by
defining a new variable:

1 #Insert the class definition from above
2 # Make Gaussians:
3 Peak1=Gauss(w=2.0,xc=1.5,A=2.0)
4 Peak2=Gauss(w=2.0,xc=1.5,A=2.0)
5 # Create a class for user variables
6 MyVar=UserVars()
7 # Create your variables + set the initial values
8 MyVar.newVar(’BothW’,1.0)
9

10 def Sim(data):
11 Peak1.setW(MyVar.BothW)
12 Peak2.setW(MyVar.BothW)
13 # Calculate the Gaussian
14 I=Peak1.Simulate(data.x[0])+Peak2.Simulate(data.x[0])
15 # The returned value has to be a list
16 return [I]

Instead of using the *.setW functions the MyVar.setBothW can be used, which
is automatically created by MyVar class. In summary it is recommended that
the models implemented in libraries are defined as classes and that these are
as general as possible with respect to the parameters. The specific parameter
couplings can be included as functions in the model file. The methods shown
with the examples in this section also apply to the libraries included for x-ray
reflectivity. The classes are different but the general use is the same.

5 The figure of merit function

The figure of merit (FOM) function is the function that describes how good the
model fits with the data. In the program the error functions can be defined as
a function in the model file or by using a predefined FOM function in the file
errorfuncs.py. All the error functions defined below are implemented in this
file.

5.1 Examples of FOM functions

In most cases of fitting, for example a straight line, the method of least squares
is usually used. This is a special case of the more general Chi-squared, χ2,
method.

χ2 = FOMChi2Bars =
∑

i

(
Mi − Si

σi

)2

, (1)

13

where Mi represents the measured value, Si the simulated value and σi is the
error. The index i represents the i’th point. This should be considered as the
starting point for any fitting problem. If error bars are not available for the data
or if the data has large systematic errors one can consider the functions below
instead. A useful error function for reflectivity and diffraction is the absolute
logarithmic error function;

FOMlog =
1

N − 1

∑
i

|log(Mi)− log(Si)| , (2)

where N is the number of points. This normalization with the number of points
is included in order to compare different data sets. Otherwise the error function
would be dependent on the number of points to be fitted. A similar FOM
function is the squared logarithmic

FOMlog =
1

N − 1

∑
i

(log(Mi)− log(Si))
2
, (3)

which is more sensitive to outlying data points than the previous, due to that
the error is squared. Thus it is usually not as useful as the absolute logarithmic
error function. Another FOM function that has been found useful for high angle
diffraction from superlattices is the absolute squareroot

FOMsqrt =
1

N − 1

∑
i

∣∣∣√Mi −
√

Si

∣∣∣ , (4)

This will put more emphasis on the points of high intensity than FOMlog and
can be more useful in those cases where the intensity range is not too large or
where the features that should be fitted have high intensity. The last function
that is implemented is a very empirical error function that has been used to fit
multilayers. It consists of two terms, one being the absolute logarithmic FOM
function and the second an absolute difference scaled with sin(θ)4. The sin(θ)4

term removes the overall decay of the reflected intensity as a function of angle.
This puts more emphasis on the multilayer Bragg peaks than the features in
between.

FOMMyError =
1

N − 1

∑
i

|Mi − Si| sin(θi)4 |log Mi − log Si| (5)

The default error function in the program is the absolute logarithmic error
function. To change the error function used, append the following line to the
model file, using the FOM function called MyError.

solver.setFomfunc(MyError)

For the names of the other error functions open the file fomfuncs.py. It is also
possible to add a user defined FOM function in the model file. The syntax for
writing an error function is

1 def NameFom(data,sim):
2 return 1/sum(data.use)*sum([expression for
3 (y,s,use) in zip(data.y,sim,data.use) if use)])

The for loop is necessary since there can be more than one data set that is used
in the fitting procedure. expression should be replaced with the expression for
the new error function.

14

6 Error Bars on fitted parameters

The last column in the parameter window represents the error bars. In order to
assign a confidence level to the errors the underlying distribution of the errors
have to be known. This is for a general FOM not known in advance. However,
for the Chi2Fom and Chi2BarsFom it is possible to assign a level of confidence
to the errors (or rather calculate the errors given a level of confidence). These
two FOM’s assume the errors on the data are normally distributed. One other
possibility to achieve quantitative error bars is to use Log2Fom which implies
that the errors on the data have a lognormal distribution.

