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This document describes the software library TestU01, implemented in the ANSI C lan-
guage, and offering a collection of utilities for the (empirical) statistical testing of uniform
random number generators (RNG).

The library implements several types of generators in generic form, as well as many
specific generators proposed in the literature or found in widely-used software. It provides
general implementations of the classical statistical tests for random number generators, as
well as several others proposed in the literature, and some original ones. These tests can be
applied to the generators predefined in the library and to user-defined generators. Specific
tests suites for either sequences of uniform random numbers in [0, 1] or bit sequences are also
available. Basic tools for plotting vectors of points produced by generators are provided as
well.

Additional software permits one to perform systematic studies of the interaction between
a specific test and the structure of the point sets produced by a given family of RNGs. That
is, for a given kind of test and a given class of RNGs, to determine how large should be the
sample size of the test, as a function of the generator’s period length, before the generator
starts to fail the test systematically.
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Chapter 1

INTRODUCTION

1.1 Design and testing of random number generators

Random numbers generators (RNGs) are small computer programs whose purpose is to pro-
duce sequences of numbers that seem to behave as if they were generated randomly from a
specified probability distribution. These numbers are sometimes called pseudorandom num-
bers, to underline the fact that they are not truly random. Here, we just call them random
numbers, with the usual (slight) abuse of language. These RNGs are crucial ingredients for
a whole range of computer usages, such as statistical experiments, simulation of stochastic
systems, numerical analysis, probabilistic algorithms, cryptology, secure communications,
computer games, and gambling machines, to name a few.

The numbers must be generated quickly and easily by a computer program that is small,
simple, and deterministic, except for its initial state which can be selected at random. In
some cases, certain parameters of the generator are also selected at random, and can be
viewed as part of the state. The quality criteria for an RNG may depend on the application.
For simulation, one usually asks for speed, small memory requirement, and good statisti-
cal properties. For cryptology-related applications and for gambling machines in casinos,
unpredictability is a crucial requirement for which speed can be sacrificed up to a certain
point.

RNGs should be designed and selected based on a solid theoretical analysis of their math-
ematical structure. Here, we suppose that the goal is that the successive output values of the
RNG, say ug, u1, us, . . ., imitate independent random variables from the uniform distribution
over the interval [0, 1] (i.i.d. U[0, 1]), or over the two-element set {0, 1} (independent random
bits). In both cases (independent uniforms or random bits) we shall denote the hypothesis
of perfect behavior by Hy. These two situations are strongly related, because under the i.i.d.
U0, 1] hypothesis, any pre-specified sequence of bits (e.g., the bit sequence formed by taking
all successive bits of ug, or every second bit, or the first five bits of each u;, etc.) must be
a sequence of independent random bits. So statistical tests for bit sequences can be used



as well (indirectly) for testing the null hypothesis in the first situation. In the remainder of
this document, unless specified otherwise, Hy refers to this first situation.

In the UJ0,1] case, Hp is equivalent to saying that for each integer ¢ > 0, the vector
(ug, ..., us—1) is uniformly distributed over the t-dimensional unit cube [0, 1]*. Clearly, this
cannot be formally true, because these vectors always take their values only from the finite set
W, of all t-dimensional vectors of ¢ successive values that can be produced by the generator,
from all its possible initial states (or seeds). The cardinality of this set cannot exceed the
number of admissible seeds for the RNG. Assuming that the seed is chosen at random,
vectors are actually generated over W, to approximate the uniform distribution over [0, 1]*.
This suggests that ¥, should be very evenly distributed over the unit cube. Theoretical
figures of merit for measuring this uniformity are discussed, e.g., in [90, 80, 93, 129, 158] and
the references given there.

In the case of a sequence of random bits, the null hypothesis H, cannot be formally true
as soon as the length ¢ of the sequence exceeds the number b of bits in the generator’s state,
for the number of distinct sequences of bits that can be produced cannot exceed 2°. For
b < t, the fraction of all sequences that can be visited is at most 2. The goal, then, is to
make sure that those sequences that can be visited are “uniformly scattered” in the set of
all 2¢ possible sequences, and perhaps hard to distinguish.

Cryptologists use different quality criteria for RNGs. Their main concern is unpredictabil-
ity of the forthcoming numbers. Their theoretical analysis of RNGs is usually asymptotic,
in the framework of computational complexity theory [66, 69].

Once an RNG has been designed and implemented, based on some mathematical analysis
of its structure, it is usually submitted to empirical statistical tests that try to detect sta-
tistical deficiencies by looking for empirical evidence against the hypothesis H, introduced
previously. A test is defined by a test statistic Y, which is a function of a finite number
of u,’s (or a finite number of bits, in the case of bit generators), whose distribution under
H is known (sometimes approximately). The number of different tests that can be defined
is infinite and these different tests detect different problems with the RNGs. There is no
universal test or battery of tests that can guarantee, when passed, that a given generator is
fully reliable for all kinds of simulations. Passing many tests improves one’s confidence in
the RNG, although it never proves that the RNG is foolproof. In fact, no RNG can pass
every conceivable statistical test. One could say that a bad RNG is one that fails simple
tests, and a good RNG is one that fails only very complicated tests that are extremely hard
to find or impractical to run.

Ideally, Y should mimic the random variable of practical interest in such a way that a bad
structural interference between the RNG and the problem will show up in the test. But this
is rarely practical. This cannot be done, for example, for testing RNGs for general-purpose
software packages.

Experience with empirical testing tells us that RNGs with very long periods, good struc-
ture of their set ¥, and based on recurrences that are not too simplistic, pass most reasonable



tests, whereas RNGs with short periods or bad structures are usually easy to crack by stan-
dard statistical tests. The simple structure that makes certain classes of generators very
fast is also (often) the source of their major statistical deficiencies, which sometimes lead to
totally wrong simulation results [13, 96, 87, 93, 83, 37, 160]. Practical tools for detecting
these deficiencies are needed. Offering a rich variety of empirical tests for doing that is the
purpose of the TestUO1 library.

Some authors suggest that statistical tests should be used to identify and discard what
they call bad subsequences from the output sequence of random number generators. We do
not believe that this is a good idea. Such surgical procedures that cut out particular subse-
quences based on statistical test results would tend to remove some of the natural variability
in the sequence, yielding a sequence that may lack some of the randomness properties of
typical random sequences. Typically, when a generator fails a test decisively (e.g., with a
significance level or p-value less than 107!% for example), it fails in pretty much the same
way for all its subsequences of a given length. This is because failure typically depends on
the structure of the point set ¥,. There are exceptions, but they are not frequent. Moreover,
when a generator starts failing a test decisively, the p-value of the test usually converges to
0 or 1 exponentially fast as a function of the sample size when the sample size is increased
further.

1.2 Organization of the library

The software tools of TestU01 are organized in four classes of modules: those implementing
RNGs, those implementing statistical tests, those implementing pre-defined batteries of tests,
and those implementing tools for applying tests to entire families of generators. The names
of the modules in those four classes start with the letters u, s, b, and £, respectively, and we
shall refer to them as the u, s, b, and £ modules. The name of every public identifier (type,
variable, function, ...) is prefixed by the name of the module to which it belongs. Chapters
2 to 5 of this guide describe these four classes of modules and give some examples. Some of
these modules use definitions and functions from the ANSI C libraries MyLib and ProbDist
(92, 94], also developed in our laboratory. Several platform-dependent switches are collected
in module gdef of MyLib. They must be set to appropriate values, compatible with the
environment in which TestUO1 is running (see the installation notes, in file README).

1.2.1 The generator implementations

The module unif01 provides the basic tools for defining and manipulating uniform RNGs.
It contains the type unifO1_Gen, which implements the definition of an arbitrary RNG
object. Every RNG intrinsic to this package is of this type. Functions are also available to
write the current state of a generator, to filter its output in different ways (e.g., combining
successive values in the sequence to produce an output with more bits of precision, or taking



non-successive values, or selecting only specific bits from the output, etc.), to combine two
or more generators and to test the speed of different generators.

One can create an arbitrary number of RNGs of a given kind or of different kinds in the
same program, with the exception of a few specific RNG’s that were programmed directly in C
by their authors, and which use global variables. For the latter, only one copy of a particular
generator can be in use at any given time, and this is indicated in the documentation of
these specific RNG’s. For example, one could use 3 LCGs with different parameters in the
same program; each has its own private set of variables that does not interfere with the state
or the parameters of the other two. Additional kinds of generators can be defined by the
user if needed, by implementing functions that construct objects of type unif01_Gen.

The other u modules implement RNGs and offer functions of the form u..._Create. ..
that return a generator object which can be used as a source of random numbers, and to
which tests can be applied. A dummy generator that just reads numbers from a file, either
in text or in binary format, is also available in module ufile. There are functions in module
unif01 that makes it very easy for the user to test his own generator or an external generator
that is not pre-programmed in TestUO1.

It is important to underline that most of the RNG implementations given here are not
intended for direct use in simulation or other similar purposes. Other RNG packages, based
on robust generators and with multiple streams and other convenient facilities, have been
designed for that [84, 95]. The purpose of the RNG implementations provided here is essen-
tially for empirical testing and experimentation with variants, combinations, etc.

1.2.2 The statistical tests

The statistical tests are implemented in the s modules, whose names start by s. They all test
one of the two null hypotheses Hy defined previously, using different test statistics. To apply
a test to a specific generator, the generator must first be created by the appropriate Create
function in a u module, then it must be passed as a parameter to the function implementing
the appropriate test. The test results are printed automatically to the standard output, with
a level of detail that can be selected by the user (see module swrite).

It is also possible to recover information about what has happened in the tests, via data
structures specific to each type of test. These data stuctures, if they are to be used outside
of a test, must always be created by calling the appropriate s..._Create... function.
They are described only in the detailed version of this user’s guide. This could be used,
for example, to examine or post-process the results of a test. There are also a few public
functions that do not appear even in the detailed version of this guide. They are hidden
since they will be useful only when developing new tests or modifying existing ones.

The testing procedures use several functions from the library ProbDist [94]. In particular,
they use statcoll from that library to collect statistical observations, and gofw to apply
the goodness-of-fit (GOF) tests.

The module scatter does not apply statistical tests per se, but permits one to draw
scatter plots for vectors of points returned by a generator.
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1.2.3 Batteries of tests

Many users find it convenient to have predefined suites (or batteries) of more or less standard
statistical tests, with fixed parameters, that can be applied to a given RNG. Different types
of tests should be included in such a battery, in order to detect different types of weaknesses
in a given generator.

A number of predefined batteries of tests, some oriented towards sequences of uniform
floating-point numbers in the interval [0, 1), others towards sequences of bits, are available in
TestUQO1. There are small batteries, that run quickly, and larger (more stringent) batteries
that take longer to run. These batteries are implemented in the b modules.

1.2.4 Tools for testing families of generators

The £ modules provide a set of tools, built on top of the modules that implement the
generator families and the tests, designed to perform systematic studies of the interaction
between certain types of tests and the structure of the point sets produced by given families
of RNGs. Roughly, the idea is to see at which sample size ny the test starts to reject the
RNG decisively, as a function of its period length p. In experiments already performed with
certain classes of generators and specific tests [90, 87, 93], the results were often surprisingly
regular, in the sense that a regression model of the form logng = alogp + €, where a is a
constant and e a small noise, fits very well.

1.3 History and implementation notes

TestUO1 started as a Pascal program implementing the tests suggested in the 1981 edition
of volume 2 of “The Art of Computer Programming” [64]. This was around 1985. Three
or four years later, a Modula-2 implementation was made, in the form of a library with a
modular design. Other tests were added, as well as some generators implemented in generic
form. Between 1990 and 2001, new generators and new tests were added regularly to the
library and a detailed user’s guide (in french) was kept up to date. The £ modules, which
contain tools for testing entire families of generators, were introduced in 1997, while the
first author was on sabbatical at the University of Salzburg, Austria. In 2001 and 2002, we
partially redesigned the library, translated it in the C language, and translated the user’s
guide in english.

These preliminary versions of the library were used for several articles (co)authored by
P. L’Ecuyer, starting from his 1986 paper where he first proposed a combined LCG [71], and
including [72, 74, 84, 78, 90, 96, 79, 91, 87, 93, 89, 83].



1.4 Other software for testing RNNGs

Another well-known public-domain testing package for RNGs is DIEHARD [106]. It contains
a large number of statistical tests. However, it has some drawbacks and limitations. Firstly,
the sequence of tests to be applied to any generator, as well as the parameters of these tests
(sample size, etc.) are fixed in the package. The sample sizes are moderate; all these tests
run in a few seconds of CPU time on a desktop computer. For example, on a PC with an
Athlon XP 21004 processor at 1733 MHz and running Linux, the entire series of tests take
approximately 12 seconds to run. Secondly, the package requires that the random numbers
to be tested are 32-bit integers, placed in a huge file in binary format. This file is passed to
the testing procedures. This setup is not always convenient. Many RNGs produce numbers
with less than 32 bits of resolution (e.g., 31 bits is frequent) and DIEHARD does not care
for that. TestUO1 is more flexible on all these aspects.

The SPRNG library [120] is another public-domain software that implements the classical
tests for RNGs given in [66], plus a few others. The National Institute of Standards and
Technology (NIST), in the USA, has implemented a test suite (16 tests) for RNGs, mainly for
the testing and certification of RNGs used in cryptographic applications (see [152] and http:
//csrc.nist.gov/rng/). The ENT test program (http://www.fourmilab.ch/random/)
implements a few elementary tests. The Information Security Research Center, in Australia,
offers a commercial testing package called Crypt-X, which contains a test suite designed
for stream ciphers, block ciphers, and key generators used in cryptology (see http://www.
isrc.qut.edu.au/resource/cryptx/). The GNU scientific library gsl, currently under
development (see https://www.gnu.org/software/gsl/manual/html_node/), implements
a large set of well-tested RNGs, but so far no statistical test per se.



Chapter 2

UNIFORM GENERATORS

This chapter contains a description of various uniform generators already programmed in
this library and which were proposed by various authors over the past several years, as well
as tools for managing and implementing additional types of generators. Related generators
are regrouped in the same module. For example, the linear congruential generators (LCGs)
are in module ulcg, the multiple recursive generators (MRGs) are in umrg, the inversive
generators in uinv, the cubic generators in ucubic, etc. We emphasize that the generators
provided here are not all recommendable; in fact, most of them are not.

The module unif01 contains the basic utilities for defining, manipulating, filtering, com-
bining, and timing generators. Each generator must be implemented as an object of type
unif01_Gen. To implement one’s own generator, one should create such an object and define
all its fields. For each generator, the structure unif01_Gen must contain a function GetU01
that returns values in the interval [0, 1) and a function GetBits that returns a block of 32 bits.
Most of the tests in the s modules call the generators to be tested only indirectly, through the
use of the interface functions unif01_StripD, unif01_StripL and unifO1_StripB. These
functions drop the r most significant bits of each random number generated and returns a
number built out of the remaining bits.

It is also possible to test one’s own or an external generator (that is, a generator that is not
predefined in TestUO01) very easily with the help of the functions unif01_CreateExternGen01
and unif01_CreateExternGenBits (see page 15 of this guide), as long as this generator is
programmed in C.

Figure 2.1 gives simple examples of how to use predefined generators. The program
creates a LCG with modulus m = 23! — 1, multiplier a = 16807, and initial state s = 12345,
generates and adds 100 uniforms produced by this generator, prints the sum, and deletes the
generator. To illustrate the fact that there are different ways of getting the uniforms from
the generator, we have generated the first 50 by calling the GetUO1 function and the next 50
via unif01_StripD. These two methods are equivalent. The program then instantiates the
generator 1fsr113 available in module ulec, with the vector (12345, ...,12345) as initial
seed, generates and prints five integers in the range {0,...,2% — 1} (i.e., 10-bit integers)



obtained by taking five successive output values from the generator, stripping out the four
most significant bits from each value, and retaining the next 10 bits.

For each public identifier used in programs, it is important to include the corresponding
header file before using it, so as to inform the compiler about the type and signature of
functions and exported variables. For instance, in the following examples, the header files
unifO1.h, ulcg.h and ulec.h contain the declarations of unif01_Gen, ulcg_CreateLCG
and ulec_Createlfsr113, respectively.

Other examples on how to use the facilities of module unif01 are given at the end of its
description.

#include <testu01/unif01.h>
#include <testuOl/ulcg.h>
#include <testuO1l/ulec.h>
#include <stdio.h>

int main (void)

int i;

double x;
unsigned long z;
unifO1_Gen *gen;

gen = ulcg_CreatelLCG (2147483647, 16807, 0, 12345);
3z = .

for (i = 0; i < 50; i++)

x += gen->GetUO1(gen->param, gen->state);
for (i = 0; i < 50; i++)

x += unifO01_StripD (gen, 0);
printf ("Sum = %14.10f\n\n", x);
ulcg_DeleteGen (gen);

gen = ulec_Createlfsr113 (12345, 12345, 12345, 12345);
for (i = 0; 1 < 5; i++) {

z = unifO01_StripB (gen, 4, 10);

printf ("%10lu\n", z);

}
ulec_DeleteGen (gen);
return O;

Figure 2.1: Using pre-programmed generators



unifO1

This module offers basic tools for defining, manipulating, and transforming uniform ran-
dom number generators to which tests are to be applied or which could be used for other
purposes. Each generator is implemented as a structure of type unif01_Gen. Several pre-
defined generators are available in the u modules. Each such generator must be created by
the appropriate ...Create... function before being used, and should be deleted by the
corresponding .. .Delete... function to free the memory used by the generator when it is
no longer needed. One can create and use simultaneously any number of generators. These
generators are usually passed to functions as pointers to objects of type unif01_Gen.

