
CVS II:

Parallelizing Software Dev elopment

Brian Berliner

Prisma, Inc.
5465 Mark Dabling Blvd.

Colorado Springs, CO 80918
berliner@prisma.com

ABSTRACT

The program described in this paper fills a need in the UNIX community for a

freely available tool to manage software revision and release control in a multi-devel-

oper, multi-directory, multi-group environment. This tool also addresses the increasing

need for tracking third-party vendor source distributions while trying to maintain local

modifications to earlier releases.

1. Background

In large software development projects, it is usually necessary for more than one software developer

to be modifying (usually different) modules of the code at the same time. Some of these code modifica-

tions are done in an experimental sense, at least until the code functions correctly, and some testing of the

entire program is usually necessary. Then, the modifications are returned to a master source repository so

that others in the project can enjoy the new bug-fix or functionality. In order to manage such a project,

some sort of revision control system is necessary.

Specifically, UNIX1 kernel development is an excellent example of the problems that an adequate

revision control system must address. The SunOS2 kernel is composed of over a thousand files spread

across a hierarchy of dozens of directories.3 Pieces of the kernel must be edited by many software devel-

opers within an organization. While undesirable in theory, it is not uncommon to have two or more peo-

ple making modifications to the same file within the kernel sources in order to facilitate a desired change.

Existing revision control systems like RCS [Tichy] or SCCS [Bell] serialise file modifications by allowing

only one developer to have a writable copy of a particular file at any one point in time. That developer is

said to have “locked” the file for his exclusive use, and no other developer is allowed to check out a

writable copy of the file until the locking developer has finished impeding others’ productivity. Dev elop-

ment pressures of productivity and deadlines often force organizations to require that multiple developers

be able to simultaneously edit copies of the same revision controlled file.

The necessity for multiple developers to modify the same file concurrently questions the value of

serialization-based policies in traditional revision control. This paper discusses the approach that Prisma

1 UNIX is a registered trademark of AT&T.
2 SunOS is a trademark of Sun Microsystems, Inc.
3 Yes, the SunOS 4.0 kernel is composed of over a thousand files!

-2-

took in adapting a standard revision control system, RCS, along with an existing public-domain collection

of shell scripts that sits atop RCS and provides the basic conflict-resolution algorithms. The resulting pro-

gram, cvs, addresses not only the issue of conflict-resolution in a multi-developer open-editing environ-

ment, but also the issues of software release control and vendor source support and integration.

2. The CVS Program

cvs (Concurrent Versions System) is a front end to the RCS revision control system which extends

the notion of revision control from a collection of files in a single directory to a hierarchical collection of

directories each containing revision controlled files. Directories and files in the cvs system can be com-

bined together in many ways to form a software release. cvs provides the functions necessary to manage

these software releases and to control the concurrent editing of source files among multiple software de-

velopers.

The six major features of cvs are listed below, and will be described in more detail in the following

sections:

1. Concurrent access and conflict-resolution algorithms to guarantee that source changes are not

“lost.”

2. Support for tracking third-party vendor source distributions while maintaining the local modi-

fications made to those sources.

3. A flexible module database that provides a symbolic mapping of names to components of a

larger software distribution. This symbolic mapping provides for location independence

within the software release and, for example, allows one to check out a copy of the “diff” pro-

gram without ever knowing that the sources to “diff” actually reside in the “bin/diff” direc-

tory.

4. Configurable logging support allows all “committed” source file changes to be logged using

an arbitrary program to save the log messages in a file, notesfile, or news database.

5. A software release can be symbolically tagged and checked out at any time based on that tag.

An exact copy of a previous software release can be checked out at any time, regardless of

whether files or directories have been added/removed from the “current” software release. As

well, a “date” can be used to check out the exact version of the software release as of the

specified date.

6. A “patch” format file [Wall] can be produced between two software releases, even if the re-

leases span multiple directories.