To calculate the errors on the refined parameters a level of the FOM which
encompasses the level confidence has to be calculated. In the general case this is
a 5% increase in the FOM. It should be noted that is value is aribitrary chosen
and has no connection to any level of confidence! The procedure for a real
confidence level will be explained below. When this level is set all evaluations
of the FOM function from the fitting process are used and the min and max
values of the parameter of intrest that are lower than the set value represents
the error. Naturally this interval can be assymeteric and this procedure does
not make any assumption of the shape of the minimum of the FOM.

To calculate the errors of the parameters for a given level of confidence the
increase in the Chi2 distribution,∆χ2, has to be known with the number of free
degrees set to the number of free parameters in the fit. Given this number the
level of the FOM function are calculated by

FOMlevel = FOM +
∆χ2

N − 1
(6)

This procedure relies that the errors on the data are known and available. If
this is not the case the level can be calculated by assuming that the errors on
the data are constant and that the fit is good i.e.

∆χ2 = N −M =
FOM(N − 1)

σ2
(7)

where M is the number of free parameters in the fit. In this case the level of the
FOM function for a given level of confidence are given by.

FOMlevel = FOM
(

1 +
∆χ2

N −M

)
(8)

Finally it should be noted that in order to use the above procedure to cal-
culate the real confidence intervals the user has to first use the Chi2BarsFom
for the first alternative and Chi2Fom or Log2Fom for the second alternative.
Which procedure that are used are automatically chosen in the program. If
there are another FOM function used the errors are represented by a certain
increase (percent) in the FOM. Next the level of confidence has to be set in the
settings-Conflevel dialog after the model has been loaded, otherwise the errors
will be a 5% increase as default. The values in the error column are updated
after the fit has ended alternatively stopped by the user.

15

Figure 7: A picture of how the different classes builds a sample. The left figure
shows the sample and the right shows the computer representation of the sample.

7 Libraries

This section will give an introduction to the model included in the program.
Also some examples on how to write the model will be given. If the first section
is unclear, read the section Making a Model again since the same syntax is used
in that section. The examples are also less complex.

7.1 X-ray reflectivity

The libraries for x-ray reflectivity are built from the concept of three building
blocks for a sample. These are: Layer, Stack and Sample. The Layer defines
the parameters of a layer (e.g. refractive index, roughness). The Stack contains
a number of Layers which can be repeated a number of times. This corresponds
in some way to a multilayer. The Sample contains a number of stacks which
builds up the sample. Also included is the ambient medium as well as the
substrate. A picture of how the different classes make up a sample can be seen
in figure 7. A class named Instrument is also included for various instrument
parameters (e.g. wavelength).

7.1.1 Usage

In order to use a model library it should be imported into the model file
by the import statement. The current model for x-ray reflectivity is called
ModelInterdiff. As an example consider the sample consisting of a Fe/Pt
multilayer with 25 repeats on top of a buffer layer that consists of a Fe layer
closest to the substrate and then a thick Pt layer. The sample has been grown
on MgO. In order to model this sample two different stacks are needed: one for
the buffer layers and the second for the multilayer. The model file would look
something like the following.

16

1 # Import the model classes
2 from ModelInterdiff import *
3

4 # get the refractive indexes for the materials
5 nFe=getn(’Fe1’,2/2.866**3,1.54)
6 nPt=getn(’Pt1’,4/3.924**3,1.54)
7 nMgO=getn(’Mg1O1’,4*2/4.2**3,1.54)
8

9 # Create all the layers needed
10 MLFe=Layer(n=nFe,d=13.5,sigmar=1.0,reldens=1.0)
11 MLPt=Layer(n=nPt,d=13.5,sigmar=1.0,reldens=1.0)
12 bufPt=Layer(n=nPt,d=40,sigmar=1.0,reldens=1.0)
13 bufFe=Layer(n=nFe,d=5,sigmar=1.0,reldens=1.0)
14 sub=Layer(n=nMgO,sigmar=5,reldens=1.0)
15

16 # Create the Stacks - consists of layers
17 ML=Stack(Layers=[MLFe,MLPt],Repetitions=25)
18 buf=Stack(Layers=[bufFe,bufPt],Repetitions=1)
19