One may call an external generator for testing using the functions in this module. See
Figure 2.2 for an example. One may also implement one’s own generator, by creating a
structure of type unifO1_Gen and defining all its fields properly. See Figure 2.5 for an
illustration.

Each implemented generator returns either a floating-point number in [0, 1) (via its func-
tion GetUO1) or a block of 32 bits (via its function GetBits). Ideally, these should follow
the uniform distribution (0,1) and {0, ...,23? — 1}, respectively. Most of the tests in the s
modules actually call the generator to be tested only indirectly through the use of one of the
interface functions unif01_StripD, unif01_StripL and unifO1_StripB. These functions
drop the r most significant bits of each random number and return a number built out of
the remaining bits.

Functions are also provided for adding one or many output filters to a given generator.
These functions create another generator object which implements a mechanism that au-
tomatically transforms the output values of the original generator in a specified way. One
can also combine the outputs of several generators in different ways. By using the output
of several generators or several substreams of the same generator in a round-robin way, one
can test the quality of these as examples of parallel generators. Finally, tools are provided
for measuring the speed of generators and adding their output values (for testing purposes).

#include <testuO1l/gdef.h>

Basic types

typedef struct {

void *state;

void *param;

char *name;

double (*GetUO1) (void *param, void *state);
unsigned long (*GetBits) (void *param, void *state);
void (xWrite) (void *state);

} unif01_Gen;

Generic random number generator. The function GetUO1 returns a floating-point number in
[0,1) while GetBits returns a block of 32 bits. If the generator delivers less than 32 bits, these
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bits are left shifted so that the most significant bits are the relevant ones. The variable state
keeps the current state of the generator and param is the set of specific parameters used in
computing the next random number. The function Write will write the current state of the
generator. The string name describes the current generator, its parameters, and its initial state.
In the description of the generators in the u modules, one indicates how the GetUO1 function
gets its value from the generator’s recurrence; it is always understood that the GetBits function
is equivalent to 232 GetUO01.

Environment variables

extern lebool unifOl_WrLongStateFlag;

For generators whose state is a large array, determines whether the state will be written out in
full (TRUE) or not (FALSE) in the printouts. The default value is FALSE.

Basic functions

double unifO1_StripD (unifOl_Gen *gen, int r);

Makes one call to the generator gen, drops the r most significant bits, left-shift the others by
r positions, and returns the result, which is a floating-point number in [0, 1). More specifically,
returns 2"u mod 1, where u is the output of gen.

long unifO1_StripL (unifO1_Gen *gen, int r, long d);

Similar to unif01_StripD, but generates an integer “uniformly” over the set {0,...,d — 1}, by
using the most significant bits of the output of gen after having dropped the first r bits. More
specifically, returns |d(2"u mod 1)], where u is the output of gen.

unsigned long unifO1_StripB (unifOl1_Gen *gen, int r, int s);

Calls the generator gen, drops the r most significant bits, and returns the s following bits as an
integer in the set {0,...,2% — 1}.

void unifO1_WriteNameGen (unifOl1_Gen *gen);

Writes the character string gen->name that describes the generator.

void unifO1_WriteState (unifO1_Gen *gen) ;

Writes the current state of generator gen.

10



void unifO1_WrLongStateDef (void);

Dummy function used when the state of the current generator is a large array and we do not want
to write the full state. Writes the message “Not shown here ... takes too much space”.

unifO1_Gen * unifOl1_CreateDummyGen (void);

Creates a dummy generator, which does nothing and always returns zero. It can be used for
instance to measure the overhead of function calls when comparing generator’s speeds (see the
timing tools below).

void unifO1_DeleteDummyGen (unifO1_Gen *gen) ;

Frees the dynamic memory used by the dummy generator above.

Output filters

The following describes some filters that can be added to transform the output of a given
generator. In each case, a new generator object is created that will effectively apply the filter
to the original generator. One may apply more than one filter at a time on a given generator
(for example, one may apply the Double, the Bias, the Trunc and the Lac filters on top of
one another). It suffices to create the appropriate filters as described below. The resulting
filtered generator(s) will call the original generator behind the scenes. Thus the state of the
original generator will evolve as usual, even though it is not called directly.

The different filters applied on an original generator are not independent but are related
as the elements of a stack. When they are no longer in use, they must be deleted in the
reverse order of their creation, the original generator being the last one of this group to be
deleted. Figure 2.8 illustrates how these facilities can be used.

unifO01_Gen * unifOl1_CreateDoubleGen (unifOl1_Gen *gen, int s);

Given a generator gen, this function creates and returns a generator with increased precision,
such that every call to this new generator corresponds to two successive calls to the original
generator. The method GetUO01 of this doubled generator returns (U; + Us/2%) mod 1, where
Uy and Uj are the results of two successive calls to the method GetUO1 of gen. If the current
generator has 31 bits of precision, for example, then one can obtain 53 bits of precision from
GetUO1 by creating this new generator with s between 22 and 31.

unifO01_Gen * unifOl1_CreateDoubleGen2 (unifOl_Gen *gen, double h);

A more general version of unif01_CreateDoubleGen where the method GetUO1 of the double
generator returns (U; + hUs) mod 1. Restriction: 0 < h < 1.

11



unif01_Gen * unifOl_CreatelacGen (unifOl_Gen *gen, int k, long I[]);

Given an original generator gen, this function creates and returns a generator involving lacunary
indices, such that successive calls to this new generator will no longer provide successive values
from the original generator, but rather selected values as specified by the table I[0..k-1], in
a circular fashion. More specifically, if ug,u1,us,... is the sequence produced by the original
gen, if the table I[0..k-1] contains the non-negative integers iy, ...i;x_1 (in increasing order),
and if we put L = i;_1 + 1, then the output sequence of the new generator will be:

u’i()? uila ceey uik_l 9 uL+’io7 uL+’i17 ey uL-i-’ik_l 9 u2L+i07 u2L+i17 e
For example, if £k =3 and I = {0, 3,5}, the output sequence will be the numbers
u07 u37 u57 uﬁ? u97 ull’ u127 AR

of the original generator. To obtain every s-th number produced by the original generator for
example (a decimated sequence), one should take k =1 and I = {s — 1}.

unif01_Gen * unifOl_CreateLuxGen (unifOl_Gen *gen, int k, int L);

Given an original generator gen, this function creates and returns a new generator giving the
output of the original generator with luxury level L: out of every group of L random numbers,
the first k£ are kept and the next L — k are skipped.

unif01_Gen * unifOl_CreateBiasGen (unifO1_Gen *gen, double a, double p);

Given an original generator gen, this function creates and returns a new generator giving a biased
output of the original generator. The output is biased in such a way that the density becomes
constant with total probability p over the interval [0,a), and constant with total probability
1 —p over [a, 1) (the two constant densities are different). For example, by choosing p = 1 and
a = 0.5, all the random numbers generated by GetUO01 will fall on the interval [0, 0.5). This
filter can be used, for example, to study the power of certain statistical tests. Restrictions:
0<a<land0<p<l.

unif01_Gen * unifOl_CreateTruncGen (unifOl_Gen *gen, int s);

Given an original generator gen, this function creates and returns a new generator giving the
output of the original generator truncated to its s most significant bits. Restriction: s < 32.

unifO01_Gen * unifOl_CreateBitBlockGen (unifOl1_Gen *gen, int r, int s,
int w);

Consider a group of v < 32 successive 32-bit integers outputted by generator gen. For each of
these, drop the r most significant bits and keep the s following bits numbered b;1, b;o, ..., b;s,
starting with the most significant, for 1 < ¢ < v. Make with all these a v X s matrix of bits,
say B. The generator returned by this function is a filter that builds new 32-bit integers from
v X w submatrices of B. The number of columns of the submatrix w must be a power of 2 no
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larger than 32 and it must be < s. If w does not divide s exactly, the last submatrix of B will
have less than w columns and will be disregarded.

If the stream of bits thus obtained from gen is

bllalea"'7b18,b21,b227"')b23a"'7b1}17b1)27"'7b’vs’---

then the new integers returned by the filter will be 32-bit integers taken from the rearranged
stream of bits so that the first new number is (its most significant bit being given first)

bll,le,- . .,b1w7b21,b22, “ . ,b2w, . '7b’l)17b’U27 “ . 7b’U’LU7

the second new number is made of the bits (its most significant bit first)

bl(w+1)7 bl(w+2)7 SRR bl(?w)a b2(w+1)7 b2(w+2)7 SRR b2(2w)7 SR bv(w+1)7 bv(w+2)7 SRR bv(2w)a
and so on.

The following examples illustrates how the filter works. If » = 0 and w = s = 32, then the
filter has no effect, the new integers being the same as those outputted by gen. If » = 0 and
w = s = 1, then the filter will return integers made only from the most significant bit of the
original integers, all other bits being dropped. If r = 0, w = 1 and s = 32, then the filter
will return integers made from the columns of B, i.e., since the rows of B are made of the
original integers, the filter will return the columns of B as the new integers. Restrictions: r > 0,
0<s<32and win {1,2,4,8,16,32}.

void unifO1_DeleteDoubleGen (unifOl1_Gen *gen);
void unifO1_DeletelLacGen (unifO01_Gen *gen);
void unifO1_DeleteLuxGen (unif01_Gen *gen);
void unif01_DeleteBiasGen (unif01_Gen *gen);
void unifO1_DeleteTruncGen (unifO1_Gen *gen);
void unifO1_DeleteBitBlockGen (unifO1_Gen *gen);

Frees the memory used by the generator created by the corresponding Create functions above.

Combining generators

These functions permit one to define the combination of two, three or more generators.

The resulting generator calls the component generators behind the scenes, so it changes their
state. The component generators must not be destroyed as long as the combination generator
is 1n use. One can obtain the combinations of more than three generators by combining the
generators obtained from combinations of two or three generators.

unifO1_Gen * unifOl1_CreateCombAdd2 (unifO1_Gen *genl, unifO1_Gen *gen2,
char *name) ;

This function creates and returns a generator whose output is the addition of the outputs
modulo 1 of the method GetUO1 of the two generators genl and gen2. The character string
name may be printed in reports to identify this new combined generator.

13



unifO1_Gen * unifOl1_CreateCombAdd3 (unifO1_Gen *genl, unifO1_Gen *gen2,
unifO01_Gen *gen3, char *name);

Same as unif01_CreateCombAdd2, except that the returned generator is the combination (the
addition of the outputs modulo 1 of the method GetU01) of the three generators genl, gen2
and gen3.

unif01_Gen * unifO1_CreateCombXor2 (unifOl1_Gen *genl, unifOl_Gen *gen2,
char *name) ;

This function creates and returns a generator whose output is the bitwise exclusive-or (XOR)
of the outputs of the two generators genl and gen2. The character string name may be printed
in reports to identify this combined generator.

unif01_Gen * unifOl1_CreateCombXor3 (unifOl_Gen *genl, unifOl_Gen *gen2,
unifO01_Gen *gen3, char *name);

Same as unif01_CreateCombXor2, except that the returned generator is the combination of the
three generators genl, gen2 and gen3.

void unifO1_DeleteCombGen (unifO1_Gen *gen);

Frees the memory used by one of the combination generators returned by the Create functions
above, but does not delete any of its component generators.

Parallel generators

The following functions allow the joining of the output of several generators or of different
substreams of the same generator into a single stream of random numbers. This can be
used to test for apparent correlations between the output of several generators or several
substreams used in parallel. For example, one may want to choose seeds that are far separated
for the same generator, while making sure that such seed choice is statistically valid and does
not introduce unwanted correlation between the substreams thus defined.

unifO1_Gen * unifOl_CreateParallelGen (int k, unifOl_Gen *gen[], int L);

Creates and returns a generator whose output is obtained in a round-robin way L numbers at
a time from each of the k generators gen[i] as follows: the first L numbers are generated from
gen[0], the next L numbers are generated from gen[1], and so on until L numbers have been
generated from gen[k-1], after which, this whole process is repeated. It is important that none
of the generators genl[i] be destroyed as long as the parallel generator is in use.

void unifO1_DeleteParallelGen (unifOl_Gen *gen);

Frees the memory allocated by the parallel generator returned by the Create function above,
but does not delete any of its component generators, which is the responsibility of the program
that created them.
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External generators

Although TestU0O1 implements many generators both in generic and in specific forms, it is
not possible to implement all those that are in existence because there are just too many and
new ones are proposed regularly. The typical user would like to test his preferred generator
with as little complications as possible. The functions below allows one to do just that. As
long as the generator is programmed in C, one has but to pass the function implementing
the generator to one of the functions below and call some of the tests available in TestUO1.
It is the responsibility of the user to ensure that his generator does not violate the conditions
described in the functions below. For the call in unif01_CreateExternGen01, his generator
must return floating-point numbers in [0, 1). For the calls in unif01_CreateExternGenBitsL
and unif01_CreateExternGenBits, his generator must return an integer in the interval
0,232 — 1]. If these conditions are violated, the results of the tests in TestUO1 are unpre-
dictable.

unif01_Gen *unifOl1_CreateExternGenOl1 (char *name, double (*genO1) (void));

Implements a pre-existing external generator gen01 that is not part of TestUO1. It must be a
C function taking no argument and returning a double in the interval [0,1). Parameter name
is the name of the generator. No more than one generator of this type can be in use at a time.

unifO1_Gen *unifO1_CreateExternGenBits (char *name,

unsigned int (*genB) (void));
Implements a pre-existing external generator genB that is not part of TestUOL. It must be a C
function taking no argument and returning an integer in the interval [0, 232 —1]. If the generator
delivers less than 32 bits of resolution, then these bits must be left shifted so that the most
significant bit is bit 31 (counting from 0). Parameter name is the name of the generator. No
more than one generator of this type can be in use at a time.

unif01_Gen *unifO1_CreateExternGenBitsL (char *name,
unsigned long (*genB) (void));

Similar to unif01_CreateExternGenBits, but with unsigned long instead of unsigned int.
The generator genB must also return an integer in the interval [0,23? — 1].

void unifO1_DeleteExternGen01 (unifO1_Gen * gen);
void unifO1_DeleteExternGenBits (unifOl1_Gen * gen);
void unifO1_DeleteExternGenBitsL (unifO1_Gen * gen);

Frees the memory used by the generator created by the corresponding Create functions above.

As an example, Figure 2.2 shows how to apply SmallCrush, a small predefined battery
of tests (described on page 143) to the generators MRG32k3a and xorshift, whose code is
shown in Figures 2.3 and 2.4. One must compile and link the two external files with the
main program and the TestUO1 library. The generator MRG32k3a returns numbers in (0, 1)
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and was proposed by L’Ecuyer in [80]. The generator xorshift returns 32-bit integers and
was proposed by Marsaglia in [111, page 4].

#include <testu01/unif0O1.h>
#include <testuOl/bbattery.h>

unsigned int xorshift (void);
double MRG32k3a (void);

int main (void)
unifOl1_Gen *gen;

gen = unifOl1_CreateExternGenO1 ("MRG32k3a", MRG32k3a);
bbattery_SmallCrush (gen);
unif01_DeleteExternGenO1 (gen);

gen = unifO1_CreateExternGenBits ("xorshift", xorshift);
bbattery_SmallCrush (gen);
unif01_DeleteExternGenBits (gen);

return O;

Figure 2.2: Example of a program to test two external generators

Timing devices

typedef struct {
unifO01_Gen *gen;
long n;

double time;
double mean;
lebool fUO1;

} unifO1_TimerRec;

Structure to memorize the results of speed and sum tests on a given generator. Here, gen is
the generator, n is the number of calls made to the generator, time is the total CPU time in
seconds, and mean is the mean of the n output values of the generator. If fUO1 is TRUE, the
function GetUO1 of gen is called, otherwise the function GetBits is called.

void unifO1_TimerGen (unifO1_Gen *gen, unifOl_TimerRec *timer, long n,
lebool fUO1);

This function computes the CPU time needed to generate n random numbers with the generator
gen, and returns the result in timer. If £U01 is TRUE, the random numbers will be generated
by the method GetUO1 of gen, otherwise by the method GetBits.
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#define norm 2.328306549295728e-10
#define mil 4294967087.0
#define m2 4294944443 .0

#define al2 1403580.0

#define al3n 810728.0

#define a21 527612.0

#define a23n 1370589.0

static double s10 = 12345, s11 = 12345, s12 = 123,
s20 = 12345, s21 = 12345, s22 = 123;

%ouble MRG32k3a (void)

long k;

double pl, p2;

/* Component 1 */

pl = al2 * s11 - al3n * s10;

k=pl /ml; pl-=%k*ml; if (pl < 0.0) pl += mi;
s10 = sii; sl1l = s12; s12 = pil;

/* Component 2 */

p2 = a2l * s22 - a23n * s20;

k p2 / m2; p2 -=k * m2; if (p2 < 0.0) p2 += m2;
s20 = s21; s21 = s22; s22 = p2;

/* Combination */
if (p1 <= p2) return ((pl - p2 + ml) * norm);
else return ((pl - p2) * norm);

Figure 2.3: External function for MRG32k3a.

static unsigned int y = 2463534242U;

unsigned int xorshift (void)

"= (y << 13);
"= (y >> 17);

y
y
return y "= (y << 5);

Figure 2.4: External function for xorshift.
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void unifO1_TimerSumGen (unifOl1_Gen *gen, unifOl_TimerRec *timer, long n,
lebool fUO1);
Same as unifO1_TimerGen, but also adds the n random numbers and saves their mean in
timer->mean.

void unifO1_WriteTimerRec (unifO1_TimerRec *timer);

Prints the results contained in timer, with some information about the generator and the
current machine. One should make sure that the generator gen in timer has not been deleted
when calling this function.

void unifO1_TimerGenWr (unifO1_Gen *gen, long n, lebool fUO1);

Equivalent to calling unif_TimerGen followed by unif01_WriteTimerRec.

void unifO1_TimerSumGenWr (unifOl_Gen *gen, long n, lebool fUO1);

Equivalent to calling unif_TimerSumGen followed by unif01_WriteTimerRec.

