An easy way to access files
in Gamma Mesh Format

The libMeshb library

Loic MARECHAL / INRIA, Gamma Project
February 2024

Document v1.93
Library v7.79



Contents

1 Introduction

1.1  What is the Gamma Mesh Format 7 . . .. .. .. ... ... ... ....
1.2 An evolving keyword based format . . . ... ... ...
1.3 A comprehensive C library . . . . . . . . .. ... ... L.
1.4 ASCITvs. Binary . . . . . . .. ... .
1.5 Mesh and Sol files . . . . . . . . . . . ...
1.6 Fileversions . . . . . . . . .

Quick start

2.1 Readingafile . . . . . . . .
22 Writing afile . . . . .. ..
2.3 Doing it all together . . . . . . . . .. o
Commands

3.1 GmfOpenMesh . . . . . . . . ...
3.2 GmfCloseMesh . . . . . . . .
3.3 GmfStatKwd . . . . ..
34 GmfGotoKwd . . . . . . .
3.5 GmfSetKwd . . . . . . .
3.6 GmfGetLin . . . . . . . . e
3.7 GmfSetLin . . . . . . . e
3.8 GmfGetBlock . . . . . . .
3.9 GmfSetBlock . . . . . .
3.10 GmfSetHONodesOrdering . . . . . . . . . . . . . ... ... .. ... ...
3.11 GmfReadByteFlow . . . . . . . .. ...
3.12 GmfWriteByteFlow . . . . . . . ...
3.13 GmfGetFloatPrecision . . . . . . . . . . . ...
3.14 GmfSetFloatPrecision. . . . . . . . . . .. ..
Keywords

4.1 List of basic keywords . . . . . . . ...
4.2 List of keywords describing geometric properties . . . . . . . . ... .. ..
4.3 List of High Order elements keywords . . . . . . . . ... ... ... ....
4.4 List of solution keywords . . . . . . . . . ... ...
4.5 Miscellaneous keywords . . . . . . . ...

Cover pictures: A variety of magnetic tape drives from the 1970s including the famous DECtapes.

1

W W NN NDN

-1 O A R



1 Introduction

1.1 What is the Gamma Mesh Format ?

The Gamma Mesh Format (GMF) and the associated library libMeshb provide program-
mers of simulation and meshing software with an easy way to store their meshes and
physical solutions.

The GMF features more than 90 kinds of data types, ranging from vertex to polyhedron
or normal vectors to matrix solution fields.

The libMeshb provides a convenient way to move data between those files, via keyword
tags, and the user’s own structures.

1.2 An evolving keyword based format

The GMF is a keyword based file format, meaning that a mesh file consists of a list of
keywords, each followed by its data. No keyword is mandatory and a file may contain any
combination of them. Furthermore, new keywords may be added while keeping upward
and backward compatibility.

It means that older files can be accessed by newer version of the library and vice versa.

1.3 A comprehensive C library

The libMeshb provides programmers with a comprehensive set of commands and keywords
covering most common operations on many different kinds of mesh or physical solution
related data.

Reading, writing and querying files is easily done by calling a couple of commands
which are provided in an ANSI C file “libmeshb7.¢” and a header file “libmeshb7.h”. All
is needed is compiling those files along with the calling software.

A partial Fortran API is also available: “libmeshb7.ins” for F77 and F90. Refer to
fortran_api.md for more information.

1.4 ASCII vs. Binary

GMF files can be stored in ASCII or binary format (differentiated with .mesh or .meshb
extensions).

This choice is transparent from a user’s point of view and a routine reading GMF
files will work on both kinds of storage. The library determining the right access method
depending on the file extension.

It is advised to use ASCII for debugging purpose only when a file needs to be hand-
written or checked by a human eye. Otherwise, when performance, compactness and
portability are of concerns, binary is the way to go.



1.4.1 Size does matter

Binary files have a slightly smaller footprint than their ASCII counterparts (typically 30%
less). Not only does it save space on hard drives, but it allows for faster transfer as well.

1.4.2 About performance

Great care has been taken on performance issues when creating the libMeshb. When dealing
with binary files, reading and writing throughput will only be limited by the speed of the
physical media where those files are located. Speed ranging from 20 MB/s to 60 MB/s
can be achieved with hard drives and 10 MB/s or 100 MB/s with fast ethernet and gigabit
ethernet networks, respectively.

The libMeshb performs very poorly in ASCII mode, which is more processor bound
rather than hard-drive bound. Don’t expect more than 5 or 10 MB/s throughput.

Higher performance can be achieved through asynchronous and low-level 1/O. This
mode is enabled by setting a flag while compiling: (-DWITH_GMF_AIO) and linking with
an additional library (-lrt).

1.4.3 Compatibility issue: little vs. big endian

When it comes to binary storage, the compatibility problem posed by endianness always
comes to mind.

Some processors like PowerPc or SPARC are called big endian because of the way they
store bytes within a word from most significant byte to the lowest.

The other ones, like i86 (Intel core2, AMD opteron) or itanium, store bytes in the
reverse order and are called little endian.

Consequently, a binary word written by a big endian processor cannot be read by a
little endian one, and vice versa. This problem can be easily overcome by reversing bytes
order when reading inverted data. The libMeshb handles this compatibility issue via a
control word that indicates which endian a mesh file was written in.

You may then use binary files as safely as ASCII ones.

1.5 Mesh and Sol files

For the sake of understanding, different extensions must be given to files containing mesh
related keywords .mesh or .meshb, and files containing physical solution keywords .sol or
.solb.

1.6 File versions

Over the years, the library had to adapt to ever-increasing system capabilities, henceforth,
modification to the binary file format had to be done. As of today, there are three revisions
of the meshb format:



Version | Size of integers | Size of reals | Maximum size of file
1 32 bits 32 bits 2 Gigabytes
2 32 bits 64 bits 2 Gigabytes
3 32 bits 64 bits 8 Exa Bytes
4 64 bits 64 bits 8 Exa Bytes

Although the libMeshb still handles versions 1 and 2 for the sake of compatibility, it is
strongly advised to create version 3 or 4 files since most computers are now 64-bit capable.