The sources maintained by cvs are kept within a single directory hierarchy known as the “source

repository.” This “source repository” holds the actual RCS “,v” files directly, as well as a special per-

repository directory (CVSROOT.adm) which contains a small number of administrative files that describe

the repository and how it can be accessed. See Figure 1 for a picture of the cvs tree.

2.1. Software Conflict Resolution4

cvs allows several software developers to edit personal copies of a revision controlled file concur-

rently. The revision number of each checked out file is maintained independently for each user, and cvs

forces the checked out file to be current with the “head” revision before it can be “committed” as a perma-

nent change. A checked out file is brought up-to-date with the “head” revision using the “update” com-

mand of cvs. This command compares the “head” revision number with that of the user’s file and

4 The basic conflict-resolution algorithms used in the cvs program find their roots in the original work done by Dick

Grune at Vrije Universiteit in Amsterdam and posted to comp.sources.unix in the volume 6 release sometime in 1986.

This original version of cvs was a collection of shell scripts that combined to form a front end to the RCS programs.

newfs.c,vmkfs.c,vMakefile,v

newfs halt.c,vMakefile,vmodules,vloginfo,v

etcCVSROOT.adm

/src/master

Figure 1.
cvs Source Repository

performs an RCS merge operation if they are not the same. The result of the merge is a file that contains

the user’s modifications and those modifications that were “committed” after the user checked out his ver-

sion of the file (as well as a backup copy of the user’s original file). cvs points out any conflicts during

the merge. It is the user’s responsibility to resolve these conflicts and to “commit” his/her changes when

ready.

Although the cvs conflict-resolution algorithm was defined in 1986, it is remarkably similar to the

“Copy-Modify-Merge” scenario included with NSE5 and described in [Honda] and [Courington]. The

following explanation from [Honda] also applies to cvs:

Simply stated, a developer copies an object without locking it, modifies the copy, and then

merges the modified copy with the original. This paradigm allows developers to work in iso-

lation from one another since changes are made to copies of objects. Because locks are not

used, development is not serialised and can proceed in parallel. Developers, however, must

merge objects after the changes have been made. In particular, a dev eloper must resolve con-

flicts when the same object has been modified by someone else.

In practice, Prisma has found that conflicts that occur when the same object has been modified by

someone else are quite rare. When they do happen, the changes made by the other developer are usually

easily resolved. This practical use has shown that the “Copy-Modify-Merge” paradigm is a correct and

useful one.

2.2. Tracking Third-Party Source Distributions

Currently, a large amount of software is based on source distributions from a third-party distributor.

It is often the case that local modifications are to be made to this distribution, and that the vendor’s future

releases should be tracked. Rolling your local modifications forward into the new vendor release is a

time-consuming task, but cvs can ease this burden somewhat. The checkin program of cvs initially sets

up a source repository by integrating the source modules directly from the vendor’s release, preserving the

directory hierarchy of the vendor’s distribution. The branch support of RCS is used to build this vendor

5 NSE is the Network Software Environment, a product of Sun Microsystems, Inc.

-4-

release as a branch of the main RCS trunk. Figure 2 shows how the “head” tracks a sample vendor branch

when no local modifications have been made to the file.

"HEAD"

’SunOS’

1.1.11.1 1.1.1.1

1.1.1.2

1.1.1.3

1.1.1.4

’SunOS_4_0’

’SunOS_4_0_1’

’YAPT_5_5C’

’SunOS_4_0_3’

rcsfile.c,v

Figure 2.
cvs Vendor Branch Example

Once this is done, developers can check out files and make local changes to the vendor’s source distribu-

tion. These local changes form a new branch to the tree which is then used as the source for future check

outs. Figure 3 shows how the “head” moves to the main RCS trunk when a local modification is made.

When a new version of the vendor’s source distribution arrives, the checkin program adds the new

and changed vendor’s files to the already existing source repository. For files that have not been changed

locally, the new file from the vendor becomes the current “head” revision. For files that have been modi-

fied locally, checkin warns that the file must be merged with the new vendor release. The cvs “join” com-

mand is a useful tool that aids this process by performing the necessary RCS merge, as is done above when

performing an “update.”