Examples

We now provide some examples of how to use the facilities of unif01. Figure 2.5 gives an
example of how to implement one’s own generator, using all the paraphernalia of TestUO1.
This is specially useful when one wants to implement a generator in generic form with one
or more parameters. This is a simple LCG with hardcoded parameters m = 23 — 1 and
a = 16807. The function My16807_U01 will advance the generator’s state by one step and
return a U(0, 1) random number U each time it is called, whereas My16807_Bits will return
the 32 most significant bits in the binary representation of U. The function CreateMy16807
allocates the memory for the corresponding unif01_Gen structure and initializes all its fields.

Figure 2.6 shows how to use the timing facilities. The main program first sets the
generator gen to an LCG with modulus 23! — 1, multiplier @ = 16807, and initial state
12345, implemented in floating point.  (This generator is well known, but certainly not
to be recommended; its period length of 23! — 2 is much too small.) The program calls
unif01_TimerSumGenWr which generates 10 million random numbers in [0, 1), computes
their mean, and prints the CPU time needed to do that. Next, the program deletes this
unif01_Gen object and creates a new one, which is actually a user-defined implementation
of the same LCG, taken from the home-made module my16807 whose code is shown in Fig-
ure 2.5. In this implementation, the parameters have been placed as constants directly into
the code. Ten million random numbers are generated with this alternative implementation,
and the average and CPU time are printed. The same procedure is repeated for two addi-
tional predefined generators taken from modules ulec. Figure 2.7 shows the results of this
program, run on a 2106 MHz computer running Linux, and compiled with gcc -02.
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#include "my16807.h"

#include <testu01/unif0O1.h>
#include <testuO1l/util.h>
#include <testuOl/addstr.h>
#include <string.h>

typedef struct { double S; } My16807_state;

static double My16807_UO1 (void *par, void *sta)
{

Myl16807_state *state = sta;

long k;

state->S *= 16807.0;

k = state->S / 2147483647.0;

state->S -= k * 2147483647.0;
3 return (state->S * 4.656612875245797E-10) ;

static unsigned long My16807_Bits (void *par, void *sta)

return (unsigned long) (My16807_UO1 (par, sta) * 4294967296.0);
}

static void WrMy16807 (void *sta)

My16807_state *state = sta;
printf (" S = J%.0f\n", state->S);

}
unifO1_Gen *CreatelMy16807 (int s)
{
unifOl_Gen *gen;
Myl16807_state *state;
size_t leng;
char name[60];
gen = util_Malloc (sizeof (unifO1_Gen));
gen->state = state = util_Malloc (sizeof (My16807_state));
state->S = s;
gen—->param = NULL;
gen—>Write = WrMy16807;
gen->GetUO1 = My16807_U01;
gen—->GetBits = Myl16807_Bits;
strcpy (name, "My LCG implementation for a = 16807:");
addstr_Int (name, " s =", 8);
leng = strlen (name);
gen->name = util_Calloc (leng + 1, sizeof (char));
strncpy (gen->name, name, leng);
return gen,
}
void DeleteMy16807 (unifOl_Gen * gen)
{
gen->state = util_Free (gen->state);
gen->name = util_Free (gen->name);
util_Free (gen);
}

Figure 2.5: A user-defined generator, in file my16807. c.
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#include <testuO1/unif01.h>
#include <testuOl/ulcg.h>

#include <testuO1l/ulec.h>
#include "my16807.h"
#include <stdio.h>

int main (void)

unifO1_Gen *gen;

double x = 0.0;

int i;

gen = ulcg_CreateLCGFloat (2147483647, 16807, 0, 12345);

unif01_TimerSumGenWr (gen, 10000000, TRUE);
ulcg_DeleteGen (gen);

gen = CreateMy16807 (12345);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
DeleteMy16807 (gen);

gen = ulec_CreateMRG32k3a (123., 123., 123., 123., 123., 123.);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
ulec_DeleteGen (gen);

gen = ulec_Createlfsr113 (12345, 12345, 12345, 12345);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
for (i = 0; i < 100; i++)
x += unifO01_StripD (gen, 0);
printf ("Sum = %14.10f\n", x);
ulec_DeleteGen (gen);

return O;

Figure 2.6: Example of a program creating and timing generators.
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————————————— Results of speed test --—-—-—---------—-

Host:

Generator: ulcg_CreatelLCGFloat
Method: GetUO1

Mean = 0.499974546727091

Number of calls: 10000000
Total CPU time: 0.28 sec

————————————— Results of speed test --—-----------—-

Host:

Generator: My LCG implementation for a = 16807
Method: GetUO1

Mean = 0.499974546727091

Number of calls: 10000000

Total CPU time: 0.28 sec

————————————— Results of speed test ----———-------—-

Host:

Generator: ulec_CreateMRG32k3a
Method: GetUO1

Mean = 0.500045268775809

Number of calls: 10000000
Total CPU time: 0.50 sec

————————————— Results of speed test --—-——---------—-

Host:

Generator: ulec_Createlfsr113
Method: GetUO1

Mean = 0.500154672454091

Number of calls: 10000000
Total CPU time: 0.10 sec

Sum = 50.6276649707

Figure 2.7: Results of the program of Figure 2.6.
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Figure 2.8 shows how to apply filters to generators and how to combine two or more
generators by addition modulo 1 or bitwise exclusive-or. The program starts by creating a
simple Tausworthe generator genl and it generates 20 values from it. It then deletes gent,
creates a new copy of it with the same parameters and initial state, and applies a “lacunary
indices” filter to create a second generator gen2. The output sequence of gen2 will be (in
terms of the original sequence numbering) wug, u7, ug, U3, Ur7, Urg, Uss, - . .. Next, the program
creates a generator gen3 for which each output value is constructed from two successive
output values of gen2, generates some values from gen3 and gen2, and deletes them.

After that, the program creates another Tausworthe generator gen2 and a generator gen3
which is a combination of genl and gen2 by bitwise exclusive-or. It generates a few values
with gen3 and deletes all the generators.

#include <testu01/unif01.h>
#include <testuOl/utaus.h>
#include <stdio.h>

int main (void)

unifO1_Gen *genl, *gen2, *gen3;
long I[3] = {3, 7, 9 };

int i, n = 20;

double x;

genl = utaus_CreateTaus (31, 3, 12, 12345);
for (i = 0; i < n; i++)

printf ("%f\n", unifOl_StripD (genl, 0));
utaus_DeleteGen (genl);
printf ("\n");

genl = utaus_CreateTaus (31, 3, 12, 12345);
gen2 = unif01_CreatelLacGen (genl, 3, I);
for (i = 0; i < n; i++)

printf ("%f\n", unifO01_StripD (gen2, 0));

gen3 = unif01_CreateDoubleGen (gen2, 24);
for (i = 0; 1 < n; i++)

x = unifO1_StripD (gen3, 0);
unif01_DeleteDoubleGen (gen3);
unif01_DeleteLacGen (gen2);

gen2 = utaus_CreateTaus (28, 7, 14, 12345);
gen3 = unif0l_CreateCombXor2 (genl, gen2, "A Combined Tausworthe Gener.");
for (i = 0; i < n; i++)
x = unif01_StripD (gen3, 0);
unif01_DeleteCombGen (gen3);
utaus_DeleteGen (gen2);

utaus_DeleteGen (genl);
return O;

Figure 2.8: Applying filters and combining generators.
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ulcg

This module implements linear congruential generators (LCGs), simple or combined, in
generic form. The simple LCG is defined by the recurrence

z; = (ax;_1 + ¢) mod m, (2.1)

and the output at step i is u; = x;/m. Two types of combinations are implemented: the one
proposed by L’Ecuyer [72], and the one proposed by Wichmann and Hill [171]. See [97] for
details. Some of the implementations use the GNU multiprecision package GMP. The macro
USE_GMP is defined in module gdef in directory mylib.

The following table gives specific parameters taken from the literature or from widely
available software. See also [40, 81] for other LCG parameters. Parameters for combined
LCGs can be found in [72, 97, 84].

Table 2.1: Some specific (popular) LCGs

m \ a \ c \ Reference
224 1140671485 12820163 | in Microsoft VisualBasic
231 1 742938285 0| [41]
231 1 950706376 0| [41]
231 1 630360016 0 | [70, 134]
231 1 397204094 0 | in SAS [149]
231 1 16807 0 | [101, 6, 70, 133]
231 1 45991 0| [88]
231 65539 0 | RANDU [58, 70]
231 134775813 1 | in Turbo Pascal
231 1103515245 12345 | rand () in BSD ANSI C
231 452807053 0 | [58, URN11]
232 1099087573 0| [39]
232 4028795517 0| [39]
232 663608941 0 | [58, URN13]
232 69069 0 | component of original SuperDuper
232 69069 1 | on VAX/VMS [58, URN22]
232 2147001325 | 715136305 | in BCLP language
235 513 0 | Apple
235 515 | 7261067085 | [64, p.102]
1012 — 11 427419669081 0 | rand () in Maple 9.5 or earlier
247 — 115 | 71971110957370 0| [85]
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m a ‘ c ‘ Reference

27 115 ~10018789 0] [85)

248 68909602460261 0| [39]

248 25214903917 11 | Unix’s rand48()

218 44485709377909 0 | on CRAY system [20)]

259 1313 0 | in NAG Fortran/C library

263 _ 95 2307085864 0| [85]

264 1 ¢ | prng at Cornell Theory Center [135]

#include <testuO1/gdef.h>
#include <testu01/unif01.h>

Simple LCGs

unifO1_Gen * ulcg_CreateLCG (long m, long a, long c, long s);

Initializes a LCG of the form (2.1). The initial state is xg = s and the output at step ¢ is z;/m.
The actual implementation depends on the values of (m,a, c). Restrictions: a, ¢ and s must be
non-negative and less than m.

unif01_Gen * ulcg_CreateLCGFloat (long m, long a, long c, long s);

The same as ulcg_CreateLCG, except that the implementation is in floating-point arithmetic.
Valid only if the IEEE floating-point standard is respected (all integers smaller than 253 are
represented exactly as double). Restrictions : —m < a < m, 0 < ¢c < m, —m < s < m,
lam| + ¢ < 253, and ¢ = 0 when a < 0.

#ifdef USE_GMP
unif01_Gen * ulcg_CreateBigLCG (char *m, char *a, char *c, char *s);

The same as ulcg_CreateLCG, but using arbitrary large integers. The integers are given as
strings of decimal digits. The implementation uses GMP. Restrictions: a, ¢ and s non negative

and less than m.
#endif

unif01_Gen * ulcg_CreateLCGWu2 (long m, char ol, unsigned int g, char o2,
unsigned int r, long s);

Implements a LCG of the kind proposed by Wu [177], and generalized by L’Ecuyer and Simard
[91], for which the modulus and multiplier can be written as m = 2° —h and a = 29+ 2". The
parameters ol and 02 can be ’+’ or ’-’; they give the sign in front of 2¢ and 2", respectively.
Uses an implementation proposed in [91, 177], which uses shifts instead of multiplications. The
initial state is xg = s and the output at step i is z;/m. We use a fast implementation with
shifts instead of multiplications, whenever possible. Restrictions: 0 < s < m, m < 23!, and
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the parameters must also satisfy the conditions h < 29, h(2¢ — (h +1)/2°7%) < m and h < 27,
h(2" = (h+1)/2°77) < m.

unif01_Gen * ulcg_CreateLCGPayne (long a, long c, long s);

Same as ulcg_CreateLCG, with the additional restriction that m = 23! — 1. Uses the fast
implementation proposed by Payne et al. [134, 9]. See also Robin Whittle’s WWW page at
http://www.firstpr.com.au/dsp/rand31/.

unifO1_Gen * ulcg_CreateLCG2e31m1HD (long a, long s);

Same as ulcg_CreateLCG, with the additional restrictions that m =23 =1, c=0and 1 < a <
239, Uses the specialized implementation proposed by Hérmann et Derflinger [54].

unifO1_Gen * ulcg_CreateLCG2e31 (long a, long c, long s);

Same as ulcg_CreateLCG, but with m = 23!, Uses a specialized implementation.

unifO1_Gen * ulcg_CreatelLCG2e32 (unsigned long a, unsigned long c,
unsigned long s);

Same as ulcg_CreateLCG, but with m = 232. Uses a specialized implementation.

unifO01_Gen * ulcg_CreatePow2LCG (int e, long a, long c, long s);

Implements a LCG as in ulcg_CreateLCG, but with m = 2°. Restrictions: a, ¢ and s non
negative and smaller than m, and e < 31.

#ifdef USE_LONGLONG
unif01_Gen * ulcg_CreateLCG2e48L (ulonglong a, ulonglong c, ulonglong s);

A simple LCG of the form z;41 = (az; + ¢) mod 2*8, where 2y = s is the seed. The generator
drand48 of the SUN C library is obtained with the parameters
a = 25214903917, c=11.

Only the 32 most significant bits are kept. Restrictions: a,c, s < 281474976710656 = 248,

unifO1_Gen * ulcg_CreatePow2LCGL (int e, ulonglong a, ulonglong c,
ulonglong s);

Implements a LCG as in ulcg_CreatePow2LCG, but with e < 64. Only the 32 most significant
bits are kept.
#endif

#ifdef USE_GMP
unif01_Gen * ulcg_CreateBigPow2LCG (long e, char *a, char *c, char *s);

Implements the same type of generator as ulcg_CreatePow2LCG, but using arbitrary large
integers. The integers a, ¢ and s are given as strings of decimal digits.
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#tendif

Combined LCGs

unifO1_Gen * ulcg_CreateCombLEC2 (long ml, long m2, long al, long a2,

long c1, long c2, long sl, long s2);
Combines two LCGs by the method of L'Ecuyer [72]. The first LCG has parameters (m1,
al, c1, s1) and the second has parameters (m2, a2, c2, s2). The combination is via z; =
(s;1 — si2) mod (my — 1), where s;; are s;o are the states of the two components at step i. The
output is u; = z;/my if x; # 0, and u; = (my — 1)/my if z; = 0. As for ulcg_CreateLCG,
the implementation depends on the parameters. The same restrictions as for ulcg_CreateLCG
apply to the two components and one must also have m1 > m2.

unif01_Gen * ulcg_CreateCombLEC2Float (long ml, long m2, long al, long a2,
long c1, long c2, long sl, long s2);
Floating-point version of ulcg_CreateCombLEC2. Valid only if any positive integer smaller than
253 is represented exactly as a double (this holds, e.g., if the IEEE floating-point standard is
respected). Restrictions: ajm; +¢1 — a1 < 253 and agme + co — as < 2°3.

unifO1_Gen * ulcg_CreateCombLEC3 (long ml, long m2, long m3, long al,

long a2, long a3, long cl, long c2,

long c3, long sl1, long s2, long s3);
Same as ulcg_CreateCombLEC2, but combines 3 LCGs instead of 2. The combination is via
x; = (81 — Si2 + si3) mod (mq — 1), where s;1, S;2 et s;3 are the states of the components. One
must have m1 > m2 > m3.

unifO01_Gen * ulcg_CreateCombWH2 (long ml, long m2, long al, long a2,

long cl1, long c2, long sl1, long s2);
Combines two LCGs as in ulcg_CreateCombLEC2, but using the Wichmann and Hill approach
[171]: By adding modulo 1 the outputs of the two LCGs. The same restrictions apply.

unif01_Gen * ulcg_CreateCombWH2Float (long ml, long m2, long al, long a2,
long c1, long c2, long sl, long s2);
Floating-point version of ulcg_CreateCombWH2. Valid only if the IEEE floating-point standard
is respected (all integers smaller than 253 are represented exactly as double). Restrictions:
aimi + ¢ —ap < 2% and agma + ¢ — ag < 2%3.

unif01_Gen * ulcg_CreateCombWH3 (long ml, long m2, long m3, long al,

long a2, long a3, long cl, long c2,

long c3, long sl1, long s2, long s3);
Same as ulcg_CreateCombWH2, but combines three LCGs. The recent version of Excel uses
the original Wichmann-Hill combination of three small LCGs [171] for its new random number
generator (see usoft_CreateExcel2003 on page 81 of this guide).
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Clean-up functions

#ifdef USE_GMP
void ulcg_DeleteBigLCG (unifO1_Gen *gen);

Frees the dynamic memory used by the BigLCG generator and allocated by the corresponding
Create function above.

void ulcg_DeleteBigPow2LCG (unifOl1_Gen *gen);

Frees the dynamic memory used by the BigPow2LCG generator and allocated by the correspond-
ing Create function above.
#endif

void ulcg_DeleteGen (unifOl1_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.