A word of caution: great care must be taken when setting the library’s arguments
type. Regardless of the file version, some arguments are mandatory 32-bit integers like
the open mode tag, mesh dimension or the file version. Even in "full 64 bits” version
4 mesh file format, only the number of lines given or set by the GmfSetKeyword() of
GmfStatKeyword() commands and vertex indices used by elements field are using 64 bit
integers.

The 64-bit integer data type used by the library is the int64_t, which is defined in the
standard include file stdint.h. In case your system is too old to support 64-bit pointers and
integers, you may define int64_t as a regular 32-bit int. The library will be aware of it and
will still be able to handle version 1 or 2 files.

2  Quick start

This section will guide you through three simple examples from which you may easily cut
and paste to build your own code.

2.1 Reading a file

Let’s start with reading an existing mesh file.
Reading a mesh is a two-step scheme:

1. opening and checking the file and allocating data structures according to its content
2. reading fields of interest (vertices, elements, etc.) and storing them in the previously
allocated structures
2.1.1 Open, check and allocate a mesh

Opening a mesh file is done via the GmfOpenMesh() command. It allows to check for file
existence and whether it is of the required version and dimension.

int64_t MeshIndex;
int Version, Dimension;
MeshIndex = GmfOpenMesh("testcase.meshb", GmfRead, &Version, &Dimension );

Then, the presence and quantity of each item can be checked and memory allocated
accordingly via the GmfStatKwd() command.

4



int NumberOfTriangles, (*TableOfTriangles) [4];
NumberOfTriangles = GmfStatKwd( MeshIndex, GmfTriangles );

if (NumberOfTriangles > 0)
TableOfTriangles = malloc(NumberOfTriangles * 4 * sizeof(int));

2.1.2 Example: reading vertices and triangles

Reading each keyword data is done via two commands:

e GmfGotoKwd() to set the file index to the beginning of keyword data

e GmfGetLin() to read one line of data

Let’s say we would like to open a file, check if it contains vertices and quads, and read
those fields into their respective tables:

int64_t idx;
int ver, dim, nbt, (xtt)[4], nbv, *rt;
float (*xct)[3];

/* Try to open the file and ensure its version is 1
(single precision reals) and dimension is 3 */

idx = GmfOpenMesh("tri.meshb", GmfRead, &ver, &dim );

if( 'idx || (ver !'= 1) || (dim '= 3) )
exit(1);

/* Read the number of vertices and triangles and allocate
a triangle table (tt[nbt][4]) to store each triangle
vertices and reference (hence the fourth integer).

Two tables are allocated for the vertices:
ct[nbv] [3] to store the three coordinates
rt[nbv] to store the references. */

nbv = GmfStatKwd( idx, GmfVertices );
nbt = GmfStatKwd( idx, GmfTriangles );
if( 'nbv || !'nbt )

exit(1);

tt = malloc( nbt * 4 *x sizeof(int) );



ct
rt

malloc( nbv * 3 * sizeof(float) );
malloc( nbv * sizeof(int) );

/* Move the file pointer to the begining of vertices data
and start to loop over them. Then do likewise with triangles. */

GmfGotoKwd ( idx, GmfVertices );

for(i=0;i<nbv;i++)
GmfGetLin( idx, GmfVertices, &ct[i][0], &ct[i][1], &ct[i]l[2], &rt[il);

GmfGotoKwd( idx, GmfTriangles );

for(i=0;i<nbt;i++)
GmfGetLin( idx, GmfTriangles, &tt[i][0], &tt[i][1], &tt[il[2], &tt[i][3] );

GmfCloseMesh( idx );

2.2 Writing a file

Writing a mesh is also a two-step scheme:

1. creating an empty mesh file with the right version and dimension

2. writing every field (vertices, elements, etc.)

2.2.1 Creating and defining a mesh

Mesh name, version and the dimension must be provided at creation time. Creating a
mesh following version 1 (single precision real numbers) in three dimensions named test-
case.meshb runs this way:

Meshindex = GmfOpenMesh( "testcase.meshb", GmfWrite, 1, 3 );
2.2.2 Example: writing vertices and triangles
Following the reading example, we would like to write back the data to a new file:

int64_t idx;
int ver, dim, nbt, (xtt)[4], nbv, *rt;
float (*ct)[3];

/* Try to create a three-dimensional, version 1
(single precision reals) file */



idx = GmfOpenMesh("tri.meshb", GmfWrite, 1, 3 );

if( tidx )
exit(1);

/* Setup a vertex field with nbv lines
and loop over vertices to write them down.
Note that this time, direct values are passed on
GmfSetLin() instead of pointers. */

GmfSetKwd( idx, GmfVertices, nbv );

for(i=0;i<nbv;i++)
GmfSetLin( idx, GmfVertices, ct[i][0], ctl[i]l[1], ctl[i][2], rtl[il);

GmfSetKwd( idx, GmfTriangles, nbt );

for(i=0;i<nbt;i++)
GmfSetLin( idx, GmfTriangles, tt[i] [0], tt[i][1], tt[il[2], tt[i]l[3] );

GmfCloseMesh( idx );

2.3 Doing it all together

In this last example, the file ”quad.mesh” a three-dimensional mesh made of quads will be
read, transformed into a triangulated one, which will be written as ”tri.mesh”:

int64_t InpMsh, OutMsh;
int i, nbv, nbqg, ver, dim, *rt, (*qt)[5];
float (*ct)[3];

// Open and check the input quadrilateral mesh
InpMsh = GmfOpenMesh('"quad.mesh", GmfRead, &ver, &dim);

if( !'InpMsh || (ver '= 1) || (dim !'= 3) )
exit(1);

// Allocate vertices and quads tables
nbv = GmfStatKwd(InpMsh, GmfVertices);
ct = malloc(nbv * 3 * sizeof(float));
rt = malloc(nbv * sizeof(int));



nbq = GmfStatKwd(InpMsh, GmfQuadrilaterals);
gt = malloc(nbq * 5 * sizeof(int));

// Read vertices and quads then close the input file
GmfGotoKwd (InpMsh, GmfVertices);

for(i=0;i<nbv;i++)
GmfGetLin(InpMsh, GmfVertices, &ct[i] [0], &ct[i] [1], &ct([i][2], &rt[il);