1.2

"HEAD"

’SunOS’

1.1.11.1 1.1.1.1

1.1.1.2

1.1.1.3

1.1.1.4

’SunOS_4_0’

’SunOS_4_0_1’

’YAPT_5_5C’

’SunOS_4_0_3’

rcsfile.c,v

Figure 3.
cvs Local Modification to Vendor Branch

There is also limited support for “dual” derivations for source files. See Figure 4 for a sample dual-

derived file. This example tracks the SunOS distribution but includes major changes from Berkeley.

These BSD files are saved directly in the RCS file off a new branch.

2.3. Location Independent Module Database

cvs contains support for a simple, yet powerful, “module” database. For reasons of efficiency, this

database is stored in ndbm (3) format. The module database is used to apply names to collections of di-

rectories and files as a matter of convenience for checking out pieces of a large software distribution. The

database records the physical location of the sources as a form of information hiding, allowing one to

check out whole directory hierarchies or individual files without regard for their actual location within the

global source distribution.

-6-

’BSD’1.2

1.1

1.1.1.1

1.1.1.2

1.1.1.3

1.1.2.2

1.1.2.1

rcsfile.c,v

1.1.1

’SunOS’

1.1.2

Figure 4.
cvs Support For “Dual” Derivations

Consider the following small sample of a module database, which must be tailored manually to

each specific source repository environment:

#key [-option argument] directory [files...]

diff bin/diff

libc lib/libc

sys -o sys/tools/make_links sys

modules -i mkmodules CVSROOT.adm modules

kernel -a sys lang/adb

ps bin Makefile ps.c

The “diff” and “libc” modules refer to whole directory hierarchies that are extracted on check out.

The “sys” module extracts the “sys” hierarchy, and runs the “make_links” program at the end of the check

out process (the -o option specifies a program to run on checkout). The “modules” module allows one to

edit the module database file and runs the “mkmodules” program on checkin to regenerate the ndbm data-

base that cvs uses. The “kernel” module is an alias (as the -a option specifies) which causes the remain-

ing arguments after the -a to be interpreted exactly as if they had been specified on the command line.

This is useful for objects that require shared pieces of code from far away places to be compiled (as is the

case with the kernel debugger, kadb, which shares code with the standard adb debugger). The “ps” mod-

ule shows that the source for “ps” lives in the “bin” directory, but only Makefile and ps.c are required to

build the object.

The module database at Prisma is now populated for the entire UNIX distribution and thereby al-

lows us to issue the following convenient commands to check out components of the UNIX distribution

without regard for their actual location within the master source repository:

example% cvs checkout diff

example% cvs checkout libc ps

example% cd diff; make

In building the module database file, it is quite possible to have name conflicts within a global soft-

ware distribution. For example, SunOS provides two cat programs: one for the standard environment,

/bin/cat, and one for the System V environment, /usr/5bin/cat. We resolved this conflict by naming the

standard cat module “cat”, and the System V cat module “5cat”. Similar name modifications must be ap-

plied to other conflicting names, as might be found between a utility program and a library function,

though Prisma chose not to include individual library functions within the module database at this time.

2.4. Configurable Logging Support

The cvs “commit” command is used to make a permanent change to the master source repository

(where the RCS “,v” files live). Whenever a “commit” is done, the log message for the change is carefully

logged by an arbitrary program (in a file, notesfile, news database, or mail). For example, a collection of

these updates can be used to produce release notices. cvs can be configured to send log updates through

one or more filter programs, based on a regular expression match on the directory that is being changed.

This allows multiple related or unrelated projects to exist within a single cvs source repository tree, with

each different project sending its “commit” reports to a unique log device.

