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The Gay-Berne anisotropic LJ interaction between pairs of dissimilar el-
lipsoidal particles is given by
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where A; and A, are the transformation matrices from the simulation
box frame to the body frame and r;5 is the center to center vector between
the particles. U, controls the shifted distance dependent interaction based
on the distance of closest approach of the two particles (hi2) and the user-
specified shift parameter gamma:

U, = 4e(0™ — 0°)
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Let the shape matrices S; = diag(aj, bj, ¢;) be given by the ellipsoid radii.
The 7 orientation-dependent energy based on the user-specified exponent v
is given by
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and

Giz = ATS?A; + ATS2A, = G4 + G,
Let the relative energy matrices E; = diag(ei_al/“, ei_bl/“, ei;l/“) be given by

the relative well depths (dimensionless energy scales inversely proportional to



the well-depths of the respective orthogonal configurations of the interacting
molecules). The x orientation-dependent energy based on the user-specified
exponent p is given by
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and

B12 = ArlI‘ElAl + AgEzAz == B1 + B2.

Here, we use the distance of closest approach approximation given by the
Perram reference, namely

hig =1 — 012(A1, A,, 1“12)7

r= |I‘12|»
and

1
T ~—1a 1-1/2
012 = [;11,G o F12.] /

2

Forces and Torques: Because the analytic forces and torques have not
been published for this potential, we list them here:
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where the derivative of U, is given by (see Allen reference)
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The derivate of the y term is given by
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The torque is given by:
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For the derivative of the 1 term, we were unable to find a matrix expres-
sion due to the determinant. Let a,,; be the mth row of the rotation matrix

A;. Then,
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where d,,,i represents the mth row of a derivative matrix D;,
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where the matrix E gives the derivate with respect to the rotation matrix,

D; = — E

Y

on
E = [emy] = 8;27




and

emy = det(Gaz) - trace[Gﬁl - (Py ® am + am ® Py) - sfnm].

Here, p, is the unit vector for the axes in the lab frame (p1 = [1,0,0],p2 =
[0,1,0],andp3 = 10,0, 1]) and $,,,,, gives the mth radius of the ellipsoid 7.