GmfGotoKwd (InpMsh, GmfQuadrilaterals);
for(i=0;i<nbq;i++)
GmfGetLin(InpMsh, GmfQuadrilaterals, &qt[i] [0],
&qt[i]1[1], &qt[il[2], &qt[il[3], &qt[il[41);

GmfCloseMesh (InpMsh) ;

// Now create the output file.
// Each quad being split into two triangles.

if (! (OutMsh = GmfOpenMesh("tri.mesh", GmfWrite, ver, dim)))
exit(1);

GmfSetKwd (OutMsh, GmfVertices, nbv);

for(i=0;i<nbv;i++)
GmfSetLin(OutMsh, GmfVertices, ct[i][0], ct[il[1], ctl[il[2], rtl[i]);

GmfSetKwd (OutMsh, GmfTriangles, 2#*nbq);

for(i=1;i<=nbq;i++)

{
GmfSetLin(OutMsh, GmfTriangles, qt[i] [0], qt[il[1], qt[il[2], qt[il [4]);
GmfSetLin(OutMsh, GmfTriangles, qt[i] [0], qt[il[2], qt[i]l[31, qtlil[4]);
}
GmfCloseMesh (OutMsh) ;



3 Commands

3.1 GmfOpenMesh

Open a mesh file for reading or writing: in reading mode, it tries to open the file and
returns some information about its content, in writing mode it creates an empty mesh file.

3.1.1 Reading mode

int64_t GmfOpenMesh( char *FileName,
int OpenMode,
int *Version,
int *Dimension );

FileName: this string must contain the path and the mesh name with its extension
(meshes/my_mesh.meshb).

OpenMode: must be set to GmfRead.

Version: will be set to the value read from the file, which may range from 1 to 3.
1. real numbers in the whole file are written in single precision (32 bits)
2. real numbers in the whole file are written in double precision (64 bits)
3. same as 2 but file size may be greater than 2 GBytes.

Dimension: will be set to the value read from the file, only dimensions 2 and 3 are
supported.

Returns: Zero on failure or the open mesh index otherwise. This index should be prop-
erly stored since it must be provided to any further libMeshb commands working on this

file.

Example: open a mesh file and print its version and dimension.
int64_t MeshIndex;
int Version, Dimension;

Meshindex = GmfOpenMesh("testcase.meshb", GmfRead, &Version, &Dimension );

if (MeshIndex)

printf ("Version = %d, Dimension = %d\n.", Version, Dimension);
else

puts("This file cannot be opened.");

9



3.1.2 Writing mode

int64_t GmfOpenMesh( char *FileName,
int OpenMode,
int Version,
int Dimension );

FileName: this string must contain the path and the mesh name with its extension
(meshes/my_mesh.meshb).

OpenMode: must be set to GmfWrite.
Version: must be provided at file creation, see Reading mode for version values.
Dimension: must be provided at file creation, only dimensions 2 and 3 are supported.

Returns: zero on failure or the open mesh index otherwise. This index should be properly
stored since it must be provided to any further libMeshb commands working on this file.

Example: create a new three-dimensional mesh file storing double precision numbers.

Meshindex = GmfOpenMesh("newfile.meshb", GmfWrite, 2, 3 );

Asynchronous Input Output: to get best performance out of flash storage SSD (more
than a GB/s), the library needs to access the filesystem through low-level functions and
perform the reading and processing tasks in parallel using asynchronous 1/0. To do so,
you need to compile the library with the ~-DWITH_AIO option and link the final executable
with the -1rt library under Linux.

3.2 GmfCloseMesh

A mesh file must be properly closed in order to release any allocated memory and to write
tailing information.

GmfCloseMesh( int64_t MeshIndex );

Meshldx: the index returned by GmfOpenMesh() must be provided for the file to be
closed.

3.3 GmfStatKwd

This command queries the mesh file for the presence of a given keyword and the number
of associated lines.

10



3.3.1 Getting information on a mesh keyword
int GmfStatKwd( int64_t MeshIndex,
int Keyword );

MeshIndex: index of referenced mesh.

Keyword: the keyword tag you are requesting information on (see section 4 for a full
list of available keywords).

Example: check out and print the number of triangles in a mesh file.

int NumberOfTriangles;
NumberOfTriangles = GmfStatKwd( MeshIndex, GmfTriangles );

if (NumberOfTriangles)

printf("This file contains %d triangles\n.", NumberOfTriangles);
else

puts("This file does not contain any triangle.");

3.3.2 Getting information on a solution keyword

In this case, additional information will be provided: the number of fields per solution, the
number of real numbers a solution line occupies and a table of solution types.

int64_t GmfStatKwd( int64_t MeshIndex,
int Keyword,
int *NumberOfTypes,
int *Size0fSolution,
int *TableOfTypes );

MeshIndex: index of referenced mesh.

Keyword: the keyword tag you are requesting information on (see section 4 for a full
list of available keywords).

NumberOfTypes: pointer to an integer, it will be set to the number of fields in the
solution.

SizeOfSolution: pointer to an integer, it will be set to the number of real numbers (float
or double depending on the file version) used by a solution line for memory allocation
purpose.

11



TableOfTypes: pointer to a previously allocated table which will be filled with the type
of each solution field.

Example: check out and print the number of solutions and their kinds associated to
vertices.

int NmbSol, NmbTypes, NmbReals, TypesTab[ GmfMaxTyp ];
NmbSol = GmfStatKwd( MeshIndex, NmbSol, &NmbTypes, &NmbReals, TypesTab );
if (NmbSol)
{
printf ("This file contains %d solutions at each vertex\n.", NmbSol);

printf ("Each solution contains %d fields:\n", NmbTypes);

for(i=0; i<NmbTypes; i++)

{
switch(TypesTab[i])
{
case GmfSca : printf("scalar,\n"); break;
case GmfVec : printf("vector of %d scalars,\n", dim); break;
case GmfSymMat : printf("upper triangular part of a symetric \
%d x %d matrix,\n", dim, dim); break;
case GmfMat ¢ printf("full %d x %d matrix,\n", dim, dim); break;
}
+
}
else

puts("This file does not contain triangles.");

3.4 GmfGotoKwd

Prior to reading each line of a keyword with the GmfGetLin() command, the file position
must be set to the beginning of its data with GmfGotoKwd(). Note that positioning the
file mark is only needed when reading, not writing.

int GmfGotoKwd( int64_t MeshIndex, int Keyword ) ;
Meshldx: the index returned by GmfOpenMesh() must be provided.
KeyWord: code of the keyword whose data are to be read.