A sample logging configuration file might look as follows:

#regex filter-program

DEFAULT /usr/local/bin/nfpipe -t %s utils.updates

ˆdiag /usr/local/bin/nfpipe -t %s diag.updates

ˆlocal /usr/local/bin/nfpipe -t %s local.updates

ˆperf /usr/local/bin/nfpipe -t %s perf.updates

ˆsys /usr/local/bin/nfpipe -t %s kernel.updates

This sample allows the diagnostics and performance groups to share the same source repository

with the kernel and utilities groups. Changes that they make are sent directly to their own notesfile [Es-

sick] through the “nfpipe” program. A sufficiently simple title is substituted for the “%s” argument be-

fore the filter program is executed. This logging configuration file is tailored manually to each specific

source repository environment.

2.5. Tagged Releases and Dates

Any release can be given a symbolic tag name that is stored directly in the RCS files. This tag can

be used at any time to get an exact copy of any previous release. With equal ease, one can also extract an

exact copy of the source files as of any arbitrary date in the past as well. Thus, all that’s required to tag

the current kernel, and to tag the kernel as of the Fourth of July is:

example% cvs tag TEST_KERNEL kernel

example% cvs tag -D ’July 4’ PATRIOTIC_KERNEL kernel

The following command would retrieve an exact copy of the test kernel at some later date:

example% cvs checkout -fp -rTEST_KERNEL kernel

The -f option causes only files that match the specified tag to be extracted, while the -p option automati-

cally prunes empty directories. Consequently, directories added to the kernel after the test kernel was

tagged are not included in the newly extracted copy of the test kernel.

-8-

The cvs date support has exactly the same interface as that provided with RCS, howev er cvs must

process the “,v” files directly due to the special handling required by the vendor branch support. The

standard RCS date handling only processes one branch (or the main trunk) when checking out based on a

date specification. cvs must instead process the current “head” branch and, if a match is not found, pro-

ceed to look for a match on the vendor branch. This, combined with reasons of performance, is why cvs

processes revision (symbolic and numeric) and date specifications directly from the “,v” files.

2.6. Building “patch” Source Distributions

cvs can produce a “patch” format [Wall] output file which can be used to bring a previously re-

leased software distribution current with the newest release. This patch file supports an entire directory

hierarchy within a single patch, as well as being able to add whole new files to the previous release. One

can combine symbolic revisions and dates together to display changes in a very generic way:

example% cvs patch -D ’December 1, 1988’ \

-D ’January 1, 1989’ sys

This example displays the kernel changes made in the month of December, 1988. To release a patch file,

for example, to take the cvs distribution from version 1.0 to version 1.4 might be done as follows:

example% cvs patch -rCVS_1_0 -rCVS_1_4 cvs

3. CVS Experience

3.1. Statistics

A quick summary of the scale that cvs is addressing today can be found in Table 1.

Revision Control Statistics at Prisma
as of 11/11/89

How Many... Total

Files 17243

Directories 1005

Lines of code 3927255

Removed files 131

Software developers 14

Software groups 6

Megabytes of source 128

Table 1.
cvs Statistics

Table 2 shows the history of files changed or added and the number of source lines affected by the change

at Prisma. Only changes made to the kernel sources are included. The large number of source file

changes made in September are the result of merging the SunOS 4.0.3 sources into the kernel. This

merge process is described in section 3.3.

3.2. Performance

The performance of cvs is currently quite reasonable. Little effort has been expended on tuning

cvs, although performance related decisions were made during the cvs design. For example, cvs parses

the RCS “,v” files directly instead of running an RCS process. This includes following branches as well as

integrating with the vendor source branches and the main trunk when checking out files based on a date.