20 # Create the sample
21 sample=Sample(Stacks=[buf,ML],Ambient=Layer(n=1.0),Substrate=sub)
22 # Create the instrument -
23 # Coordinates=1=> two theta Coordintes =0 => Q_Z
24 inst=Instrument(Wavelength=1.54,Coordinates=1,I0=1.0e6)
25

26 # Simulate function - MANDATORY
27 def Sim(data):
28 I=sample.SimSpecular(data.x[0],inst)
29 return [I]

First the script imports the library ModelInterdiff. This loads the underlying
model. Next the different refractive indices for the materials are extracted from
the scattering length tables[3]. The function getn takes the atomic composition
of the elements as a string as first argument, the second argument is the atomic
density in atoms/Å3 and the the last argument is the x-ray wavelength in Å. In
the next code block all the layers needed are created. The constructor for the
Layer class takes the following parameters as input:

1. n, the refractive index of the material.

2. d, the thickness of the layer in Å.

3. sigmar, the roughness of the upper interface in Å.

4. reldens, the relative density of the material, where 1.0 corresponds to
the (bulk)density that n refers to.

After the layers have been created the different stacks are created, one for
the multilayer and one for the buffer layers. The constructor for a Stack takes
the layers that are contained in that stack as a list and the number of repeats
of that stack. Note that the first layer in the list is the layer closest to the
substrate. When the stacks have been created the sample can be constructed

17

Parameter Description
n A complex number for the refractive index of the

layer. It should be on the form n = 1− δ + βj

d The thickness of the layer given in Å.
sigmar The root mean square (rms) value of the roughness

given in Å.
sigmai The root mean square (rms) value of the interdiffu-

sion given in Å. Note that the roughness used for
specular calculations is σ =

√
σ2

i + σ2
r .

reldens The relative density of the material. Used as a scal-
ing factor for δ and β in the refractive index.

Table 1: The different parameters for the class Layer.

Parameter Description
Layers A list of the different Layers in the Stack.

Thus the input should be on the form
Layers=[layer1,layer2]

Repetitions The number of times the stack repeats itself. Should
be a integer.

Table 2: The different parameters for the class Stack.

from these stacks. The constructor for a Sample takes three input parameters:
a list of the Stacks, the Ambient layer (what is on top of the multilayer, usually
air, n = 1) and the substrate layer. For the ambient layer the calculations ignore
the roughness and the thickness. For the substrate the calculations ignore the
thickness. The first element in the Stacks list is the one closest to the substrate.

Next an Instrument object is created. This contains the wavelength used
and in which coordinates the data was recorded; 1 corresponds to 2θ and 0
corresponds to Qz. In addition it contains the incident intensity I0. Finally
the Sim function is created. The function sample.SimSpecular calculates the
specular reflectivity from the sample given the x-data and the instrument object.

In order to use the model file for fitting all the functions for setting the pa-
rameters have to be known. These functions are named according to the follow-
ing rule: Objectname.set[parameter name first letter uppercase]. For
example for fitting all the parameters for the object MLFe the functions would
become: MLFe.setD, MLFe.setN, MLFe.setSigmar and MLFe.setReldens. Note
that it not recommended to fit n since this is a complex number and the fitting
program only works with real numbers.

The model ModelInterdiff also contains a function to calculate the diffuse
reflectivity from a multilayer stack, [sample].SimOffSpecular(TwoThetaQz,ThetaQx,inst).
To simulate diffuse reflectivity some more parameters has to defined for the
sample, eta_x the in-plane correlation length in Å, eta_z the out-of-plane cor-
relation length between the interfaces and h the jaggedness parameter. Note
that these parameters are assumed to be constant throughout the sample. In
addition, the amount of interdiffusion of each layer can be defined as sigmai.

18

Parameter Description
Stacks A list of the different Stacks in the Sam-

ple. Thus the input should be on the form
Stacks=[stack1,stack2].

Ambient The Ambient layer, i.e. material that is on top of
the sample. Should be a member of the class Layer.

Substrate The Substrate layer, i.e. material that is below the
sample structure. Should be a member of the class
Layer.

h The jaggedness parameter. Only used for diffuse cal-
culations. Should be in the interval [0.15, 1.0].

eta_z The out-of-plane correlation length given in Å.
eta_x The in-plane correlation length given in Å.