Returns: zero if this keyword is not present in the pointed file, one otherwise.

12



3.5 GmfSetKwd

Prior to writing each line of a keyword with the GmfSetLin() command, the keyword
header should be written along with the number of lines.

3.5.1 Writing a mesh keyword

int GmfSetKwd( int64_t MeshIndex,

int Keyword,

int NumberOfLines );
MeshlIdx: the index returned by GmfOpenMesh() must be provided.
KeyWord: code of the keyword whose data are to be written.
NumberOfLines: number of data lines which are to be written.

Returns: zero if the data could not be written, and the number written lines otherwise.

3.5.2 Writing a solution keyword

When it comes to solution keywords, two extra arguments must be passed on: a table of
solution types and its size.

int GmfSetKwd( int64_t MeshIndex,
int Keyword,
int NumberOfLines,
int NumberOfTypes,
int *TableOfTypes );

MeshlIdx: the index returned by GmfOpenMesh() must be provided.
KeyWord: code of the keyword whose data are to be written.
NumberOfLines: number of data lines which are to be written.

NumberOfTypes: the number of fields stored for each line of this solution. It sets the
size of the following TableOfTypes containing each field type.

TableOfTypes: pointer to a table of integers, each entry setting the type of each solution
field: 1 for a scalar, 2 for a vector, 3 for symmetric matrix and 4 for a full matrix.

Returns: zero if the data could not be written, and the number written lines otherwise.

13



3.6 GmfGetLin

GmfGetLin() is a variable argument command, it reads one line of data from the file and
stores each item in the provided pointers to users’ data structures.

int GmfGetLin( int64_t MeshIndex,
int Keyword,
arguments ) ;

MeshlIdx: the index returned by GmfOpenMesh() must be provided.
KeyWord: code of the keyword whose line data is to be read.

arguments: as many pointers to the required type of data as stated by the keyword
definition (see section 4) should be provided.

Example: reading a vertex in three-dimensional case. Caution: the right size of real
numbers, float or double, should be provided according to the mesh file version.

int ref;
float xf, yf, zf;
double xd, yd, zd;

if (Version == 1)

GmfGetLine (MeshIndex, GmfVertices, &xf, &yf, &zf, &ref);
else

GmfGetLine (MeshIndex, GmfVertices, &xd, &yd, &zd, &ref);

3.7 GmfSetLin

This command works pretty much like GmfGetLin(), but arguments are given directly
instead of pointers.

int GmfSetLin( int64_t MeshIndex,
int Keyword,
arguments ) ;

MeshlIdx: the index returned by GmfOpenMesh() must be provided.
KeyWord: code of the keyword whose line of data is to be written.

arguments: as many values of the required type of data as stated by the keyword defi-
nition (see section 4) should be provided.

14



3.8 GmfGetBlock

GmfGetBlock() is a variable argument command, it reads all the lines of data from the file
and stores each item in the provided pointers to users’ data structures. The user’s data
structure has to be fully described in order for the library to fill all the lines automatically.

int GmfGetBlock(int64_t MeshIndex, int Keyword, int64_t BeginLine,

int64_t EndLine, int MapType, void *RenumberingMap,
void *Procedure, arguments...);

MeshlIdx: the index returned by GmfOpenMesh() must be provided.

KeyWord: code of the keyword whose lines of data are to be read.

BeginLine: starting line in the mesh file, it enables partial reading for parallelism.
EndLine: ending line in the mesh file.

MapType: set the integer type (GmfInt or GmfLong) of the following renumbering table.

RenumberingMap: pointer to a renumbering table that gives the position to store each
mesh entity in the user’s table (for example: give the old to new renumbering through a
Hilbert curve).

Procedure: pointer to an optional user’s procedure that will be called in parallel after
each block has been read. If a procedure is given, a second pointer on users’ data must be
provided right after.

arguments: for each type of data as stated by the keyword definition (see section 4),
three arguments must be provided. First, the user’s type of data in which the file’s data
will be stored (four kinds are available: GmfFloat, GmfDouble, GmfInt and GmfLong).
Second, a pointer to the first line of this data type in the user’s structure. Third, the same
pointer but on the last line. The example below is more telling.

15



Example: reading all vertices in three-dimensional case.

int ref[nv];
double x[nv], y[nv], z[nv];

GmfGetBlock (MeshIndex, GmfVertices, 1, nv, 0, NULL, NULL,
GmfDouble, &x[1], &x [nv],
GmfDouble, &y [1], &y [nv],
GmfDouble, &z[1], &z[nv],
GmfInt, &ref[1], &refl[nv]);

Vector addresses: In order to reduce the number of parameters, when dealing with high
order polyhedra for example, you may concatenate a set of pointers into one base address
and a size, a kind of address vector. The data will be loaded at consecutive addresses.

To indicate that the following begin and end set of pointers should be considered as a
vector, you have to replace the GmfInt parameter by GmtIntVec followed by the size of the
vector. Conversely, GmtLong, GmfFloat and GmfDouble can be replaced by GmfLongVec,
GmfFloatVec and GmfDoubleVec in any keyword.