Other related generators

For other specific LCGs, see also

e uwu_CreatelLCGWubla

e uwu_CreateLCGWu61b
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umrg

This module implements multiple recursive generators (MRGs), based on a linear recur-
rence of order k, modulo m:

T, = (a12y_1 + -+ - + axxy_k) mod m. (2.2)

and whose output is normally u,, = z,,/m. It implements combined MRGs as well. For more
details about these generators, see for example [85, 75, 76, 80, 98, 129].

Lagged-Fibonacci generators are also implemented here. These generators are actually
MRGs only when the selected operation is addition or subtraction. Multiplicative lagged-
Fibonacci generators, for example, are not MRGs, but are implemented here nonetheless.

Some of the generators in this module use the GNU multiprecision package GMP. The
macro USE_GMP is defined in module gdef in directory mylib.

#include <testuOl/gdef.h>
#include <testuO01/unifO01.h>

Simple MRGs

unifO1_Gen * umrg_CreateMRG (long m, int k, long A[], long S[]);
Implements a MRG of the form (2.2), with (ay,...,a;) in A[0..(k-1)], initial state (z_1,...,
x_) in S[0..(k-1)]1, and output u,, = x,/m. Faster implementations are provided for the
special cases k = 2,3,5,7 when A[0] > 0, Ak — 1] > 0, and all other A[i] = 0. Restrictions:
2 <k, |ai|(m mod |a;|) <m, —m < a; <m,and —-m <x_; <m, fori=1,... k.

unif01_Gen * umrg_CreateMRGFloat (long m, int k, long A[], long S[1);

Similar to umrg_CreateMRG above, but uses a floating-point implementation, as described in [80].
Restrictions: 2 < k, —m < a; <mand —m < z_; <mfori=1,... k and mmax(Q",-Q7) <
253 where Q% is the sum of the positive coefficients a; and Q™ is the sum of the negative
coefficients a;.

#ifdef USE_GMP

unifO01_Gen * umrg_CreateBigMRG (char *m, int k, char *A[], char *S[]);
Similar to umrg_CreateMRG above, except that the modulus, coefficients, and initial state are
given as decimal character strings in m, A[0..(k-1)] and S[0..(k-1)]. Restrictions: —m <
a;<mand —m<zxz_; <mfori=1,... k.

#endif

unifO01_Gen * umrg_CreatelLagFibFloat (int k, int r, char Op, int Lux,
unsigned long S[%);

Implements a 2-lags Fibonacci generator [103, 66|, using a floating-point implementation, with
recurrence
Up = (Un—k Op Unfr) mod 1,
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where the binary operator Op can take the values >+’ or ’-’, which stand for addition and
subtraction. The seed vector S[0..(k-1)] must contain the first k values u_1,...,u_g. The
parameter Lux gives the luxzury level defined as follows: if Lux is larger than k, then for each
block of Lux successive output values, the first k are used and the next Lux — k are skipped. If
Lux < k, no value is skipped. Note: for Op = ’-’, one may choose either k < r or k > r. For
example, the case k = 55, r = 24 corresponds to X,, = (X,,—55 — X;,—24) mod 1, while the case
k = 24, r = 55 corresponds to X,, = (X, 24 — X,_55) mod 1. Restrictions: S[i] < 232 and Op
e {°+, "7}

unif0l1_Gen * umrg CreatelagFib (int t, int k, int r, char Op, int Lux,
unsigned long S[%);

Similar to umrg_CreateLagFibFloat, except that the implementation uses ¢-bit integers
X, = (Xp_x Op X,_,) mod 2.

The parameter Op may take one of the values {’*’, ’>+’, >-’  ’x’} which stands for mul-
tiplication, addition, subtraction, and exclusive-or respectively. Note that the resulting multi-
plicative lagged-Fibonacci generator is not an MRG. Assume that &k > r. If M is a power of
2, say M = 2!, then the maximal period length is (2% — 1)2¢~! for the additive and subtractive
cases, and (2 — 1)2t=3 for the multiplicative case. This maximal period is reached if and only
if the characteristic polynomial f(z) = 2¥ — =" — 1 is a primitive polynomial modulo 2 (i.e.,
over the finite field Fq) [64, 7, 11]. Pairs of lags (k,r) that give a maximal period can be found
in [115, 66, 7]. Note: for Op = ’-’, one may choose k < r or k > r. For example, the case
k = 55, r = 24 corresponds to X,, = (X,,_55 — X;_24) mod 2!, while k = 24, r = 55 corresponds
to X, = (X204 — X,,_55) mod 2t Restrictions: 0 < t < 64. In the case Op = ’*’, all the S|i]
must be odd; if they are not, 1 will be added to the even values.

Combined MRGs

unif01_Gen * umrg_CreateC2MRG (long ml, long m2, int k, long A1[],
long A2[], long S1[], long S2[1);

Implements a generator that combines two MRGs of order k. The combination method is by
subtracting the states modulo m; and the implementation is the same as in Figure 1 of [76].
Restrictions: assumes that a;1 = 0, a12 > 0, a13 < 0, as; > 0, ase = 0 and aos3 < 0, £k = 3 and
the coefficients must satisfy the conditions a1;(m; mod aij) < my and ag;(me mod ag;) < ma.

#ifdef USE_GMP
unifO1_Gen * umrg_CreateBigC2MRG (char *ml, char *m2, int k, char *A1[],
char *A2[], char *S1[], char *S2[]);

Implements a combined generator obtained from 2 MRGs of order k, whose modulus are my
and mg. The coefficients of the 2 components are given as decimal strings in A1[0.. (k-1)],
A2[0..(k-1)], and the initial values are in S1[0..(k-1)], S2[0..(k-1)], also given as deci-
mal strings. Restrictions are as for umrg_CreateMRG.

#endif
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Clean-up functions

void umrg_DeleteMRG (unif01_Gen * gen);
void umrg_DeleteMRGFloat (unifO1_Gen * gen);
void umrg_DeletelagFib (unifOl_Gen * gen);
void umrg_DeletelLagFibFloat (unifOl1_Gen * gen);
void umrg_DeleteC2MRG (unifO1_Gen * gen);

#ifdef USE_GMP

void umrg_DeleteBigMRG (unifO1_Gen * gen);
void umrg_DeleteBigC2MRG (unifOl_Gen * gen);
#endif

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.

Some related generators

For some other specific lagged-Fibonacci generators, see also

e uknuth_CreateRan_arrayl
e uknuth_CreateRan_array?2
e uknuth_CreateRanf_arrayl

e uknuth_CreateRanf_array2
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ucarry

Generators based on linear recurrences with carry are implemented in this module.
This includes the add-with-carry (AWC), subtract-with-borrow (SWB), multiply-with-carry
(MWCQC), and shift-with-carry (SWC) generators. For the theoretical properties of these gen-
erators and other details, we refer the reader to [13, 14, 15, 67, 160].

#include <testuOl/gdef.h>
#include <testu01/unif01.h>

unif01_Gen * ucarry_CreateAWC (unsigned int r, unsigned int s,
unsigned long c, unsigned long m,
unsigned long S[]);

Implements the add-with-carry (AWC) generator proposed by Marsaglia and Zaman [116], based
on the recurrence

r; = (®i—y +Ti—s + ¢i—1) mod m, (2.3)
¢ = (Tiop+Tims+cim1) divm, (2.4)
with output u; = x;/m. The vector S[0..k-1] contains the k initial values (xq,...,Tx_1),

where k = max{r, s}, and c contains ¢g. Restrictions: 0 < s, 0 <7, 7 # s and ¢ =0 or 1.

unif01_Gen * ucarry_CreateSWB (unsigned int r, unsigned int s,
unsigned long c, unsigned long m,
unsigned long S[]);

Implements the subtract-with-borrow (SWB) generator proposed by Marsaglia and Zaman [116],
based on the recurrence
r; = (Timy — Ti—s — ¢i—1) mod m, (2.5)
c = I[(xi_r — Tj—g — Cz‘—l) < 0], (2.6)
with output u; = x;/m, where I is the indicator function. The vector S[0..(k-1)] contains

the k initial values (xg, ..., Tx_1), where k = max{r, s}, and c contains ¢y. Restrictions: 0 < s,
O<r,r#sandc=0or 1.

unif01_Gen * ucarry_CreateRanlux (unsigned int L, long s);

Implements the specific modified SWB generator proposed by Liischer [102]. This is an adapted
version of the FORTRAN implementation of James [55]. The parameter L is the luxury level
and s is the initial state. Restriction: 24 < L. The precision of this generator is only 24 bits.
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#ifdef USE_LONGLONG

unif01_Gen * ucarry_CreateMWC (unsigned int r, unsigned long c,
unsigned int w, unsigned long A[],

unsigned long S[1);

#endif

Implements the multiply-with-carry (MWC) generator, defined by [15]:

Ty = (@1xp—1+ -+ ap&p_r + cp—1) mod 2%; (2.7)
cn = (a1Tp—1+ -+ arTp_yp + cp_1) div 2%, (2.8)
Uy = xn/2%.

The array A[O..(r-1)] must contain the coefficients aq,...,a,, the array S[0..(r-1)] gives
the initial values (zg,...,z_,41), and c gives the value of ¢y. This implementation uses 64-bit
integers and therefore works only on platforms where these are available. Restrictions: w < 32,
a; < 2%, x; < 2% and ¢+ (2¥ — 1)(|a1| + - -+ + |a,]) < 204

unif01_Gen * ucarry_CreateMWCFloat (unsigned int r, unsigned long c,
unsigned int w, unsigned long A[],

unsigned long S[])

Same as ucarry_CreateMWC, but uses a floating-point implementation (in double). Restrictions:
w< 32, a; <2 x; < 2% and ¢+ (2° — D(|ar| + - - + |ar|) < min{253, 232+w},

unifO1_Gen * ucarry_CreateMWCfixCouture (unsigned int c,

unsigned int S[]);

Implements the following specific MWC, suggested by Couture and L’Ecuyer [15]:

Ty =

Cnh =

Up =

(14xy_s + 187y_7 + 144256 + 14992, _5 + 20832,,_4
+ 527325, _3 + 105502, _2 + 455392, 1 + ¢p—1) mod 20,

(1428 + - - - + 455392, 1 + ¢pq) div 20,

T2on Ton+1
532 216 -

The initial state is in S[0..7], and c is the initial carry. The lowest 16 bits and the highest 16
bits of each u,, come from two successive numbers x;.

unif01_Gen * ucarry_CreateSWC (unsigned int r, unsigned int h,
unsigned int c, unsigned int w,
unsigned int A[], unsigned int S[1);

Implements the shift-with-carry (SWC) generator designed by R. Couture, based on the recur-

rence

Tn = (G1Tp_1® - B apTp—p ® cp—1) mod 2% (2.10)
en = (MTp1® - D arTp_p B cp_q) div 2¥ (2.11)
U, = /2%, (2.12)
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The vector (xy,...,Tn—ri1,¢n) is the state of the generator. The array A[0..h-1] contains
the polynomials ai,...,a,. Each even element stands for a polynomial number and the next
element stands for the corresponding nonzero coefficient number of that polynomial. The vector
S[0..r-1] gives the initial values of (zo,...,x_,41) and c is the initial carry. Restrictions: 0 < r
and w < 32.

unifO01_Gen * ucarry_CreateMWC1616 (unsigned int a, unsigned int b,
unsigned int x, unsigned int y);

Implements the combined generator of two 16-bit multiply-with-carry generators [106]

Tn (axp—1 + carx,_1) mod 216, (2.13)
carx, = (axp_1+ carx,_i) div 216, (2.14)
Yn = (byn_1+ cary, ;) mod 2'¢ (2.15)
cary, = (by,_1+ cary, ;) div 26 (2.16)

The rightmost 16 bits of the two above product make the new x (or y) and the leftmost 16 bits
the new carry carx (or cary). The function returns (z,, < 16) + (y, & Oxftff); the output is a
32-bit integer, x, making up its leftmost 16 bits and y,, its rightmost 16 bits.

Clean-up functions

These functions should be called to clean up generator objects of this module when they
are no longer in use

void ucarry_DeleteAWC (unifOl1_Gen *gen);

void ucarry_DeleteSWB (unifOl1_Gen *gen);

void ucarry_DeleteRanlux (unifO1_Gen *gen);

void ucarry_DeleteMWC (unifO1_Gen *gen?;

void ucarry_DeleteMWCFloat (unifO1_Gen *gen);
void ucarry_DeleteMWCfixCouture (unifOl1_Gen *gen);
void ucarry_DeleteSWC (unifO1_Gen *gen);

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.

void ucarry_DeleteGen (unifOl1_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have a specific
Delete function.
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utaus

Implements simple and combined Tausworthe generators using the definitions, the ini-
tialization methods and the algorithms given in [75, 77]. The current implementation is
restricted to components whose characteristic polynomial is a trinomial. That is, for a sim-
ple generator and for each component of a combined generator, the basic recurrence has the
form

Ty = Tpey D Tpek = Tn_ftqg D Tk, (2.17)

with characteristic polynomial p(z) = 2P + 27+ 1, where ¢ = k — r, each x,, is 0 or 1, and &
means exclusive-or (i.e., addition modulo 2). The output at step n is

U = > Tnapj2” (2.18)
j=1

with w = 32. To obtain w < 32, it suffices to truncate the output. The parameters must
satisfy the following conditions: 0 < 2¢ < k < 32 (except in the case of the LongTaus
generator for which k can take values as high as 64) and 0 < s < r. In the functions defined
below, the k most significant bits of the variable Y contain the initial values xg, ...,z
(this is the seed). They must not be all zero.

#include <testu01/gdef.h>
#include <testu0l/unif01.h>

unifO01_Gen * utaus_CreateTaus (unsigned int k, unsigned int q,
unsigned int s, unsigned int Y);

Implements a simple Tausworthe generator as described above. Restrictions: 0 < 2¢g < k < 32
and 0 <s<k-—gq.

unifO1_Gen * utaus_CreateTausJ (unsigned int k, unsigned int q,
unsigned int s, unsigned int j,
unsigned int Y);

Implements a Tausworthe generator as in utaus_CreateTaus, except that it produces a j-

decimated sequence. That is, at each call, it skips j — 1 values in the sequence defined by
(2.17-2.18) and outputs the next one. The same restrictions as in utaus_CreateTaus apply.

#ifdef USE_LONGLONG
unifO01_Gen * utaus_CreatelLongTaus (unsigned int k, unsigned int q,
unsigned int s, ulonglong Y1);

Similar to utaus_CreateTaus but uses 64 bits integers for the state of the generator. However,
it returns only the 32 most significant bits of each generated number, after having shifted them
32 bits to the right. Restrictions: £ <64, 0<2¢<kand 0<s<k—q.
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#endif

unifO1_Gen * utaus_CreateCombTaus2 (
unsigned int k1, unsigned int k2, unsigned int ql, unsigned int g2,
unsigned int s1, unsigned int s2, unsigned int Y1, unsigned int Y2);

Combines two Tausworthe generators defined as in utaus_CreateTaus. The combination is via
a bitwise exclusive-or, as in [77, 157, 159]. The same restrictions as in utaus_CreateTaus apply
to each of the two components. Also assumes that ky > ko.

unifO1_Gen * utaus_CreateCombTaus3 (

unsigned int k1, unsigned int k2, unsigned int k3,
unsigned int ql, unsigned int g2, unsigned int g3,
unsigned int sl, unsigned int s2, unsigned int s3,
unsigned int Y1, unsigned int Y2, unsigned int Y3);

Similar to utaus_CreateCombTaus2, except that three Tausworthe generators are combined
instead of two. Assumes that k1 > ko > k3.

unifO1_Gen * utaus_CreateCombTaus3T (

unsigned int k1, unsigned int k2, unsigned int k3,
unsigned int ql, unsigned int g2, unsigned int g3,
unsigned int sl1, unsigned int s2, unsigned int s3,
unsigned int Y1, unsigned int Y2, unsigned int Y3);

Similar to utaus_CreateCombTaus3, except that the generator has “triple” precision. Three
successive output values u; of the combined Tausworthe generator are used to build each output
value U; (uniform on [0, 1)) of this generator, as follows:

o ) U3i+1 U342
Ui = (Ug, + 7 + W) mod 1.

Clean-up functions

void utaus_DeleteGen (unifO1_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.

Related generators

For specific Tausworthe generators, see also
e utezu_CreateTezLec9l

e utezu_CreateTez95
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ulec_Createlfsr88
ulec_Createlfsr88T
ulec_Createlfsr113

ulec_Createlfsr258
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ugfsr

This module implements generalized feedback shift register (GFSR) generators, twisted
GFSR (TGFSR) generators, and tempered TGFSR generators (TTGFSR).

The following table points to some specific generators based on trinomials, taken from

the literature.