Table 3: The different parameters for the class Stack.

Parameter Description
Wavelength The wavelength of the radiation used given in Å.
Coordinates The coordinates which the data are in. Have to be

an integer. 1 corresponds to reciprocal coordinates in
Å−1 and 0 to angular coordinates, i.e. the scattering
angle, 2θ in degrees.

I0 The incident intensity. A scaling factor for the re-
flectivity.

Restype An integer determining which type of resolution con-
volution to do. 0 no resolution convolution. 1
fast convolution assuming equally spaced data points
with a spacing much smaller than the resolution and
gaussian distribution. 2 ”Full conolution” calculates
Respoints data extra and convolutes these with a
gaussian.

Res The resolution of the instrument. Given as an rms
width of the data coordinates.

Respoints The number of points used for the resolution convo-
lution. Only valid for Restype=2

Resintrange How many standard deviations given by Res is in-
cluded in the convolution.

Footype an integer determining which footprint correction to
use. 0: no footprint correction. 1: footprint correc-
tion for a gaussian beamprofile. 2: footprint correc-
tion for a square beamprofile.

Beaw the width of the beam at the sample position given
in mm. For Footype= 1 it is the rms width of the
beam. For Footype= 2 it is the FWHM of the beam.
Used for footprint corrections.

Samlen The sample length given in mm. Used for footprint
corrections.

Table 4: The different parameters for the class Instrument.

19

7.1.2 Description

This section will give an introduction to the different files and functions for the
classes used for simulating the reflectivity. This could become a bit confusing
for the reader not familiar with programming. It is mainly intended for people
wanting to extend the models while keeping the general interface the same.

The underlying calculation routine is implemented in the file Paratt.py
where the function Refl is implemented. This function takes the refractive
indices, thicknesses and roughnesses of the layers as 1-D arrays. Thus it does
not make use of the classes defined in the previous section. In order to make
the implementation of a new model as easy as possible the classes are created
dynamically with the MakeClasses function in the file Refl.py. This function
takes a dictionary that contains the parameter names and their default values as
input parameters. The function then returns the classes. This function allows
easy creation of the interface of any model based on the Layers-Stacks-Sample
concept. As an example how to tie these two libraries together see the file
ModelInterdiff.py. This file defines the model and extracts the parameters
from the classes and sends them to the Refl function for calculation. The
definition of the classes in MakeClasses utilizes metaclasses to create all the
parameter functions and the parameters dynamically. The process of creating
the classes provides a very flexible framework for creating new models.

7.2 Neutron reflectivity

The included model for neutron reflectivity is very similar to the one for x-ray
reflectivity. Neutrons interact not only with the nucleus but also with the spin
of the unpaired electrons. Thus, the calculations has to also include magnetic
scattering. The model for Neutron reflectivity is called ModelSpecNX. The mod-
els are very similar to the x-ray models discussed in the previous section. The
differences are: different parameters in the Layer class, see table 5 and one new
parameter in the Instrument class, Sim which defines the type of simulation
according to the following scheme

Sim=0 Calculates the reflectivity for x-rays. The SimSpecular function gives
one output.

Sim=1 Calculates the reflectivity for neutrons without magnetic contrast. The
SimSpecular function gives one output.

Sim=2 Calculates the non spin flip neutron reflectivity. SimSpecular gives
two outputs, as a tuple, corresponding to the up-up and down-down re-
flectivity.

Sim=3 Calculates the spin-flip reflectivity. SimSpecular gives three outputs,
as a tuple, corresponding to the up-up, down-down and the spin flip chan-
nel.

8 The fitting algorithm

A general introduction to differential evolution can be found at [6]. For the spe-
cific case of the application of the algorithm to x-ray reflectivity and diffraction

20

Parameter Description
fb The scattering length per atom of the material.

Given as per Åfor neutrons and per electron (Thom-
son scattering length) for x-rays.

d The thickness of the layer given in Å.
sigma The root mean square (rms) value of the rough-

ness/interdiffusion given in Å.
dens The atomic density given in atoms/Å3

magn The magnetic moment given in µB/atom.
magn_ang The angle of the magnetic moment relative to the

applied field (spin direction of the neutron).