In this example, the first GmfGetBlock reading hexahedra may be replaced by the
second one:

GmfGetBlock (MeshIndex, GmfVertices, 1, nh, O, NULL, NULL,

GmfInt, &HexIdx[1][0], &HexIdx [nh] [0],
GmfInt, &HexIdx[1][1], &HexIdx [nh] [1],
GmfInt, &HexIdx[1][2], &HexIdx [nh] [2],
GmfInt, &HexIdx[1][3], &HexIdx[nh] [3],
GmfInt, &HexIdx[1][4], &HexIdx [nh] [4],
GmfInt, &HexIdx[1][5], &HexIdx [nh] [5],
GmfInt, &HexIdx[1][6], &HexIdx [nh] [6],
GmfInt, &HexIdx[1][7], &HexIdx [nh] [7],
GmfInt, &HexRef[1], &HexRef [nh]) ;

GmfGetBlock (MeshIndex, GmfVertices, 1, nh, O, NULL, NULL,
GmfIntVec, 8, &HexIdx[1], &HexIdx [nh],
GmfInt, &HexRef [1], &HexRef [nh]) ;

Arguments list vs arguments table: In some situations, explicitly giving a long list of
arguments to this procedure may be cumbersome as the C variable arguments call must be
known and set at compile time. It is then impossible to automatically generate a reading
call to a high order solution field with arbitrary order. The solution id to provide data
arguments (type, vector size, begin and ending pointers) through tables and not directly
as procedure arguments.

16



To select this calling mode all you have to do is to pass " GmfArgTab” instead of the first
user data type tag. Then, the procedure expects four tables: one integer table containing
the types, a second integer table containing the vector sizes (optional if only scalar data
types are used) and the two following tables to store the pairs of first and last item pointers.

int  TypTab[2]
int SizTab[2]
void *BegTab[2]
void *EndTab[2]

{GmfIntVec, GmfInt};

{8, 03};

{&HexIdx[ 1], &HexRef[ 11};
{&HexIdx[nh], &HexIdx[nh]l};

GmfGetBlock (MeshIndex, GmfVertices, 1, nh, O, NULL, NULL,
GmfArgTab, TypTab, SizTab, BegTab, EndTab);

3.9 GmfSetBlock

Works exactly as GmfGetBlock except that all lines are written, you cannot specify starting
and ending lines in the file since concurrent writing is not supported for now. Note that
you still need to set the keyword first with the help of GmfSetKwd() prior to writing the
whole data lines with GmfSetBlock().

Example: applying a pre-processing function on vertices before writing them on the disk.

int ref[nv];
double x[nv], y[nv], z[nv];

GmfSetBlock (MeshIndex, GmfVertices, 1, nv, O, NULL, FlipRefs, ref,
GmfDouble, &x[1], &x [nv],
GmfDouble, &y [1], &y [nv],
GmfDouble, &z[1], &z[nv],
GmfInt, &ref[1], &refl[nv]);

FlipRefs(int64_t begin, int64_t end, void *data)

{
int *ref = (int *)data;
int64_t i;
for (i=begin;i<=end;i++)
if (ref[i] == 1)
ref[i] = 2;
else
ref[i] = 1;
}

17



3.10 GmfSetHONodesOrdering

This command sets a special high-order nodes ordering for the specified element. There is,
unfortunately, as many HO nodes ordering in each kind of elements as there are program-
mers ! It is then useless to try to find a common node ordering in any high-order element
so it was decided to add a new set of keywords (like GmfTrianglesP20rdering), that map
the sequential finite element ordering with the Bezier indices. When reading a HO mesh,
you may provide the libMeshb with your own ordering table, as defined below, along with
the one that you may have found in the processed mesh file, so that the GmfGetBlock()
function will transparently reorder the nodes with each element in your own way.

int GmfSetHONodesOrdering( int64_t MeshIndex, int Keyword,
int *YourOrdering, int *FileOrdering );

Meshldx: the index returned by GmfOpenMesh() must be provided.
KeyWord: code of the keyword whose lines of data are to be read.
YourOrder: a pointer to your ordering table.

FileOrdering: a pointer to the ordering table found in the mesh file.

Example: reading and reordering Q2 quads.

This example reads the ordering information stored in the GmfQuadrilateralsQQ20rdering
keyword, calls the GmfSetHONodesOrdering() procedure to link the required ordering with
that from the file, and finally reads the Q2 quads.

int quad[nq];

int FileOrdering[9] [2];

int MyOrdering[9][2] = {
{0,0}, {1,0}, {2,0%,
{0,1}, {1,1}, {2,1},
{0,2}, {1,2}, {2,2} };

GmfGetBlock(MeshIndex, GmfQuadrilateralsQ20rdering, 1, 9, 0, NULL,
NULL, GmfIntTab, 9, FileOrdering[0], FileOrdering[8]);
GmfSetHONodesOrdering( MeshIndex, GmfQuadrilateralsQ2,
MyOrdering, FileOrdering );
GmfGetBlock(MeshIndex, GmfQ2Quadrilaterals, 1, nqg, O, NULL,
NULL, GmfIntTable, 9, &quad[1l], &quad[nqgl);

18



3.11 GmfReadByteFlow

Read a free byte flow from a mesh file. A buffer is allocated by the library and the pointer
is returned by the procedure. It is up to the user to release this buffer memory.

char *GmfReadByteFlow(int64_t MeshIndex, int *NumberOfBytes);
MeshlIdx: the index returned by GmfOpenMesh() must be provided.

NumberOfBytes: a pointer to an integer that will be set with the number of bytes read
from the file.

Returns: NULL pointer if the memory could not be allocated or the data could not be
read, or a pointer to the buffer containing the byte flow.
This example reads an EGADS CAD model stored as a free byte flow.

int NmbBytes;
char *cad;

// Read the egads tree stored as a raw byte flow
cad = GmfReadByteFlow(InpMsh, &NmbBytes);

3.12 GmfWriteByteFlow

Write a free byte flow from a mesh file. The table is stored in the mesh file as a series of
four-byte integers under the ByteFlow keyword.

int GmfWriteByteFlow(int64_t MeshIndex, char *Data, int NumberOfBytes);
MeshlIdx: the index returned by GmfOpenMesh() must be provided.

Data: a pointer to the raw data that will be written to the file.
NumberOfBytes: the number of bytes to be written.

Returns: 0 in case of failure and 1 otherwise.

3.13 GmfGetFloatPrecision

Get the floating point numbers precision in bits. It may return only two different values:
32 or 64.

int GmfGetFloatPrecision(int64_t MeshIndex);

19



MeshIdx: the index returned by GmfOpenMesh() must be provided.

Returns: 32 for single precision real or 64 for double precision.