Table 2.2: Some specific GFSRs and TGFSRs

k r l Type Reference
607 273 23 GFSR [163, 125]
521 32 31 GFSR [145]

521 32 31 GFSR [45]
250 103 32 GFSR [62]

25 7 32 TGFSR T800 [125]
25 14 32 TTGFSR TT400 [125]

13 11 31 TTGFSR TT403 [125]

25 17 31 TTGFSR TT775 [125]
25 7 32 TTGFSR TT800 [125]
624 397 32 TTGFSR MT19937 [126]

#include <testul0l/unif01.h>

GFSR generators

unif01_Gen * ugfsr_CreateGFSR3 (unsigned int k, unsigned int r,
unsigned int 1, unsigned long S[]);

Implements a generator GFSR based on the recurrence

T = Ti—r D Ti_g

(2.19)

where each x; is a 32-bit vector, & stands for bitwise addition modulo 2, and r < k. The
output at step 4 is u; = &;/2!, where &; is the integer formed by the first  bits of x;. The array
S[0..(k-1)] contains the k initial bit vectors xg,...,zr_1. Proper initialization techniques for
this generator are discussed, e.g., in [44] and [158]. Restrictions: 0 < r < k and [ < 32.

unif01_Gen * ugfsr_CreateToot73 (unsigned long S[]);

Implements the Tausworthe generator of parameters (k,r,s,l) = (607,273,512, 23) proposed in
[163], under the form of a GFSR. The generator is initialized as in [163] from the “arbitrary”
bits given in S[0..k-1]. This generator is the same as G607 in [125].
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unifO1_Gen * ugfsr_CreateKirk81 (long s);

Implements the GFSR generator proposed by Kirkpatrick and Stoll [62], with their initialization
procedure. The parameters are (k,r,1) = (250,103, 32) and s is the seed.

unifO1_Gen * ugfsr_CreateRipley90 (long s);
Implements the GFSR generator given in the appendix of Ripley [145]. It is a GFSR with
parameters (k,r,[) = (521,32,31). The state of this GFSR is initialized as in [145] from a

MLCG of modulus m = 23! — 1 and multiplier a = 16807, whose initial state is s. The returned
value is y; /(231 — 1).

unif01_Gen * ugfsr_CreateFushimi (int k, int r, int s);

Implements a GFSR generator with [ = 31, with the initialization procedure proposed by
Fushimi [45], using s as a seed to construct the initial state.

unif01_Gen * ugfsr_CreateFushimi90 (int s);

Implements a specific GFSR generator proposed by Fushimi [45], with parameters (k,r,1) =
(1563,1467,31) and using s as a seed to construct the initial state.

unif01_Gen * ugfsr_CreateGFSR5 (unsigned int k, unsigned int ri,
unsigned int r2, unsigned int r3,
unsigned int 1, unsigned long S[]);
Implements a GFSR generator whose characteristic polynomial is a pentanomial, i.e., based on
the recurrence
Ti = Ti—rg D Ti—ry O Tir) O Tik

where the z;’s are vectors of 32 bits whose first [ bits are used to create the output, as described
in ugfsr_CreateGFSR3. The array S[0..(k-1)] contains the k initial bit vectors xg,...,Tp_1.
Restrictions: 1 <1 <32and 0 <r3 <re <nr <k.

unif01_Gen * ugfsr_CreateZiff98 (unsigned long S[]);

Implements a specific pentanomial-based GFSR generator proposed by Ziff [178], with parame-
ters (k,r1,72,73,1) = (9689, 6988, 1586, 471, 32). The array S[0..9688] must contain the initial
state.

Twisted GFSR generators

unif01_Gen * ugfsr_CreateTGFSR (unsigned int k, unsigned int r,
unsigned int 1, unsigned long Av,
unsigned long S[1);

Implements the original form of TGFSR generator proposed by Matsumoto and Kurita [124].
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It is based on the recurrence
x; =z D (2 A), (2.20)

where k,r, [ and the x;’s are as in (2.19), and A is a binary matrix of dimension [ x [ whose
first superdiagonal has all its elements equal to 1, the last row is the vector Av, and all other
elements are 0. The output at step i is u; = #;/2', where Z; is the integer formed by the first I
bits of ;. Matsumoto and Kurita [125] later reported deficiencies of this generator. The array
S[0..(k-1)] contains the k initial bit vectors xg,...,xr_1. Remark: the notation

Titk = Ti—p D T4,

where 7' = k — r, is used in [125]. In other words, their r correspond to our k — r.

unif01_Gen * ugfsr_CreateT800 (unsigned long S[]);

Implements the TGFSR generator T800 proposed by Matsumoto and Kurita [125], whose pa-
rameters are (k,r,l) = (25,18,32) and Av = 0x8EBD028. The array S[0..(k-1)] contains the
k initial bit vectors xg,...,Tp_1.

unif01_Gen * ugfsr_CreateTGFSR2 (unsigned int k, unsigned int r,
unsigned int 1, unsigned int s,

unsigned int t, unsigned long Av,

unsigned long Bv, unsigned long Cv,

unsigned long S[]);

Implements the generator TGFSR-II proposed by Matsumoto and Kurita [125], based on the
same recurrence as their original TGFSR, but where a tempering is added to improve the
statistical quality of the output. It is defined by

T, = Ti—p D (JIZ'_TA), (2.21)
yi = ;9 ((z; < s) & b), (2.22)
zi = i@ (g <t) &), (2.23)

where < s means a left shift by s bits, & means the bitwise-and operation, and the bit vectors b
and c are given by Bv and Cv. The output wu; is constructed as described in ugfsr_CreateTGFSR,
but using z; instead of x;. The array S[0..(k-1)] contains the k initial bit vectors zg, ..., Tr_1.

unif01_Gen * ugfsr_CreateTT400 (unsigned long S[]);

Implements the generator TT400 proposed by Matsumoto and Kurita [125], whose parameters
are (k,k —r,l) = (25,11,16), s = 2, t = 7, Av = 0xA875 , Bv = 0x6A68, Cv = 0x7500. The
array S[0. . (k-1)] contains the k initial bit vectors g, ..., 2;_1. The returned value is z; /(26 —

1).

unif01_Gen * ugfsr_CreateTT403 (unsigned long S[]);

Implements the generator TT403 proposed by Matsumoto and Kurita [125], whose parame-
ters are (k,k —r 1) = (13,2,31), s = 8, t = 14, Av = 0x6B5ECCF6, Bv = 0x102D1200, Cv
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= 0x66E50000. The array S[0..(k-1)] contains the k initial bit vectors zg,...,zx_1. The
returned value is z; /(23" — 1).

unif01_Gen * ugfsr_CreateTT775 (unsigned long S[]1);

Implements the generator TT775 proposed by Matsumoto and Kurita [125], whose parame-
ters are (k,k —r ) = (25,8,31), s = 6, t = 14, Av = 0x6C6CB38C, Bv = 0x1ABD5900, Cv
= 0x776A0000. The array S[0..(k-1)] contains the k initial bit vectors zg,...,zx_1. The
returned value is z; /(23" — 1).

unif01_Gen * ugfsr_CreateTT800 (unsigned long S[1);
Implements the generator TT800 proposed by Matsumoto and Kurita [125], whose param-
eters are (k,r,l) = (25,18,32), s = 7, t = 15, Av = 0x8EBFD028, Bv = 0x2B5B2500, Cv =
0xDB8D0000. The array S[0..24] contains the k initial bit vectors xg,...,x;_1. The returned
value is z;/232.

unif01_Gen * ugfsr_CreateTT800M94 (unsigned long S[]);

The original implementation of TT800 provided by Matsumoto and Kurita [125], in 1994. The
array S[0..24] contains the k initial bit vectors zo, ..., zj_1. The returned value is z; /(232 —1).

unif01_Gen * ugfsr_CreateTT800M96 (unsigned long S[]);

A second implementation of TT800, provided by Matsumoto and Kurita in 1996. The array
S[0..24] contains the k initial bit vectors zg,...,7;_1. The returned value is z; /(232 — 1).

unif01_Gen * ugfsr_CreateMT19937_98 (unsigned long seed);

The original implementation of the Mersenne twister generator of Matsumoto and Nishimura
[126]. Tts period length is 219937 — 1. The returned value is z; /(232 —1). This is the 1998 version.

unif01_Gen * ugfsr_CreateMT19937_02 (unsigned long seed,
unsigned long Key[], int len);

The 2002 version of the Mersenne twister generator of Matsumoto and Nishimura [126], which
has a better initialization procedure than the original 1998 version. If 1en < 0 or Key = NULL,
then seed is used to initialize the state vector. If len > 0, the array Key of length len is used

instead. If 1len is smaller than 624, then each array of 32-bit integers gives distinct initial state
vectors. This is useful if one wants a larger seed space than a single 32-bit word.

Clean-up functions

void ugfsr_DeleteGFSR5 (unifO1_Gen * gen);
Frees the dynamic memory allocated by ugfsr_CreateGFSR5.
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void ugfsr_DeleteGen (unifO1_Gen *gen) ;

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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uinv

This module implements different types of inversive generators.

#include <testu01l/unif01.h>

unif01_Gen * uinv_CreateInvImpl (long m, long al, long a2, long z0);

Implements a nonlinear inversive generator as defined in [28] and [73, p.93], with

Zn =

(a1 + as - z;_ll) modm if z,_1 #0
aq if Zn—1 — 0

Up = zp/m.

The generator computes 27;11 via the modified Euclid algorithm (see [64] p. 325). If m is prime
and if p(x) = 22 — a12 — ap is a primitive polynomial modulo m, then the generator has maximal
period m. Restrictions: 0 < zg <m, 0 < a; < m and 0 < ag < m. Furthermore, m must be a
prime number, preferably large.

unifO1_Gen * uinv_CreateInvImpl2a (int e, unsigned long al,
unsigned long a2, unsigned long z0);

Implements a nonlinear inversive generator similar to uinv_CreateInvImpl, but with m = 2°¢
(see [28] p. 172). The domain is limited to odd positive integers since the inverse modulo 2¢
of a given x exists only if x is odd. For e = 31 or 32, the generator computes the inverse
by exponentiation according to the formula: z=! = zm~1 = z(m dv9H=1  For ¢ < 30, the
inverse is computed via the modified Euclid algorithm (faster than exponentiation, but our
implementation of it is only valid in the domain of long, i.e. if m < 23! —1). If e > 3 and if
az — 1 and a; — 2 are multiples of 4, then the period is maximal and equal to m/2. Restrictions:

3 < e <32; 29, a1 and ao less than m; zg and as must be odd and a1 must be even.

unifO1_Gen * uinv_CreateInvImpl2b (int e, unsigned long al,
unsigned long a2, unsigned long z0);

Implements a nonlinear inversive generator with m = 2¢ as described in [31]. The recurrence is:
Zn = T(anl)

where
T(2°2) = (a1 + 2%apz~1) mod 2°

whenever z is odd. For e = 31 or 32, the inverse is computed by exponentiation according to
the formula: x~1 = g1 = g(m dv H)=1 For ¢ > 3 if a9 — 1 is a multiple of 4 and if a; is odd,
then the period is maximal and equal to m. Restrictions: 3 < e < 32; 29, a1 and as less than

m and odd.
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unifO1_Gen * uinv_CreateInvExpl (long m, long a, long c);

Implements an ezplicit nonlinear inversive generator, as described in [29] and [75] (Section 10.2),

with
;b six, #£0
Zn =
0 sixz, =0
where x, = (an + ¢) mod m for n > 0. The generator computes z,! by the modified Euclid

algorithm (see [64] p. 325). The initial state of the generator, xg, is given by c. Restrictions:
0<a<m,0<c<mand m must be a prime number. In this case, the period has length m.

unif01_Gen * uinv_CreatelInvExpl2a (int e, long a, long c);

Implements an ezplicit nonlinear inversive generator, similar to uinv_CreateInvExpl, but with
m = 2¢ as described in [34]. Restrictions: 3 < e < 32; a and c less than m, a — 2 multiple of 4
and ¢ odd.

unif01_Gen * uinv_CreatelInvExpl2b (int e, long a, long c);
Implements an ezplicit modified nonlinear inversive generator, with m = 2¢, as proposed in [30].
The recurrence has the form

xn = nlan + c)fl mod 2°; Uy = T2 6.

Restrictions: 3 < e <32, a <m, c<m, a—2 multiple of 4, and ¢ odd. With these restrictions,
the period is equal to m.

unifO01_Gen * uinv_CreateInvMRG (long m, int k, long A[], long S[1);

Implements an inversive multiple recursive generator (MRG), based on the recurrence
LTp = (all‘nfl +- akl‘n—k) mod m

as in umrg_CreateMRG, except that the output u, is constructed using x,! mod m instead of
Zn. Restrictions: The same restrictions as for umrg_CreateMRG apply here and m must be a
prime number.

unifO01_Gen * uinv_CreateInvMRGFloat (long m, int k, long A[], long S[1);

Provides a floating-point implementation of the same generator as in uinv_CreateInvMRG. The
implementation is similar to that in umrg_CreateMRGFloat. Restrictions: The same restrictions
apply here as for umrg_CreateMRGFloat and m must be a prime number.

Clean-up functions

void uinv_DeleteInvMRG (unifOl_Gen * gen);

Frees the dynamic memory allocated by uinv_CreateInvMRG.
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void uinv_DeleteInvMRGFloat (unifO1_Gen * gen);

Frees the dynamic memory allocated by uinv_CreateInvMRGFloat.

void uinv_DeleteGen (unifOl1_Gen * gen);

Frees the dynamic memory allocated by the other Create functions of this module.
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uquad

This module implements generators based on quadratic recurrences modulo m, of the
form
Tpi1 = (az? + bx, + c) mod m, (2.24)

with output w, = x,,/m at step n. See, e.g., [27, 33, 35, 66] for analyses of such generators.

#include <testul0l/unif01.h>

unifO1_Gen * uquad_CreateQuadratic (long m, long a, long b, long c, long s);

Initializes a generator based on recurrence (2.24), with initial state 9 = s. Depending on the
values of the parameters, various implementations of different speeds are used. In general, this
generator is slow. Restrictions: a, b, ¢ and s non negative and less than m.

unifO1_Gen * uquad_CreateQuadratic2 (int e, unsigned long a,
unsigned long b, unsigned long c, unsigned long s);

Similar to uquad_CreateQuadratic, but with m = 2°. Restrictions: a, b, ¢ and s non negative
and less than 2¢; e < 32 for 32-bit machines, and e < 64 for 64-bit machines.

Clean-up functions

void uquad_DeleteGen (unifO1_Gen *gen) ;

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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ucubic

This module implements simple and combined cubic congruential generators, based on
recurrences of the form

Tpy1 = (azd + b2 + cx, + d) mod m, (2.25)

with output w, = x,/m at step n. See, e.g., [32, 90].

Generators based on a linear congruential recurrence, but with a cubic output transfor-
mation, are also available (see ucubic_CreateCubicQut).

#include <testuO1/unifO1.h>

unifO1_Gen * ucubic_CreateCubic (long m, long a, long b, long c, long d,
long s);
Initializes a generator of the form (2.25), with initial state zp = s. Depending on the values of
the parameters, various implementations of different speed are used. In general, this generator
is rather slow. Restrictions: a, b, ¢, d, and s non negative and less than m.

unif01_Gen * ucubic_CreateCubicFloat (long m, long a, long b, long c,

long d, long s);
A floating-point implementation of the same generator as in ucubic_CreateCubic. The imple-
mentation depends on the parameter values and is slower when m(m — 1) > 2%. The same
restrictions as for ucubic_CreateCubic apply. Also assumes that a double has at least 53 bits
of precision.

unifO1_Gen * ucubic_CreateCubicl (long m, long a, long s);

Implements a cubic generator which is a special case of (2.25), with recurrence x,41 = (az} +
1) mod m. The initial state is g = s and the n-th generated value is u,, = x,,/m. Restrictions:
a and s non negative and less than m.

unifO1_Gen * ucubic_CreateCubiclFloat (long m, long a, long s);

Floating-point implementation of the same generator as in ucubic_CreateCubicl. The imple-
mentation and restrictions are similar to those in ucubic_CreateCubicFloat.

unifO1_Gen * ucubic_CreateCombCubic2 (long ml, long m2, long al, long a2,
long s1, long s2);

Implements a generator that combines two cubic components of the same type as in the proce-
dure ucubic_CreateCubicl. The output is u, = (mlyn/ml + x2,m/m2) mod 1, where z1,, and
T2, are the states of the two components at step n.
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unifO1_Gen * ucubic_CreateCubicOut (long m, long a, long c, long s);

Initializes a generator defined by the linear recurrence z,41 = (ax, + ¢) mod m, with initial
state zg = s, and with output u, = (3 mod m)/m. Restrictions: a, ¢ and s non negative and
less than m.

unif01_Gen * ucubic_CreateCubicOutFloat (long m, long a, long c, long s);

A floating-point implementation of ucubic_CreateCubicOut. The implementation and restric-
tions are similar to those in ucubic_CreateCubicFloat.

Clean-up functions

void ucubic_DeleteGen (unifO1_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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uxorshift

This module implements zorshift generators, a class of very fast generators proposed by
Marsaglia in [111], and studied in depth by Panneton and L'Ecuyer in [132]. The state of a
xorshift generator is a vector of bits. At each step, the next state is obtained by applying a
given number of xorshift operations to w-bit blocks in the current state, where w = 32 or 64.
A zorshift operation is defined as follows: replace the w-bit block by a bitwise zor (exclusive
or) of the original block with a shifted copy of itself by a positions either to the right or to
the left, where 0 < a < w.