Prisma Kernel Source File Changes
By Month, 1988-1989

Changed # Lines # Added # Lines

Files Changed Files Added
Month

Dec 87 3619 68 9266

Jan 39 4324 0 0

Feb 73 1578 5 3550

Mar 99 5301 18 11461

Apr 112 7333 11 5759

May 138 5371 17 13986

Jun 65 2261 27 12875

Jul 34 2000 1 58

Aug 65 6378 8 4724

Sep 266 23410 113 39965

Oct 22 621 1 155

Total 1000 62196 269 101799

Table 2.
cvs Usage History for the Kernel

Checking out the entire kernel source tree (1223 files/59 directories) currently takes 16 wall clock

minutes on a Sun-4/280. However, bringing the tree up-to-date with the current kernel sources, once it

has been checked out, takes only 1.5 wall clock minutes. Updating the complete 128 MByte source tree

under cvs control (17243 files/1005 directories) takes roughly 28 wall clock minutes and utilises one-third

of the machine. For now this is entirely acceptable; improvements on these numbers will possibly be

made in the future.

3.3. The SunOS 4.0.3 Merge

The true test of the cvs vendor branch support came with the arrival of the SunOS 4.0.3 source up-

grade tape. As described above, the checkin program was used to install the new sources and the result-

ing output file listed the files that had been locally modified, needing to be merged manually. For the ker-

nel, there were 94 files in conflict. The cvs “join” command was used on each of the 94 conflicting files,

and the remaining conflicts were resolved.

The “join” command performs an rcsmerge operation. This in turn uses /usr/lib/diff3 to produce a

three-way diff file. As it happens, the diff3 program has a hard-coded limit of 200 source-file changes

maximum. This proved to be too small for a few of the kernel files that needed merging by hand, due to

the large number of local changes that Prisma had made. The diff3 problem was solved by increasing the

hard-coded limit by an order of magnitude.

The SunOS 4.0.3 kernel source upgrade distribution contained 346 files, 233 of which were modifi-

cations to previously released files, and 113 of which were newly added files. checkin added the 113 new

files to the source repository without intervention. Of the 233 modified files, 139 dropped in cleanly by

checkin, since Prisma had not made any local changes to them, and 94 required manual merging due to

local modifications. The 233 modified files consisted of 20,766 lines of differences. It took one devel-

oper two days to manually merge the 94 files using the “join” command and resolving conflicts manually.

An additional day was required for kernel debugging. The entire process of merging over 20,000 lines of

differences was completed in less than a week. This one time-savings alone was justification enough for

the cvs development effort; we expect to gain even more when tracking future SunOS releases.

-10-

4. Future Enhancements and Current Bugs

Since cvs was designed to be incomplete, for reasons of design simplicity, there are naturally a

good number of enhancements that can be made to make it more useful. As well, some nuisances exist in

the current implementation.

• cvs does not currently “remember” who has a checked out a copy of a module. As a result, it is

impossible to know who might be working on the same module that you are. A simple-minded

database that is updated nightly would likely suffice.

• Signal processing, keyboard interrupt handling in particular, is currently somewhat weak. This

is due to the heavy use of the system (3) library function to execute RCS programs like co and ci.

It sometimes takes multiple interrupts to make cvs quit. This can be fixed by using a home-

grown system () replacement.

• Security of the source repository is currently not dealt with directly. The usual UNIX approach

of user-group-other security permissions through the filesystem is utilised, but nothing else. cvs

could likely be a set-group-id executable that checks a protected database to verify user access

permissions for particular objects before allowing any operations to affect those objects.

• With every checked-out directory, cvs maintains some administrative files that record the cur-

rent revision numbers of the checked-out files as well as the location of the respective source

repository. cvs does not recover nicely at all if these administrative files are removed.

• The source code for cvs has been tested extensively on Sun-3 and Sun-4 systems, all running

SunOS 4.0 or later versions of the operating system. Since the code has not yet been compiled

under other platforms, the overall portability of the code is still questionable.

• As witnessed in the previous section, the cvs method for tracking third party vendor source dis-

tributions can work quite nicely. Howev er, if the vendor changes the directory structure or the

file names within the source distribution, cvs has no way of matching the old release with the

new one. It is currently unclear as to how to solve this, though it is certain to happen in prac-

tice.