3.14 GmfSetFloatPrecision

Set the floating point numbers precision in bits. You may override the default value set
according to the file version (32 bit for version 1 and 64 bit starting from version 2) The
only va;id values are 32 or 64.

void GmfSetFloatPrecision(int64_t MeshIndex, int NumberOfBits);
MeshlIdx: the index returned by GmfOpenMesh() must be provided.

NumberOfBits: the size of a floating point number in bits (32 or 64).

20



4 Keywords

4.1 List of basic keywords

Those are topological and geometric data types, commonly used in meshes such as vertices,
triangles or normal vectors. Consequently they can only be used in .mesh or .meshb files.
They are made of a header, indicating the keyword code and the number of data lines
stored in the file, followed by as many lines as stated.
Each data line format is described in the following table:

keyword
data ‘ description
Comments

. each string cannot exceed 256 characters including the trailing
1 string

0

Corners
1 integer ‘ vertex index: this vertex is a geometric corner
Edges
3 integers ‘ vertex indices and a reference
EdgesP10rdering
1 integer ‘ one single Bezier index for each of the five vertices
Hexahedra
9 integers ‘ vertex indices and a reference
HexahedraQ1Ordering
3 integers ‘ a set of three Bezier indices for each of the eight vertices
Normals
9 or 3 reals normal vector: 2 or 3 components depending on the mesh

dimension

NormalAtQuadrilateral Vertices

there must be as many NormalAtQuadrilateralVertices as
there are quadrilaterals in a mesh, each NormalAtQuadrilat-
4 integers eralVertices line pointing implicitly to the respective quad.
The four integers are associated with the quad vertices, they
are indices pointing to a normal in the normals table.

NormalAtTriangleVertices

there must be as many NormalAtTriangleVertices as there
are triangles in a mesh, each NormalAtTriangleVertices line
3 integers pointing implicitly to the respective triangle. The three inte-
gers are associated with the triangle vertices, they are indices
pointing to a normal in the normals table.

NormalAtVertices ‘

21



first integer points to a vertex and the second one points to

2 integers the associated normal vector index
Polygons
. Arbitrary polygonal face: can store up to 8 vertex indices and
9 integers o
a reference, Useless indices are set to 0
Polyhedra

Arbitrary polyhedra: can store up to 32 polygonal face indices
9 integers and a reference. Useless indices are set to 0. Caution: indices
point to faces, not to vertices as other volume elements do.

Prisms

7 integers ‘ vertex indices and a reference

PrismsP10rdering

4 integers ‘ a set of four Bezier indices for each of the six vertices
Pyramids

6 integers ‘ vertex indices and a reference

PyramidsP10Ordering

3 integers ‘ a set of three Bezier indices for each of the five vertices
Quadrilaterals

5 integers ‘ vertex indices and a reference
QuadrilateralsQ10Ordering

2 integers ‘ a set of two Bezier indices for each of the four vertices
RequiredEdges

1 integer ‘ edge index: this edge is required cannot be modified
RequiredQuadrilaterals

1 integer ‘ quad index: this quad is required cannot be modified
RequiredTriangles

1 integer ‘ triangle index: this triangle is required cannot be modified
RequiredVertices

1 integer ‘ vertex index: this vertex is required cannot be modified
Ridges

1 integer ‘ edge index: this edge is a ridge (geometric sharp angle)
Tangents

tangent vector: 2 or 3 components depending on the mesh

2 or 3 reals : )
dimension

Tangent AtEdgeVertices

first integer points to an edge and the last two one points to

it _ ..
3 integers the associated tangent vector indices

TangentAtVertices

22




. first integer points to a vertex and the second one points to

2 integers X :
the associated tangent vector index

Tetrahedra
D integers ‘ vertex indices and a reference
TetrahedraP10rdering
4 integers \ a set of four Bezier indices for each of the four vertices
Triangles
4 integers ‘ vertex indices and a reference
TrianglesP10rdering
3 integers ‘ a set of three Bezier indices for each of the three vertices
Vertices
2 or 3 reals + 1 integer ‘ vertex coordinates followed by a reference

4.2 List of keywords describing geometric properties

keyword

data

‘ description

EdgesOnGeometricEdges

2 integers

edge index from the source mesh and the corresponding edge
index it is projected on in the geometric support mesh

TrianglesOnGeometricQuadrilaterals

2 integers

triangle index from the source mesh and the corresponding
quad index it is projected on in the support mesh

TrianglesOnGeometricTriangles

triangle index from the source mesh and the corresponding

2 int . . . . . .

1ntegers triangle index it is projected on in the geometric support mesh
PeriodicEdges
2 integers ‘ indices of linked entities

PeriodicQuadrilaterals

2 integers | indices of linked entities
PeriodicTriangles

2 integers | indices of linked entities
PeriodicVertices

2 integers ‘ indices of linked entities

QuadrilateralsOnGeometricQuadrilaterals

2 integers

quad index from the source mesh and the corresponding quad
index it is projected on in the geometric support mesh

23




QuadrilateralsOnGeometricTriangles

2 integers

quad index from the source mesh and the corresponding tri-
angle index it is projected on in the geometric support mesh

VerticesOnGeometricEdges

2 integers and 2 reals

index of a vertex and the edge index in the geometric support
mesh it is projected on followed by the barycentric position
on this edge and the distance from it

VerticesOnGeometricQuadrilaterals

2 integers and 3 reals

index of a vertex and the quad index in the geometric support
mesh it is projected on followed by the barycentric position
on this quad and the distance from it

VerticesOnGeometricTriangles

2 integers and 3 reals

index of a vertex and the triangle index in the geometric sup-
port mesh it is projected on followed by the barycentric posi-
tion on this triangle and the distance from it

VerticesOnGeometricVertices

2 integers

vertex index from the source mesh and the corresponding ver-
tex index it is projected on in the geometric support mesh

4.3 List of High Order elements keywords

keyword
data ‘ description
BezierBasis
if this flag is set to one, all vertex coordinates are considered
1 integer as Bezier control points, not mid-points, which is the default
mode
EdgesP2
. two vertex nodes first then the middle node index and finally
4 integers
the reference
EdgesP20rdering
1 integer ‘ one single Bezier index for each of the three vertices
EdgesP3
. two vertex nodes first then the two middle nodes index and
5 integers
finally the reference
EdgesP30rdering
1 integer \ one single Bezier index for each of the four vertices
| EdgesP4