Xorshifts are linear operations. The left shift of a w-bit vector x by one bit, x < 1, can
also be written as Lx where L is the w X w matrix with 1’s on its main subdiagonal and
0’s elsewhere. Similarly, the right shift x > 1 can be written as Rx where R has 1’s on its
main superdiagonal and 0’s elsewhere. Matrices of the forms (I + L%) and (I + R?*), where
a € {l,...,w— 1}, are called left and right zorshift matrices, respectively. They represent
left and right a-bit xorshift operations.

A zorshift generator is defined by a recurrence of the form

P
v, = Z Ajvi_mj mod 2 (2.26)

j=1

where p is a positive integer, the v;’s are w-bit vectors, the m;’s are integers, and Aj is either
the identity or the product of v; xorshift matrices for some v; > 0, for each j (A; is the zero
matrix if v; = 0). The generator’s state at step i is x; = (v/,..., v}, ;)T and the output is

_ W —t _ T
Wi =Y g Vie—12" " where v; = (vig, ..., Viw_1) .

#include <testuO1/gdef.h>
#include <testu01/unif01.h>

unif01_Gen* uxorshift_CreateXorshift32 (int a, int b, int c, unsigned int x);

Implements the 32-bit Xorshift generators proposed by Marsaglia in [111, page 3]:

y = yn—l@(yn—lﬂla)7
y = yo(yHa2b),
Yo = y& (yHsc)mod 2%

where the operators Hi, Hs and H3 may be either the left bit-shift operator < or the right
bit-shift operator >, depending on whether the corresponding parameter (a, b or ¢) is positive
(left shift) or negative (right shift). The initial seed is x and the generator returns ,/232.
Restrictions: —32 < a,b,c < 32.
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#ifdef USE_LONGLONG
unif01_Gen* uxorshift_CreateXorshift64 (int a, int b, int c, ulonglong x);
#endif

Similar to uxorshift_CreateXorshift32 but using 64-bit integers (see [111, page 3]). Only
the 32 most significant bits of each generated number are returned, though the generator does
all its calculations with 64 bits. Restrictions: —64 < a,b, c < 64.

unif01_Gen * uxorshift_CreateXorshiftC (int a, int b, int c, int r,
unsigned int X[1);

Generalizes the Xorshift generators proposed by Marsaglia in [111, page 4] to generators with
maximal period 232" —1. Given integers x;,7 = 1,2, ...,7, representing the state of the generator,
the next state is obtained through:

t = z1®(x1Hia)
Ty = Ti+l, i:1,2,...,T—1
Ty = XD (x, H3¢) Dt (t Ha b)
where the operators Hi, Hy and H3 may be either the left bit-shift operator < or the right
bit-shift operator >, depending on whether the corresponding parameter (a, b or ¢) is positive

(left shift) or negative (right shift). The initial state z; is obtained from the seed X as x; =
X[i — 1], =1,2,...,r and the generator returns z,./232. Restrictions: —32 < a,b,c < 32.

unifO1_Gen * uxorshift_CreateXorshiftD (int r, int al], unsigned int X[]);

Generalizes the Xorshift generators proposed by Marsaglia in [111, page 5] to generators with
maximal period 232" —1. Given integers x;,7 = 1,2, ...,r, representing the state of the generator,
and shift parameters a;, 1 = 1,2,...,r, the next state is obtained through:

t = 11 ®(r1Hia1) ®re® (v2 Hyaz) ® -+ B xp O (2, Hray)
Ty = Ti+1, i=1,2,...,T—1
Tz, = t
where the operators H; may be either the left bit-shift operator < or the right bit-shift operator
>, depending on whether the corresponding parameter a; is positive (left shift) or negative
(right shift). The initial state z; is obtained from the seed X as z; = X[i — 1],4 =1,2,...,r and

the shift parameters are given by a; = afi — 1],i = 1,2,...,r. The generator returns x,/232.
Restrictions: —32 < afi] <32, i=0,1,2,...,r —1.

unifO01_Gen* uxorshift_CreateXorshift7 (unsigned int S[8]);

Creates a full-period Xorshift generator of order 8 with 7 xorshifts, proposed in [132]. It has
a period length of 22°6 — 1, its state v is made up of eight 32-bit integers, and it satisfies the
recurrence

v, = I+L)I+L%)v, 1+ T+L)vs+ T +R*)v, 5+

I+ R)v, 7+ T+ LHI+R)v, s
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where L’ stands for a j-bits left shift, R/ stands for a j-bits right shift, and I is the identity
operator. All additions are done modulo 2. The S are the 8 seeds.

unif01_Gen* uxorshift_CreateXorshift13 (unsigned int S[8]);

Similar to the uxorshift_CreateXorshift7 generator [132] but with 13 xorshifts and satisfying
the recurrence

vip = I4+L)v, 1+ T+LOv, o4+ T+RA+L)v, 4+ T+ R¥v, 4+
(I+R®)v 5+ T+ R?)vy 5+ T+ R)I+R*)vy 6+ T+ R?)v, 7+

(T4 L*HYI+R3)v, _s.

Clean-up functions

void uxorshift_DeleteXorshiftC (unifO1_Gen * gen);

Frees the dynamic memory allocated by uxorshift_CreateXorshiftC.

void uxorshift_DeleteXorshiftD (unifO1_Gen * gen);

Frees the dynamic memory allocated by uxorshift_CreateXorshiftD.

void uxorshift_DeleteGen (unifOl_Gen * gen);

Frees the dynamic memory used by any generator of this module. This function should be called
when a generator is no longer in use.
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ubrent

This module implements some random number generators proposed by Richard P. Brent
(Web pages at http://maths-people.anu.edu.au/~brent/ and http://maths-people.
anu.edu.au/~brent/random.html).

#include <testuO1/gdef.h>
#include <testu0l/unif01.h>

The xorgens generators, version 2004

unif01_Gen* ubrent_CreateXorgen32 (int r, int s, int a, int b, int c, int d,
lebool hasWeyl, unsigned int seed);

Some fast long-period random number generators [8] generalizing Marsaglia’s Xorshift RNGs
[111] (see page 48 of this guide). The output may be combined with a Weyl generator. The
parameters 1, s,a, b, c,d are chosen such that the n x n matrix T defining the recurrence has
a minimal polynomial which is of degree n and primitive over Fo. The state of the generator
is made up of n = 32r bits. The primary recurrence is x; = rp_,.A + xp_sB, where matrices
A and B implement a combination of left and right shifts; in the notation of Marsaglia, A =
(I + LY(I + RY) and B = (I + L°)(I + R%) with I the identity matrix, L® a left shift by
a bits, and RY a right shift by b bits. If hasWeyl is TRUE, then the Weyl combination is
added to the output as in Brent original code. If it is FALSE, then no Weyl combination is
added; this is useful for testing these zorgens by themselves. Restrictions: r > 1, 0 < s < r
and 0 < a,b,c,d < 32, and r must be a power of 2. The following table gives parameters
recommended by Brent for the best 32-bit generators of this kind according to the criteria given
in http://maths-people.anu.edu.au/~brent/ftp/random/xortable. txt.

Table 2.3: Good parameters for Brent’s xorgens generators

n r S a b c d Weight delta
64 2 1 17 14 12 19 31 12
128 4 3 15 14 12 17 55 12
256 8 3 18 13 14 15 109 13
512 16 1 17 15 13 14 185 13
1024 32 15 19 11 13 16 225 11
2048 64 59 19 12 14 15 213 12
4096 128 95 17 12 13 15 251 12

unif01_Gen* ubrent_CreateXor4096s (unsigned int seed);

This is the 32-bit generator zor{096s with period 232(24%% — 1) proposed by Brent [8]. It
is a generalization of Marsaglia’s Xorshift generators [111] (see page 48 of this guide). The
initial seed is seed. This generator corresponds to the more general case above with parameters
n = 4096, r = 128, s = 95, a = 17, b= 12, ¢ = 13, d = 15, Weight = 251, delta = 12.
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#ifdef USE_LONGLONG

unif01_Gen* ubrent_CreateXorgen64 (int r, int s, int a, int b, int c, int d,

lebool hasWeyl, ulonglong seed);

Similar to ubrent_CreateXorgen32 above but with 64-bit generators. The state of the generator
is made up of n = 64r bits, but only the 32 most significant bits of each generated number are
used here. Restrictions: r > 1, 0 < s < r and 0 < a,b,c,d < 64, and r must be a power
of 2. The following table gives parameters recommended by Brent for the best generators of
their kind according to the criteria given in http://maths-people.anu.edu.au/~brent/ftp/

random/xortable.txt.

Table 2.4: Good parameters for Brent’s xorgens generators

n r S a b c d Weight delta
128 2 1 33 31 28 29 65 28
256 4 3 37 27 29 33 127 27
512 8 1 37 26 29 34 231 26

1024 16 7 34 29 25 31 439 25
2048 32 1 35 27 26 37 745 26
4096 64 53 33 26 27 29 961 26

unif01_Gen* ubrent_CreateXor40961 (ulonglong seed);

This is the 64-bit generator zor40961 with period at least (2096 — 1) proposed by Brent [8]. It is
a generalization of Marsaglia’s Xorshift generators [111] (see page 48 of this guide). The initial
seed is seed. While Brent’s original code returns 64-bit numbers, only the 32 most significant
bits of each generated number are used here.

unif01_Gen* ubrent_CreateXor4096d (ulonglong seed);

This is the 53-bit floating-point generator zor4096d with period at least (2409 — 1) proposed by
Brent [8]. It is based on zor40961 (implemented in ubrent_CreateXor40961 above) and uses
its 53 most significant bits. The initial seed is seed.

#tendif

The xorgens generators, version 2006

unifO01_Gen* ubrent_CreateXor4096i (unsigned long seed);

This is the integer random number generator zor4096i with period at least (24?6 —1) proposed

by Brent (see http://maths-people.anu.edu.au/~brent/random.html).

This is the 2006

version of the generators xor4096s and zor4096l. It has a different initialization and a slightly

different algorithm from the 2004 version.
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unifO01_Gen* ubrent_CreateXor4096r (unsigned long seed);

This is the floating-point generator zor4096r proposed by Brent (see http://maths-people.
anu.edu.au/~brent/random.html). This is the 2006 version of the generators zor4096f and
xor4096d. 1t is based on zor4096¢ implemented in ubrent_CreateXor4096i above. The initial

seed is seed.

void ubrent_DeleteXorgen32
void ubrent_DeleteXor4096s
void ubrent_DeleteXor4096i
void ubrent_DeleteXor4096r

#ifdef USE_LONGLONG

void ubrent_DeleteXorgen64
void ubrent_DeleteXor40961
void ubrent_DeleteXor4096d
#tendif

(unif01_Gen
(unif01_Gen
(unif01_Gen
(unif01_Gen

(unif01_Gen
(unif01_Gen
(unif01_Gen

Clean-up functions

x);
x);
x);
x);

x);
x);
x);

Frees the dynamic memory allocated by the corresponding Create functions of this module.
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ulec

This module collects several generators from the papers of L’Ecuyer and his co-authors.

#include <testuO1l/gdef.h>
#include <testu01/unif0O1.h>

unif01_Gen * ulec_CreateCombLec88 (long S1, long S2);

Combined generator for 32-bit machines proposed by L'Ecuyer [72], in its original version. The
integers S7 and Sy are the seed. They must satisfy: 0 < 57 < 2147483563 and 0 < Sy <
2147483399.

unif01_Gen * ulec_CreateCombLec88Float (long S1, long S2);

Same generator as ulec_CreateCombLec88, but implemented using floating-point arithmetic,
as in ulcg_CreateLCGFloat.

unif01_Gen * ulec_CreateCLCG4 (long S1, long S2, long S3, long S4);

2121

This generator is a combined LCG with four components, with period length near , proposed

by L’Ecuyer and Andres [84].

unif01_Gen * ulec_CreateCLCG4Float (long S1, long S2, long S3, long S4);

Same generator as ulec_CreateCLCG4, but implemented using floating-point arithmetic.

unif01_Gen * ulec_CreateMRG93 (long S1, long S2, long S3, long S4, long S5);

MRG of order 5, with modulus m = 23! — 1, multipliers a; = 107374182, as = a3 = a4 = 0,
a5 = 104480, and period length m® — 1, proposed by L’Ecuyer, Blouin, and Couture [85], page
97. The integers S1 to S5 are the seed. They must be non-negative and not all zero.

unifO1_Gen * ulec_CreateCombMRG96 (long S11, long S12, long S13,
long S21, long S22, long S23);

Combined MRG proposed by L’Ecuyer [76], implemented in integer arithmetic using the long
type. This generator combines two MRGs of order 3 with distinct prime moduli less than 23!.
The six parameters of the function make the seed. They must all be non-negative, the first
three not all zero, and the last three not all zero.

unif01_Gen * ulec_CreateCombMRG96Float (long S11, long S12, long S13,
long S21, long S22, long S23);

Same as ulec_CreateCombMRGI6, except that the implementation is in floating-point arithmetic.
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unif01_Gen * ulec_CreateCombMRG96D (long S11, long S12, long S13,

long S21, long S22, long S23);
Similar to ulec_CreateCombMRG96, except that the generator has “double” precision. Two
successive output values wu; of the ulec_CreateCombMRG96 generator are used to build each
output value U; (uniform on [0, 1)) of this generator, as follows:

U2i+1
U, = (UQi + ﬁ) mod 1.

unif01_Gen * ulec_CreateCombMRG96FloatD (long S11, long S12, long S13,
long S21, long S22, long S23);

Similar to ulec_CreateCombMRG96Float, except that the generator has “double” precision.
Two successive output values u; of the ulec_CreateCombMRG96Float generator are used to
build each output value U; (uniform on [0, 1)) of this generator, as follows:

U241
U, = (u% + #Q_Z) mod 1.

unif01_Gen * ulec_CreateMRG32k3a (double x10, double x11, double x12,

double x20, double x21, double x22);
Implements the combined MRG MRG32k3a proposed by L’Ecuyer [80]. Its period length is near
2191 This is a floating-point implementation. The six parameters represent the initial state and
must be all integers represented as double’s. The first three must be integers in [0, 4294967086]
and not all 0. The last three must be integers in [0, 4294944442] and not all 0.

unifO1_Gen * ulec_CreateMRG32k3aL (long x10, long x11, long x12,
long x20, long x21, long x22);

Same as MRG32k3a above, but implemented assuming 64-bit long integers.

unif01_Gen * ulec_CreateMRG32k3b (double x10, double x11, double x12,
double x20, double x21, double x22);

Similar to ulec_CreateMRG32k3a but implements the Wichmann-Hill variant.

unifO01_Gen * ulec_CreateMRG32k5a (double x10, double x11, double x12,
double x13, double x14, double x20,

double x21, double x22, double x23,

double x24);

Implements the combined MRG MRG32k5a proposed by L’Ecuyer [80]. Its period length is near
2319 This is a floating-point implementation.
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unifO1_Gen * ulec_CreateMRG32k5b (double x10, double x11, double x12,
double x13, double x14, double x20,

double x21, double x22, double x23,

double x24);

Similar to ulec_CreateMRG32k5b but implements the Wichmann-Hill variant.

#ifdef USE_LONGLONG
unif01_Gen * ulec_CreateMRG63k3a (longlong s10, longlong sl11, longlong si12,
longlong s20, longlong s21, longlong s22);
Implements the combined MRG MRG63k3a proposed by L’Ecuyer [80]. Uses 64-bit integers (see
gdef .h) and works only if that type is fully supported by the compiler.

unif01_Gen * ulec_CreateMRG63k3b (longlong s10, longlong sl11l, longlong s12,
longlong s20, longlong s21, longlong s22);

Similar to ulec_CreateMRG63k3a but implements the Wichmann-Hill variant.
#endif

unifO01_Gen * ulec_Createlfsr88 (unsigned int sl1, unsigned int s2,

unsigned int s3);
Combined Tausworthe generator proposed by L’Ecuyer [77], with period length near 288. The
initial seeds s1, s2, s3 must be greater or equal than 2, 8, and 16 respectively.

unif01_Gen * ulec_Createlfsr113 (unsigned int sl1, unsigned int s2,

unsigned int s3, unsigned int s4);
Combined Tausworthe generator proposed by L'Ecuyer [82], with period length near 2!3. Re-
strictions: the initial seeds s1, s2, s3, s4 must be greater or equal than 2, 8, 16, and 128
respectively.