Table 5: The different parameters for the class Layer for the model for Neutrons.

the reader is referred to the paper of Wormington et. al.[7].
This section will briefly deal with the parameters the user can change to

tune the algorithm. However, this should not be necessary for most problems,
the algorithm usually works as it is. The class that implements the differential
evolution algorithm is called Solver and can be found in the file DEWorm.py.
In the program an instance of this class is created and called solver. The
parameters that could be useful to change is:

km The mutation constant. The default value is 0.7. A reasonable value is usu-
ally between 0.5 and 1. A lower value yields a faster convergence but also
a higher probability of misconvergence. Example: solver.setKm(0.7)

kr The crossover constant. Default value is 0.5. Determines the probability
that a parameter in the present vector is exchanged. Should be between
0 and 1. Example: solver.setKr(0.5)

Popmult A multiplicative factor that determines the size of the population.
The population size is determined by Popmult×The number of free pa-
rameters. The default value is 3. Example: solver.setPopmult(3)

maxGenMult A multiplicative factor that determines the maximum number
of generations/iterations. The maximum number of generations is deter-
mined by the number of free parameters×population size×maxGenMult.
The default value is 1. Example: solver.setMaxgenmult(1)

FOMFunc The function that calculates the error. See the section 5 for more
details. Example: solver.setFomfunc(Chi2Fom)

Note that the initial parameter settings for fitting algorithm are optimized for
many free parameters. Fitting only one parameter will not work properly. The
minimum number of free parameters for these settings are about 3-4 free pa-
rameters in order to get reasonable results.

9 A short HowTo for x-ray reflectivity

1. Get the x-ray data, do not use too fine steps since this will increase the
computation time (and not too large). Check if the sample is bent or

21

“wavy”. If that is the case try to decrease the resolution. In case of
reflectivity data check so that the diffuse scattering does not contribute
to the specular. If so subtract it.

2. Write a model file, using your knowledge of the system. Make the Sim
function. Couple parameters to make them more independent. For exam-
ple, use the bilayer repetition length as a free parameter for multilayers.
Do not forget to reload the model file when it has changed.

3. When the model file works include the instrument resolution (convolution
with a Gaussian is often good)[1, 4, 5, 2]. If needed, include the footprint
correction[2].

4. Remember to choose an error function that makes sense for your problem.
This is an important point.

5. Cut out the region that does not contain any information, mainly for
speeding up the calculation.

6. Define all free variables in the grid/spreadsheet

7. Type in reasonable minimum and maximum values, be generous with the
bounds.

8. Set a start guess. A rough guess is enough.

9. Start fitting. Keep an eye on the parameter distribution; if the population
spread (blue bars) are very small there will be very little improvement.

10. If the best value converges to the min or max boundaries increase the min
and max values. Restart the fit.

11. If the fit is not good enough there are three possibilities;

(a) Check the data. Make sure that the sample is not for example bent
(varying width of the specular component). This is best checked at
a couple of angles close to the total reflection and also far away.

(b) The model is wrong - change it to a better one.
(c) The error function does not give a good representation of the features

you want to fit

12. Fix the problem mentioned previously and restart the fitting process.

13. Continue until the fit is good (Repeat 9-12)

References

[1] W. H. de Jeu, J. D. Shindler, and E. A. Mol. J. Appl. Cryst., 29:511–515,
1996.

[2] A. Gibaud, G. Vignaud, and S. K. Shina. Acta Cryst., A49:642–648, 1993.

[3] B.L. Henke, E.M. Gullikson, and J.C. Davis. Atomic Data and Nuclear
Data Tables, 54:181–342, 1993. The data was obtained from http://www-
cxro.lbl.gov/optical constants/.

22

[4] D. Sentenac, A. N. Shalaginov, A. Fera, and W. H. de Jeu. J. Appl. Cryst.,
33:130–136, 2000.

[5] J. D. Shindler and R. M. Suter. Rev. Sci. Instrum., 63:5343–5347, 1992.

[6] Rainer Storn. http://www.icsi.berkeley.edu/~storn/code.html.

[7] M. Wormington, C. Panaccione, K. M. Matney, and D. K. Bowen. Phil.
Trans. R. Soc. Lond. A, 357:2827–2848, 1999.

23