24




two vertex nodes first then the three middle nodes index and

6 integers finally the reference
EdgesP4Ordering
1 integer ‘ one single Bezier index for each of the five vertices
ExtraVerticesAtEdges

. the first integer points to a P1 edge and the remaining n — 1
n 1ntegers

point to middle nodes

ExtraVerticesAtHexahedra

n integers

the first integer points to a P1 hexahedra and the remaining
n — 1 point to middle nodes

ExtraVerticesAtPrisms

n integers

the first integer points to a P1 prism and the remaining n — 1
point to middle nodes

ExtraVerticesAtQuadrilaterals

n integers

the first integer points to a P1 quad and the remaining n — 1
point to middle nodes

ExtraVerticesAtTetrahedra

n integers

the first integer points to a P1 tetrahedra and the remaining
n — 1 point to middle nodes

ExtraVerticesAtTriangl

es

the first integer points to a P1 triangle and the remaining

nIntegers n — 1 point to middle nodes

HexahedraQ?2

28 integers ‘ 27 vertex indices and a reference
HexahedraQ2Ordering

3 integers ‘ a set of three Bezier indices for each of the 27 vertices
HexahedraQ3

65 integers ‘ 64 vertex indices and a reference
HexahedraQ3Ordering

3 integers ‘ a set of three Bezier indices for each of the 64 vertices
HexahedraQ4

126 integers ‘ 125 vertex indices and a reference
HexahedraQ4Ordering

3 integers ‘ a set of three Bezier indices for each of the 125 vertices
PrismsP2

19 integers ‘ 18 vertex indices and a reference

PrismsP20rdering

4 integers ‘ a set of four Bezier indices for each of the 18 vertices

25




PrismsP3

41 integers ‘ 40 vertex indices and a reference

PrismsP30Ordering

4 integers \ a set of four Bezier indices for each of the 40 vertices

PrismsP4

76 integers ‘ 75 vertex indices and a reference

PrismsP4Ordering

4 integers ‘ a set of four Bezier indices for each of the 75 vertices

PyramidsP2

15 integers \ 14 vertex indices and a reference

PyramidsP20rdering

3 integers ‘ a set of three Bezier indices for each of the 14 vertices

PyramidsP3

31 integers ‘ 30 vertex indices and a reference

PyramidsP3Ordering

3 integers \ a set of three Bezier indices for each of the 30 vertices

PyramidsP4

56 integers ‘ 55 vertex indices and a reference

PyramidsP4Ordering

3 integers ‘ a set of three Bezier indices for each of the 55 vertices

QuadrilateralsQ2

10 integers \ 9 vertex indices and a reference

QuadrilateralsQ2Ordering

2 integers ‘ a set of two Bezier indices for each of the 9 vertices

QuadrilateralsQ3

17 integers ‘ 16 vertex indices and a reference

QuadrilateralsQ3Ordering

2 integers \ a set of two Bezier indices for each of the 16 vertices

QuadrilateralsQ4

26 integers ‘ 25 vertex indices and a reference

QuadrilateralsQ4Ordering

2 integers ‘ a set of two Bezier indices for each of the 25 vertices

TetrahedraP2

11 integers \ 10 vertex indices and a reference

TetrahedraP20rdering

4 integers ‘ a set of four Bezier indices for each of the 10 vertices
’ TetrahedraP3

26




21 integers

\ 20 vertex indices and a reference

TetrahedraP30rdering

4 integers ‘ a set of four Bezier indices for each of the 20 vertices
TetrahedraP4

36 integers ‘ 35 vertex indices and a reference
TetrahedraP4Ordering

4 integers ‘ a set of four Bezier indices for each of the 35 vertices
TrianglesP2

7 integers ‘ 6 vertex indices and a reference

TrianglesP20rdering

3 integers ‘ a set of three Bezier indices for each of the 6 vertices
TrianglesP3

11 integers ‘ 10 vertex indices and a reference
TrianglesP3Ordering

3 integers ‘ a set of three Bezier indices for each of the 10 vertices
TrianglesP4

16 integers ‘ 15 vertex indices and a reference
TrianglesP4Ordering

3 integers ‘ a set of three Bezier indices for each of the 15 vertices

4.4 List of solution keywords

Those keywords are computation related and are to be used in .sol or .solb files.

They are made of an extended solution header and multiple data lines.
The header is similar to its mesh counterpart, but adds a solution format table to

describe the number of fields and their types (scalar, vector or matrix) associated with
each mesh entity.

There are basically two ways to store solutions associated with a mesh:

e Direct way. SolAtElement like keywords store data fields directly associated with

each element.

e Indirect way. At first, data are directly stored for each vertex via the DSolAtVertices
keyword. Then, ISolAtelements like keywords will have each element vertices pointing
indirectly to a DSolAtVertices solution.