#ifdef USE_LONGLONG

unif01_Gen * ulec_Createlfsr258 (ulonglong sl1, ulonglong s2, ulonglong s3,

ulonglong s4, ulonglong sb5);

#endif
Combined Tausworthe generator proposed by L’Ecuyer [82], with period length near 2258, This
implementation uses 64-bits integers (see gdef .h), and works only with machines and compilers
that support them. Restrictions: the initial seeds s1, s2, s3, s4, sb must be greater or
equal than 2, 512, 4096, 131072 and 8388608 respectively.

unif01_Gen * ulec_CreateCombTausLCG11 (unsigned int k, unsigned int q,

unsigned int s, unsigned S1,

long m, long a, long c, long S2);
Combines a Tausworthe generator of parameters (k,q, s) and initial state S1 with an LCG of
parameters (m, a, c) and initial state S2. The combination is made via addition modulo 1 of the
outputs of the two generators.
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unifO1_Gen * ulec_CreateCombTausLCG21 (unsigned int k1, unsigned int qi,
unsigned int sl1, unsigned int Y1,
unsigned int k2, unsigned int q2,
unsigned int s2, unsigned int Y2,
long m, long a, long c, long Y3);

Combines a combined Tausworthe generator with two components of parameters (ki,q1, s1),

(k2,q2, s2) and initial states Y1, Y2, with a LCG of parameters (m,a,c) and initial state Y3.
The combination is made by addition modulo 1 of the outputs of the two generators.

unif01_Gen * ulec_CreateMRG31k3p (long x10, long x11, long x12,
long x20, long x21, long x22);

Implements the combined MRG with two components of order 3 named MRG31k3p by L’Ecuyer
and Touzin [98]. The two components have parameters (m, ai, az, a3) equal to (23' — 1, 0,
22227 1 1) and (23! — 21069, 25, 0, 2'5 4+ 1). Its period length is close to 28 and the six

parameters represent the initial state. Restrictions: 0 < x10, x11, x12 < 2147483647 and not
all 0, and 0 < x20, x21, x22 < 2147462579 and not all 0.

Clean-up functions

void ulec_DeleteCombTausLCG11l (unifOl1_Gen *gen);

Frees the dynamic memory allocated by ulec_CreateCombTausLCG11.

void ulec_DeleteCombTausLCG21 (unifO1_Gen *gen);

Frees the dynamic memory allocated by ulec_CreateCombTausLCG21.

void ulec_DeleteGen (unifO1_Gen *gen) ;

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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utezuka

This module collects some generators designed by S. Tezuka.

#include <testu01l/unif01.h>

unifO01_Gen * utezuka_CreateTezLec91 (unsigned int Y1, unsigned int Y2);

Implements a combined Tausworthe generator constructed by Tezuka and L’Ecuyer [159], and
whose implementation is given in their paper. The initial values Y1 and Y2 must be positive
and less than 23! and 22” respectively.

unif01_Gen * utezuka_CreateTez95 (unsigned int Y1, unsigned int Y2,
unsigned int Y3);

Implements the combined generator proposed in Figure A.1 of [158], page 194. The initial values
Y1, Y2, Y3 must be positive and less than 228, 229 and 23! respectively.

unif01_Gen * utezuka_CreateTezMRG95 (unsigned int Y1[5],
unsigned int Y2[7]);

Implements the combined generator proposed in Figure A.2 of [158], page 195. The initial values
of the array elements of Y1 and Y2 must be positive and less than 23! and 229 respectively.

Clean-up functions

void utezuka_DeleteGen (unifO1_Gen *gen) ;

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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umnlarsa

This module implements several generators proposed in different places by George
Marsaglia and his co-workers. See also the URL site http://stat.fsu.edu/~geo/. In
the description of the generators, the symbols < stands for the left shift operator, > for the
right shift operator, and @ for the bitwise exclusive-or operator. In the implementations of
the generators, multiplications and divisions by powers of 2 are implemented with left and
right bit shifts.

#include <testu0O1l/gdef.h>
#include <testu01/unif01.h>

unifO01_Gen * umarsa_CreateMarsa90a (int y1, int y2, int y3, int =0,

unsigned int YO);
Implements the combination proposed by Marsaglia, Narasimhan and Zaman [113]. Its com-
ponents are the subtract-with-borrow generator (SWB) (see CreateSWB in module ucarry)
Xn = (Xn_22 — Xp_43 — C) mod (232 — 5) where C is the borrow, and the Weyl generator
Y, = (Y1 — 362436069) mod 232. The combination is done by subtraction modulo 232, i.e.,
Zn = (X, —Yy) mod 232 and the value returned is u,, = Zn/232. The first 43 values of the gen-
erator SWB are initialized by the combination of a 3-lag Fibonacci generator whose recurrence
is Yn = (Yn—1Yn—2yn—3) mod 179, with a LCG with recurrence z, = (53z,-1 + 1) mod 169, as
follows: the sixth bit of y;2; mod 64 is used to fill the seed numbers of the main generator, bit
by bit. The parameters y1, y2, and y3 are the seeds of the 3-lag Fibonacci sequence, while
z0 is the seed of the sequence z, = (53z,—1 + 1) mod 169. Finally YO is the seed of the Weyl
generator. Restrictions: 0 < y1,y2,y3 < 179 and 0 < z0 < 169.

unifO01_Gen * umarsa_CreateRANMAR (int y1, int y2, int y3, int z0);

Implements RANMAR, a combination proposed by Marsaglia, Zaman and Tsang in [119]. Its
components are the lagged-Fibonacci generator X,, = (X,,—97 — X,,—33) mod 1, implemented
using 24-bit floating-point numbers, and the arithmetic sequence S,, = (S, _1 —k) mod (224-3).
The first 97 values of the lagged-Fibonacci generator are initialized in exactly the same way as
the main generator in umarsa_CreateMarsa90a. The parameters y1, y2, and y3 are the seeds
of the 3-lag Fibonacci sequence, while z0 is the seed of the LCG. This generator has 24 bits of
resolution. Restrictions: 0 < y1,y2,y3 < 179 and 0 < z0 < 169.

#ifdef USE_LONGLONG

unifO1_Gen * umarsa_CreateMother0 (unsigned long x1, unsigned long x2,
unsigned long x3, unsigned long x4, unsigned long c);

#endif

Marsaglia [107] named this generator “The Mother of all RNG’s”. Tt is a “multiply-with-carry”

generator (MWC) whose recurrence is

Y = 51152z, + 1776 2p—2 + 1492 2,3 + 2111111111 (g + C,
z, = Y mod 232
C = Y /2%,
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where C' is the carry. The returned value is x,/232. The four seeds x1, x2, x3 and x4 are the
initial values of the x; and c is the initial carry. Marsaglia uses ¢ = 0 as initial value of the
carry. Restrictions: 0 < ¢ < 2111119494 (= the sum of the coefficients of the x,).

unifO01_Gen * umarsa_CreateCombo (unsigned int x1, unsigned int x2,
unsigned int yl1, unsigned int c);

Generator Combo proposed by Marsaglia [107]:

Tn = (Tp—1xp—2) mod 232,
Yo = 30903 (yp—1 mod 2'°) +y,_; div 2%

The output is u, = 2,/23? with the combination 2, = (2, + y,) mod 232. Marsaglia uses ¢ = 0
as initial value of the carry. Restrictions: y; < 216 and 0 < ¢ < 30903.

unifO01_Gen * umarsa_CreateECG1l (unsigned int x1, unsigned int x2,
unsigned int x3);

Marsaglia [107] named these “extended congruential” generators. This one is based on
T, = (650652, 1 + 67067z, o + 69069z, 3) mod (232 — 5)
and u, = x,/(2% — 5). Restrictions: 0 < 1,22, 23 < 4294967291.

unifO1_Gen * umarsa_CreateECG2 (unsigned int x1, unsigned int x2,
unsigned int x3);

Generator based on the recurrence
z, = 2%z, 1 +x, 9+ x, 3) mod (2% - 5)
and u, = 1, /(232 — 5). Restrictions: 0 < 21,22, 23 < 4294967291.

unifO1_Gen * umarsa_CreateECG3 (unsigned int x1, unsigned int x2,
unsigned int x3);

Generator based on the recurrence
T, = (2000x,_ 1 + 19502, 5 + 19002, _3) mod (23% — 209)
and u, = 1, /(23 — 209). Restrictions: 0 < x1, 22, 23 < 4294967087.

unif01_Gen * umarsa_CreateECG4 (unsigned int x1, unsigned int x2,
unsigned int x3);

Generator based on the recurrence
Ty = 220(95”_1 + xp—2 + xp—3) mod (232 —209)

and u, = r,/(2%% — 209). Restrictions: 0 < x1, 22, 23 < 4294967087.
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unif01_Gen * umarsa_CreateMWC97R (unsigned int x0, unsigned int yO);

This generator proposed by Marsaglia in [108] concatenates two 16-bit multiply-with-carry
generators based on the recurrences

Tn = 36969 (z,—1 mod 2'%) + 2, div 2'6,
Yo = 18000 (y—1 mod 2'°) +y,_; div 2%,
Ly = (2161:” + ¥, mod 216) mod 2%2.

The 16 upper bits of x,, and y,, are the carries of the respective equation. The generator returns
Z,/(232 —1). Tt has been included as the default generator in the GNU package R under the
name Marsaglia-MultiCarry [139].

unif01_Gen * umarsa_CreateULTRA (unsigned int sl1, unsigned int s2,

unsigned int s3, unsigned int s4);
Implements the ULTRA generator [107], a combination of a lagged Fibonacci generator (see
CreateLagFib in module umrg) with a multiply-with-carry generator (see CreateMWC in module
ucarry), proposed by Marsaglia with his test suite DIEHARD:

T, = (Tp_g7x,_33) mod 232,
Yo = 30903 (yn—1 mod 2'%) + y, 1 div 2'°,
zn = (xn+ yn) mod 232,

The generator returns z,/232. This agrees with the effective implementation in DIEHARD
which does not agree with its documentation. The four seeds s1, s2, s3 and s4 are used in a
complicated way to initialize the component generators.

unifO01_Gen * umarsa_CreateSupDup73 (unsigned int x0, unsigned int yO0);

Implements the original SuperDuper generator [112], a combination of a congruential generator
with a shift-register generator:

Tp, = 69069z, 1 mod 232

= Yp1® (yn—l div 215) )
Yo = @D (21775 mod 232) ,
Zn = TnDYn

The generator returns z,/(23% — 1). The seeds x0 and yO0 initializes the x,, and y,,. Restriction:
x0 must be odd.

unifO01_Gen * umarsa_CreateSupDup96Add (unsigned int x0, unsigned int yoO,
unsigned int c);

Implements the SuperDuper generator, an additive combination of a congruential generator with
a shift-register generator, proposed by Marsaglia with his test suite DIEHARD [107]:

z, = (69069z, 1+ c) mod 2%,
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t = yn—l@(213yn—1)>

t = to(tdiv2'),
yn = (t@®(2°t)) mod 232
zn = (xn+ yn) mod 232
The generator returns z,/232. This is the uniform generator (called randuni) included in

MATLAB that is used to generate normal random variables. Restriction: ¢ odd.

unifO01_Gen * umarsa_CreateSupDup96Xor (unsigned int x0, unsigned int yoO,
unsigned int c);

Similar to umarsa_CreateSupDup96Add above, except that the combination of the two genera-
tors is with a bitwise exclusive-or:

Zn = Tpn DYn

#ifdef USE_LONGLONG

unifO01_Gen * umarsa_CreateSupDup64Add (ulonglong x0, ulonglong yoO,
ulonglong a, ulonglong c,

int s1, int s2, int s3);

#endif

Implements the 64-bit generator supdup64, an additive combination of a congruential generator
with a shift-register generator, proposed by Marsaglia in [110]:

Tn = (axp—1+c) mod 264,
t = Yn19® (2" Yn-1),
t o= to(tdiv2e),
yn = (t®(2°%t)) mod 2%,
Zn = (2n 4 yn) mod 204

The generator returns z,/2%* using only the 32 most significant bits of z, and setting the others

to 0. In his post, Marsaglia suggests the values a = 6906969069, ¢ = 1234567, s; = 13, s = 17
and s3 = 43. Restrictions: ¢ = 3 mod 8 or a = 5 mod 8.

#ifdef USE_LONGLONG

unif01_Gen * umarsa_CreateSupDup64Xor (ulonglong x0, ulonglong yoO,

ulonglong a, ulonglong c,

int s1, int s2, int s3);

#endif
Similar to umarsa_CreateSupDup64Add above, except that the combination of the two genera-
tors is with a bitwise exclusive-or:

Zn = Tpn D Yn
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unif01_Gen * umarsa_CreateKISS93 (unsigned int x0, unsigned int yoO,
unsigned int z0);

Implements the generator KISS proposed by Marsaglia in [117], which is a combination of a
LCG sequence with two 2-shifts register sequences:

z, = (69069 z,_1 + 23606797) mod 232,
t = Y10 (27yn1),

Yn = t@ (t div 215) mod 232,
t = (zn_l @ (2182n_1)) mod 231,

zn = t@(tdiv2"Y)

The generator returns ((zn + yn + 2,) mod 2%?) /232, Restrictions: 0 < z0 < 231

unifO01_Gen * umarsa_CreateKISS96 (unsigned int x0, unsigned int yO,
unsigned int zl, unsigned int z2);

Implements the generator KISS proposed by Marsaglia in his test suite DIEHARD [107]:

z, = (69069, 1+ 1) mod 252,
I = Y1 @ (213yn71) )
t = to(tdiv2'),
Yn = (t &) (2575)) mod 232,
zn = (2z2p—1+ 2p—2 + cp—1) mod 232,
en = (2zp—1+ 2n—2+cp_1) div 232,

where the x, are a LCG sequence, the y, are a 3-shifts register sequence, and the z, are a
simple multiply-with-carry sequence with ¢, as the carry (see CreateMWC in module ucarry).
The variable xg is the seed of the LCG component, yg is the seed of the shift register com-
ponent, and 21,29 are the seeds of the multiply-with-carry sequence. The generator returns
((zn + yn + 2,,) mod 232) /232,

unifO01_Gen * umarsa_CreateKISS99 (unsigned int xO, unsigned int yO,
unsigned int zl, unsigned int z2);

Implements the generator KISS proposed by Marsaglia in [109]. It is a combination of a LCG,
a 3-shifts register generator, and two multiply-with-carry generators:

r, = (69069, 1+ 1234567) mod 22,

= Yp1® (217yn—1) )
t = to(tdiv2?),
Yn = (t @ (25t)) mod 232,
Z, = asin umarsa_CreateMWC97R above

where zg is the seed of the LCG component, gy the seed of the 3-shifts register compo-
nent, and zq,z2 the seeds of the multiply-with-carry generators. The generator returns
(((Zn @ xp) + yn) mod 232) /232,
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unif01_Gen * umarsa_Create4LFIB99 (unsigned int T[256]);

Implements the 4-lag lagged Fibonacci generator LFIB/ proposed by Marsaglia in [109]. It uses
addition in the form (see also CreateLagFib in module umrg)

Ty = (Tn—55 + Tn_119 + Tn—179 + Tp_a56) mod 2%2.

The generator returns T}, /232. Its period is close to 2287,

unif01_Gen * umarsa_Create3SHR99 (unsigned int yO0);
Implements the 3-shift random number generator SHR3 proposed by Marsaglia in [109]:

t = Y1 @ (27yn1),
t = to(tdiv2?),
yn = (t®(2°t)) mod 2%

232

The generator returns g, /23 and its period is 232 — 1.

unifO1_Gen * umarsa_CreateSWB99 (unsigned int T[256], int b);
Implements the subtract-with-borrow generator SWB proposed by Marsaglia in [109]:

by, = I[Th—222 < Tp—237 + bp_1],
T, = (Tn-222 — Tn—237 — by—1) mod 2%2,

where b,, is the borrow and I is the indicator function (see CreateSWB in module ucarry). The
generator returns 7}, /232 and its period is close to 27578,

Clean-up functions

void umarsa_DeleteGen (unifOl1_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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uknuth

This module collects generators proposed by Donald E. Knuth. Knuth’s code can be
found at http://www-cs-faculty.stanford.edu/~knuth/programs.html. Since there are
global variables in this module, no more than one generator of each type in this module can
be in use at any given time.

#include <testu01/unif01.h>

unifO01_Gen * uknuth_CreateRan_arrayl (long s, long A[100]);

Implements the generator ran_array in its first version as appeared on Knuth’s web site in
2000. It is based on the lagged Fibonacci sequence with subtraction [66], modified via Liischer’s
method. It generates 1009 numbers from the recurrence

Xj = (Xj—100 - Xj_37) mod 230

out of which only the first 100 are used and the next 909 are discarded, and this process is
repeated. The generator returns U; = X/ 230 Gives 30 bits of precision.

If the seed s > 0, then Knuth’s initialization procedure is performed: it shifts and transforms
the bits of s in order to get the 100 numbers that make up the initial state; in that case,
array A is unused. If s < 0, then the initial state is taken from the array A[0..99]. This
could be convenient for restarting the generator from a previously saved state. Restrictions:
s < 1073741821.

unifO01_Gen * uknuth_CreateRan_array2 (long s, long A[100]);

This implements the new version of ran_array with a new initialization procedure as appeared
on Knuth’s web site in 2002.

unifO01_Gen * uknuth_CreateRanf_arrayl (long s, double B[100]);

Similar generator to ran_arrayl above, but where the recurrence is
Uj = (Uj—l()O + Uj_37) mod 1

and is implemented directly in floating-point arithmetic. This implements the first version of
Knuth’s ranf_array as it appeared on his web site in 2000. Array B contains numbers in [0, 1).

unif01_Gen * uknuth_CreateRanf_array2 (long s, double B[100]);

This implements the new version of ranf_array as it appeared on Knuth’s web site in 2002.
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Clean-up functions

void uknuth_DeleteRan_arrayl (unifO1l_Gen *gen);

void uknuth_DeleteRan_array2 (unifO1_Gen *gen);

void uknuth_DeleteRanf_arrayl (unifO1l_Gen *gen);

void uknuth_DeleteRanf_array2 (unifO1_Gen *gen);
Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.
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utouzin

This module is an interface to random number generators proposed by P. L’Ecuyer and
R. Touzin [164]. They are multiple recursive generators (MRG) or combinations of MRG’s
with coefficients of the form +27 + 29 (see the description of MRG’s in module umrg).