5. Availability

The cvs program sources can be found in a recent posting to the comp.sources.unix newsgroup. It

is also currently available via anonymous ftp from “prisma.com”. Copying rights for cvs will be covered

by the GNU General Public License.

6. Summary

Prisma has used cvs since December, 1988. It has evolved to meet our specific needs of revision

and release control. We will make our code freely available so that others can benefit from our work, and

can enhance cvs to meet broader needs yet.

Many of the other software release and revision control systems, like the one described in [Glew],

appear to use a collection of tools that are geared toward specific environments — one set of tools for the

kernel, one set for “generic” software, one set for utilities, and one set for kernel and utilities. Each of

these tool sets apparently handle some specific aspect of the problem uniquely. cvs took a somewhat dif-

ferent approach. File sharing through symbolic or hard links is not addressed; instead, the disk space is

simply burned since it is “cheap.” Support for producing objects for multiple architectures is not ad-

dressed; instead, a parallel checked-out source tree must be used for each architecture, again wasting disk

space to simplify complexity and ease of use — punting on this issue allowed Makefiles to remain un-

changed, unlike the approach taken in [Mahler], thereby maintaining closer compatibility with the third-

party vendor sources. cvs is essentially a source-file server, making no assumptions or special handling of

the sources that it controls. To cvs:

A source is a source, of course, of course, unless of course the source is Mr. Ed.6

Sources are maintained, saved, and retrievable at any time based on symbolic or numeric revision or date

in the past. It is entirely up to cvs wrapper programs to provide for release environments and such.

The major advantage of cvs over the many other similar systems that have already been designed is

the simplicity of cvs. cvs contains only three programs that do all the work of release and revision con-

trol, and two manually-maintained administrative files for each source repository. Of course, the deciding

factor of any tool is whether people use it, and if they even like to use it. At Prisma, cvs prevented mem-

bers of the kernel group from killing each other.

7. Acknowledgements

Many thanks to Dick Grune at Vrije Universiteit in Amsterdam for his work on the original version

of cvs and for making it available to the world. Thanks to Jeff Polk of Prisma for helping with the design

of the module database, vendor branch support, and for writing the checkin shell script. Thanks also to

the entire software group at Prisma for taking the time to review the paper and correct my grammar.

8. References

[Bell] Bell Telephone Laboratories. “Source Code Control System User’s Guide.” UNIX System

III Programmer’s Manual, October 1981.

[Courington] Courington, W. The Network Software Environment, Sun Technical Report FE197-0, Sun

Microsystems Inc, February 1989.

[Essick] Essick, Raymond B. and Robert Bruce Kolstad. Notesfile Reference Manual, Department

of Computer Science Technical Report #1081, University of Illinois at Urbana-Champaign,

Urbana, Illinois, 1982, p. 26.

[Glew] Glew, Andy. “Boxes, Links, and Parallel Trees: Elements of a Configuration Management

System.” Workshop Proceedings of the Software Management Conference, USENIX, New

Orleans, April 1989.

[Grune] Grune, Dick. Distributed the original shell script version of cvs in the comp.sources.unix

volume 6 release in 1986.

[Honda] Honda, Masahiro and Terrence Miller. “Software Management Using a CASE Environ-

ment.” Workshop Proceedings of the Software Management Conference, USENIX, New

Orleans, April 1989.

[Mahler] Mahler, Alex and Andreas Lampen. “An Integrated Toolset for Engineering Software Con-

figurations.” Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-

sium on Practical Software Development Environments, ACM, Boston, November 1988.

Described is the shape toolkit posted to the comp.sources.unix newsgroup in the volume

19 release.

[Tichy] Tichy, Walter F. “Design, Implementation, and Evaluation of a Revision Control System.”

Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,

September 1982.

[Wall] Wall, Larry. The patch program is an indispensable tool for applying a diff file to an origi-

nal. Can be found on uunet.uu.net in ˜ftp/pub/patch.tar.

6 cvs, of course, does not really discriminate against Mr. Ed.7

7 Yet.