keyword

data

‘ description

27



DSolAtVertices

SolSize * reals ‘ as many reals as stated in the DSolAtVertices keyword header

EdgesReferenceElement

2 reals \ one dimensional coordinates of the two reference edge vertices

HexahedronReferenceElement

three dimensional coordinates of the eight reference hexahe-

24 | )
reass dron vertices

HOSolAtEdgesP1 — HOSolAtEdgesP4

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

SolSize * reals

HOSolAtEdgesP1NodesPositions — HOSolAtEdgesP4NodesPositions

set of barycentric coordinates for each of the high order solu-

2 | )
reals tion nodes

HOSolAtHexahedraQl — HOSolAtHexahedraQ4

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

SolSize * reals

HOSolAtHexahedraQ1NodesPositions — HOSolAtHexahedraQ4NodesPositions

set of interpolating coordinates for each of the high order so-

1 )
3 reals lution nodes

HOSolAtPrismsP1 — HOSolAtPrismsP4

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

SolSize * reals

HOSolAtPrismsP1NodesPositions — HOSolAtPrismsP4NodesPositions

set of 3 barycentric coordinates and an interpolating coeffi-

4 reals cient for each of the high order solution nodes

HOSolAtPyramidsP1 — HOSolAtPyramidsP4

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

SolSize * reals

HOSolAtPyramidsP1NodesPositions — HOSolAtPyramidsP4NodesPositions

set of interpolating coordinates for each of the high order so-

| )
3 reals lution nodes

28




HOSolAtQuadrilateralsQ1 — HOSolAtQuadrilateralsQ4

SolSize * reals

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

HOSolAtQuadrilaterals

Q1NodesPositions — HOSolAtQuadrilateralsQ4NodesPositions

2 reals

set of interpolating coordinates for each of the high order so-
lution nodes

HOSolAtTetrahedraP1

— HOSolAtTetrahedraP4

SolSize * reals

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

HOSolAtTetrahedraP1NodesPositions — HOSolAtTetrahedraP4NodesPositions

4 reals

set of barycentric coordinates for each of the high order solu-
tion nodes

HOSolAtTrianglesP1 — HOSolAtTrianglesP4

SolSize * reals

as many reals as returned by the GmfStatKwd() command
which is the size of the solution field multiplied by the number
of high order nodes (that may be different from the number
of nodes of the supporting element kind)

HOSolAtTrianglesP1NodesPositions — HOSolAtTrianglesP4NodesPositions

set of barycentric coordinates for each of the high order solu-

3 reals tion nodes

[SolAtEdges
there must be as many ISolAtEdges as there are edges in
a mesh, each ISolAtEdges line pointing implicitly to the re-

2 integers spective edge. The two integers are associated with the edge
vertices, they are indices pointing to solutions fields in the
DSolAtVertices table.

[SolAtHexahedra
there must be as many ISolAtHexahedra as there are hexahe-
dra in a mesh, each [SolAtHexahedra line pointing implicitly

8 integers to the respective hex. The eight integers are associated with
the hex vertices, they are indices pointing to solutions fields
in the DSolAtVertices table.

’ [SolAtPyramids

29




O integers

there must be as many ISolAtPyramids as there are Pentahe-
dra in a mesh, each ISolAtPyramids line pointing implicitly to
the respective pyramid. The five integers are associated with
the pyramid’s vertices, they are indices pointing to solutions
fields in the DSolAtVertices table.

ISolAtPrisms

6 integers

there must be as many ISolAtPrisms as there are Pentahedra
in a mesh, each ISolAtPrisms line pointing implicitly to the
respective prism. The six integers are associated with the
prism’s vertices, they are indices pointing to solutions fields
in the DSolAtVertices table.

[SolAtQuadrilaterals

4 integers

there must be as many ISolAtQuadrilaterals as there are
quadrilaterals in a mesh, each ISolAtQuadrilaterals line point-
ing implicitly to the respective quad. The four integers are
associated with the quad vertices, they are indices pointing
to solutions fields in the DSolAtVertices table.

ISolAtTetrahedra

4 integers

there must be as many ISolAtTetrahedra as there are tetrahe-
dra in a mesh, each ISolAtTetrahedra line pointing implicitly
to the respective tet. The four integers are associated with
the tet vertices, they are indices pointing to solutions fields in
the DSolAtVertices table.

[SolAtTriangles

3 integers

there must be as many [SolAtTriangles as there are triangles
in a mesh, each ISolAtTriangles line pointing implicitly to the
respective triangles. The three integers are associated with

the triangle vertices, they are indices pointing to solutions
fields in the DSolAtVertices table.

ISolAtVertices

1 integer

there must be as many ISolAtVertices as there are vertices in
a mesh, each ISolAtVertices line pointing implicitly to the re-
spective vertex. The integer is an index pointing to a solution
field in the DSolAtVertices table.

PrismReferenceElement

18 reals

three dimensional coordinates of the six reference prism ver-
tices

PyramidReferenceElement

15 reals

three dimensional coordinates of the five reference pyramid
vertices

30




QuadrilateralReferenceElement

two dimensional coordinates of the four reference-

8 reals quadrilateral vertices

SolAtEdges

SolSize * reals ‘ as many reals as stated in the DSolAtEdges keyword header
SolAtHexahedra

SolSize * reals

as many reals as stated in the SolAtHexahedra keyword
header

SolAtPyramids

SolSize * reals

as many reals as stated in the SolAtPyramidamids keyword
header

SolAtPrisms

SolSize * reals

‘ as many reals as stated in the SolAtPrisms keyword header

SolAtQuadrilaterals

SolSize * reals

as many reals as stated in the SolAtQuadrilaterals keyword
header

SolAtTetrahedra

SolSize * reals

as many reals as stated in the SolAtTetrahedra keyword
header

SolAtTriangles

SolSize * reals

‘ as many reals as stated in the SolAtTriangles keyword header

SolAtVertices

SolSize * reals

‘ as many reals as stated in the SolAtVertices keyword header

TetrahedronReferenceElement

12 reals

three dimensional coordinates of the four reference tetrahe-
dron vertices

TriangleReferenceElement

6 reals

two dimensional coordinates of the three reference triangle
vertices

4.5 Miscellaneous keywords

Finally, those basic keywords have no header and contain only one line of data, most often
giving global information on the mesh or the solution file.

31




keyword

data \ description
AngleOfCornerBound
1 real threshold angle for automatic sharp features detection, in de-
grees
ByteFlow
this keyword’s purpose is to store free byte flow whose mean-
1 integer ing is the user’s responsibility, the number of bytes is round
up to 4 as the flow is stored in a four-byte integers table
BoundingBox
the box coordinates bounding the whole mesh: Z,,in, Tmae,
4 or 6 reals Ymins Ymaz A Zpin and zpe, (in the three-dimensional case
only)
CoarseHexahedra
. hexahedra index that is too big to capture the surface geom-
1 integer
etry
DRefGroups

1 string and 3 integers

name of the supergroup, group index, type of elements and
number of references included

FloatingPointPrecision

set the real number precision in bits to either 32 or 64, re-

1 nteger gardless of the file version
[RefGroups

2 integers \ element keyword and elements index
Iterations

1 integer \ discretionary iteration counter
PrivateTable

1 integer ‘ free form table

SubDomainFromGeom

3 integers

| triangle index, orientation (+1 or -1) and subdomain reference

Time

1 real

\ discretionary time counter

32