#include <testu0l/unif01.h>

unifO1_Gen * utouzin_CreateMRGOOa (long s1, long s2, long s3, long s4,
long s5);

Creates a MRG of order 5 of the form
Ty = ((2 - 224)-7371—1 - 2185571—3 - 243371—4 + (211 — 1)$n_5) mod m

where m = 23! — 1 and u,, = x,,/m. The parameters s are the seeds.

unifO1_Gen * utouzin_CreateMRGOOb (long s1, long s2, long s3, long s4,
long s5, long s6);

Creates a MRG of order 6 of the form
Ty = ((—221 —Daxp_1 — 220 o+ 280 a4 2T, o+ (1-— 227)xn_6) mod m

where m = 23! — 1 and u,, = x,,/m. The parameters s are the seeds.

unifO1_Gen * utouzin_CreateMRGOOc (long s1, long s2, long s3, long s4,
long s5, long s6, long s7);

Creates a MRG of order 7 of the form
zn = (=221 — 220259 + 22,5+ 2%2, 5 — 202, 6+ (2' + 1)z,—7) mod m

where m = 23! — 19 and u,, = z,,/m. The parameters s are the seeds.

unifO1_Gen * utouzin_CreateMRGOOd (long s1, long s2, long s3, long s4,
long s5, long s6, long s7, long s8);

Creates a MRG of order 8 of the form
Ty = (—24;cn_1 + 28, 3 — 220, 4+ 2220, 54+ 2%, ¢+ 2% 2, 7+ (28 — 2)xn_8) mod m

where m = 23! — 1 and u,, = x,,/m. The parameters s are the seeds.

unifO01_Gen * utouzin_CreateMRG0OOe (long s10, long sl11, long s12,
long s20, long s21, long s22);

Creates a combined MRG with two components of order 3 of the form

Ty = (222;8”,2 + (2" + 1)xn,3) mod mq
Yo = (2%yn_1+ (2" 4+ 1)yn—3) mod my
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where my = 231 — 1, my = 231 — 21069, and u, = ((xp, — yn) mod my) /(my + 1) with the
exception of the value 0 which is replaced by u, = m1/(m; + 1). Thus the generator cannot
return the values 0 or 1. The parameters s are the seeds.

unifO1_Gen * utouzin_CreateMRGOOf (long s10, long s11l, long si12,
long s20, long s21, long s22);

Creates a combined MRG with two components of order 3 of the form

Ty = (214xn_2 + (—226 + l)xn_g) mod my
Yo = (2"7yn1+2"y,—3) mod mo
where my = 231 — 1, my = 231 — 19, and u,, = ((z,, — yn) mod my) /(my + 1) with the exception

of the value 0 which is replaced by u,, = mi/(m1 + 1). Thus the generator cannot return the
values 0 or 1. The parameters s are the seeds.

unifO01_Gen * utouzin_CreateMRGOOg (long s10, long sl11, long s12,
long s20, long s21, long s22,
long s30, long s31, long s32);

Creates a combined MRG with three components of order 3 of the form

T, = (2303:n_1 + (219 — 1)xn_3) mod mq
Yn = (223yn72 + 21gyn73) mod mg
Zn = (211zn,1 + 9292, 0+ 2zn,3) mod mg

where my = 231 —1, mg = 231 =19, m3 = 231 —61 and u,, = ((xp, — Yn + 2,,) mod mq) /(M1 +1)
with the exception of the value 0 which is replaced by u, = mj/(my + 1). Thus the generator
cannot return the values 0 or 1. The parameters s are the seeds.

unifO01_Gen * utouzin_CreateMRGOOh (long s10, long sl11l, long s12, long s13,
long s20, long s21, long s22, long SQ3§;

Creates a combined MRG with two components of order 4 of the form
Tn = (—zn-1—2"25 0+ (2% + 1)zp_s) mod my
yn = (2"%n—1—2%n_3+2"y,_4) mod my
where my = 231 —1, my = 231 — 19, and u,, = ((z,, — yn) mod m1) /(my + 1) with the exception

of the value 0 which is replaced by u,, = mi/(m1 + 1). Thus the generator cannot return the
values 0 or 1.The parameters s are the seeds.

Clean-up functions

void utouzin_DeleteGen (unifOl_Gen * gen);

Frees the dynamic memory used by any generator of this module. This function should be called
when a generator is no longer in use.
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ugranger

This module collects combined generators implemented by Jacinthe Granger-Piché for her
master thesis. Some of the generators in this module use the GNU multiprecision package
GMP. The macro USE_GMP is defined in module gdef in directory mylib.

#include <testuO1/gdef.h>
#include <testuO01/unif01.h>

unif01_Gen * ugranger_CreateCombLCGInvExpl (

long ml, long al, long cl, long sl, long m2, long a2, long c2);
Combines an LCG of parameters (mq,a1,c1) and initial state s; with a non-linear explicit
inversive generator with parameters (mg,ag,c2). The implementation of the LCG uses ei-
ther ulcg_CreateLCGFloat or ulcg_CreateLCG, depending on the parameters (mq, a1, c1), and
the implementation of the inversive generator uses uinv_CreateInvExpl. The combination is
done by adding mod 1 the outputs of the two generators. Restrictions: the same as those for
ulcg_CreateLCG and uinv_CreateInvExpl.

#ifdef USE_GMP
unif01_Gen * ugranger_CreateCombBigLCGInvExpl (
char *ml, char *al, char *cl, char *s1, long m2, long a2, long c2);

Same as ugranger_CreateCombLCGInvExpl, but the LCG is implemented using arbitrary large
integers with ulcg_CreateBigLCG. Restrictions: the same as those for ulcg_CreateBigLCG and
uinv_CreateInvExpl.

#endif

unifO01_Gen * ugranger_CreateCombLCGCub (

long ml, long al, long cl, long sl, long m2, long a2, long s2);
Combines an LCG of parameters (m, a1, c1) and initial state s; with a cubic generator of pa-
rameters (mg, az) and initial state s3. The LCG implementation is either ulcg_CreateLCGFloat
or ulcg_CreateLCG, depending on the parameters (my,ai,c;), and the implementation of the
cubic generator is ucubic_CreateCubiclFloat. The combination is done by adding mod 1
the outputs of the two generators. Restrictions: the same as those for ulcg_CreatelLCG and
ucubic_CreateCubiclFloat.

#ifdef USE_GMP

unif01_Gen * ugranger_CreateCombBigLCGCub (

char *ml, char *al, char *cl, char *s1, long m2, long a2, long c2);
Same as ugranger_CreateCombCubLCG, but the LCG is implemented using arbitrary large in-
tegers with ulcg_CreateBigLCG. Restrictions: the same as those for ulcg_CreateBigLCG and
ucubic_CreateCubiclFloat.
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unifO1_Gen * ugranger_CreateCombTausBigLCG (

unsigned int k1, unsigned int ql, unsigned int sl1, unsigned int SS1,

unsigned int k2, unsigned int q2, unsigned int s2, unsigned int SS2,

char *m, char *a, char *c, char *SS3);
Combines a Tausworthe generator with two components of parameters (ki,q1,s1), (k2, g2, s2)
and initial states SS1, SS2 with an LCG of parameters (m,a,c) and initial state SS3. The
combination is done by adding mod 1 the outputs of the LCG and of the combined Tausworthe.
The implementation of the LCG is the one in ulcg_CreateBigLCG, and the implementation of
the combined Tausworthe is the one in utaus_CreateCombTaus2. Restrictions: the same as
those for utaus_CreateCombTaus2 and ulcg_CreateBigLCG.

#endif

unif01_Gen * ugranger_CreateCombTausLCG21xor (

unsigned int k1, unsigned int ql, unsigned int sl, unsigned int SS1,

unsigned int k2, unsigned int g2, unsigned int s2, unsigned int SS2,

long m, long a, long c, long SS3);
Combines a Tausworthe generator with two components of parameters (k1,q1,s1), (k2,q2, $2)
and initial states SS1, SS2 with an LCG of parameters (m,a,c) and initial state SS3. The
combination is done using a bitwise exclusive-or of the outputs of the two generators. The im-
plementation of the LCG is either the one in ulcg_CreateLCGFloat or in ulcg_CreateLCG, de-
pending on the parameters (m, a, c¢), and the implementation of the combined Tausworthe is the
one in utaus_CreateCombTaus2. Restrictions: the same as those for utaus_CreateCombTaus2
and ulcg_CreateLCG.

unif01_Gen * ugranger_CreateCombTausCub2lxor (

unsigned int k1, unsigned int ql, unsigned int sl1, unsigned int SS1,

unsigned int k2, unsigned int g2, unsigned int s2, unsigned int SS82,

long m, long a, long SS3);
Combines a Tausworthe generator with two components of parameters (k1,q1, 1), (ke, g2, s2)
and initial states SS1, SS2 with a cubic generator of parameters (m,a) and initial state SS3.
The combination is done using a bitwise exclusive-or of the outputs of the two generators. The
implementation of the combined Tausworthe is the one in utaus_CreateCombTaus2, and the
implementation of the cubic generator is the one in ucubic_CreateCubiclFloat. Restrictions:
the same as those for utaus_CreateCombTaus2 and ucubic_CreateCubiclFloat.

unif01_Gen * ugranger_CreateCombTausInvExpl2lxor (

unsigned int k1, unsigned int ql, unsigned int sl, unsigned int SS1,

unsigned int k2, unsigned int g2, unsigned int s2, unsigned int SS2,

long m, long a, long c);
Combines a Tausworthe generator with two components of parameters (k1,q1,s1), (k2,q2, $2)
and initial states SS1, SS2 with an explicit inversive generator of parameters (m,a,c). The
combination is done using a bitwise exclusive-or of the outputs of the two generators. The
implementation of the combined Tausworthe is the one in utaus_CreateCombTaus2, and the
implementation of the inversive generator is the one in uinv_CreateInvExpl. Restrictions: the
same as those for utaus_CreateCombTaus2 and uinv_CreateInvExpl.
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Clean-up functions

void ugranger_DeleteCombLCGInvExpl (unifOl1_Gen *gen);

void ugranger_DeleteCombLCGCub (unifOl_Gen *gen);

void ugranger_DeleteCombTausLCG21xor (unifOl_Gen *gen);
void ugranger_DeleteCombTausCub21lxor (unifO1_Gen *gen) ;
void ugranger_DeleteCombTausInvExpl2ixor (unifOl_Gen *gen) ;

#ifdef USE_GMP

void ugranger_DeleteCombBigLCGInvExpl (unifOl1_Gen *gen);
void ugranger_DeleteCombBigLCGCub (unifOl1_Gen *gen);
void ugranger_DeleteCombTausBigLCG (unifO1_Gen *gen);
#endif

Frees the dynamic memory allocated by the corresponding Create function of this module.
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uwu

This module collects some generators from Pei-Chi Wu.

#include <testuOl/gdef.h>
#include <testu01/unif01.h>

#ifdef USE_LONGLONG
unif01_Gen * uwu_CreateLCGWu6la (longlong s);

Implements a LCG proposed by Wu [177], with m = 261 — 1, a = 230 — 219 ¢ = 0. Uses a fast
implementation with shifts rather than multiplications. It uses 64-bits integers.

unifO1_Gen * uwu_CreateLCGWu6lb (longlong s);

Similar to uwu_CreateLCGWu61a, but with a = 242 — 231,
#endif

Clean-up functions

void uwu_DeleteGen (unifO1_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.

See also

e ulcg CreatelLCGWu2
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udeng

This module collects some generators from Lih-Yuan Deng and his collaborators.

#include <testuO1/unifO1.h>

unifO1_Gen * udeng_CreateDL0Oa (unsigned long m, unsigned long b, int k,
unsigned long S[]);

Creates a multiple recursive generator proposed by Deng and Lin [22] in the form:

x; = ((m—1)xi—1 +bx;) mod m = (—x;—1 + bx;_j) mod m.
The generator returns w; = z;/m. The initial state (z_1,...,2_k) is in S[0..(k-1)]. Restric-
tion: k < 128.

unifO1_Gen * udeng_CreateDX02a (unsigned long m, unsigned long b, int k,
unsigned long S[]);

Creates a multiple recursive generator proposed by Deng and Xu [23] in the form:
xz; = b(x;—1 + z;—x) mod m.

The generator returns w; = x;/m. The initial state (z_1,...,2_x) is in S[0..(k-1)]. Restric-
tion: k < 128.

Clean-up functions

void udeng_DeleteGen (unifOl_Gen * gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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uweyl

This module implements simple and combined generators based on Weyl sequences, pro-
posed by Holian et al. [53].

#include <testul0l/unif01.h>

unifO1_Gen * uweyl_CreateWeyl (double alpha, long nO);

Implements a generator defined by the Weyl sequence:
tup, =na mod 1 = (up—1 + ) mod 1, (2.27)

where o = alpha is a real number in the interval (0,1). The initial value of n is n0. In theory, if
« is irrationnal, this sequence is asymptotically equidistributed over (0,1) [170]. However, this
is not true for the present implementation, because « is represented only with finite precision.
The implementation is only a rough approximation, valid when n is not too large. Some possible
values for « are:

V2mod1 = 0.414213562373095

V3mod1 = 0.732050807568877
mmod1l = 0.141592653589793
emod 1 = 0.718281828459045

v = 0.577215664901533

unifO1_Gen * uweyl_CreateNWeyl (double alpha, long n0);
Implements a nested Weyl generator, as suggested in [53], defined by

tn = (n (na mod 1)) mod 1, (2.28)

where alpha = a € (0,1). The initial value of n is n0.

unif01_Gen * uweyl_CreateSNWeyl (long m, double alpha, long nO);
Implements a nested Weyl generator with “shuffling”, proposed in [53], and defined by

vp =m(n(na mod 1) mod 1) +1/2, Up, = (Vn (Vpa mod 1)) mod 1,

where m is a large positive integer and alpha = « € (0, 1). The initial value of n is nO.

Clean-up functions

void uweyl_DeleteGen (unifO1_Gen *gen) ;

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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unumrec

Implements the generators proposed in Numerical Recipes: Portable Random Number
Generators [138, 137].

#include <testu01l/unif01.h>

unif01_Gen * unumrec_CreateRan0 (long s);

Creates and initializes the generator Ran0O with the seed s. Restriction: 0 < s < 231,

unif01_Gen * unumrec_CreateRanl (long s);

Creates and initializes the generator Rani with the seed s. Restriction: 0 < s < 231,

unifO1_Gen * unumrec_CreateRan2 (long s);

Creates and initializes the generator Ran2 with the seed s. Restriction: 0 < s < 231,

Clean-up functions

void unumrec_DeleteGen (unifO1_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when

it is no longer in use.
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uautomata

This module implements generators based on cellular automata. A cellular automaton
consists of a d-dimensional grid of cells, whose coordinates are the integer points in the
d-dimensional euclidean lattice £ = Z?. Each cell can hold a value taken from a discrete set
(for now, only binary values 0 and 1 are implemented). The value = at each cell i evolves
deterministically with (discrete) time according to a set of rules involving the values of its
nearest neighbours. For a one-dimensional cellular automaton with neighbourhood of radius
r, the value of a cell at a given time depends on its value at the previous time step as well
as the values of the r closest cells on the left and the r closest cells on the right, all at the
previous time step. The evolution of cell i can thus be written as

A U A
where t represents discrete time. These rules are applied synchronously to each cell at every
time step. Here, only uniform cellular automata are considered, for which the rules are
identical for all cell. See [175, 176, 162] for the theory of cellular automata.

In the current implementation, periodic boundary conditions are imposed on the grid of
cells, so that cells on oppposite boundaries are considered adjacent. For example, for a one-
dimensional grid with N cells, the condition Sy = Sy applies. Similarly, a two-dimensional
grid is considered as a torus.

#include <testu01/unif01.h>

unifO1_Gen * uautomata_CreateCAl (int N, int S[ ], int r, int F[ ],

int k, int ts, int cs, int rot);
Initializes a generator based on a 1-dimensional boolean uniform cellular automaton made up
of N cells, with a rule I of radius r, and an initial state S. A rule of radius r is such that only
the r nearest neighbors on each side of a cell are involved in determining the value of the cell
at the next time step. Thus each cell has 2r + 1 neighbors, including itself. The initial value of
cell 7 is given in S[i| and can take values 0 and 1 only.

The rule is specified by the 22"*! elements of array F indexed in standard numerical order, with
an entry for every possible neighborhood configuration of states. A given entry is such that at
the next time step, cell i takes the value obtained from the rule when the 2r + 1 neighbour cell
values are given by the binary representation of j. The following table shows an example of a
local rule when r = 1.

j 7176 [ 5[ 4[3]27T1T70
Lj—1y Ljy Lj41 111 110 101 100 | 011 010 | 001 000
new x; 0 0 0 1 1 1 1 0

Each of the 227! = 8 possible sets of values for a cell and its 2 nearest neighbours appear on
the middle line, while the lower line gives the value to be taken by the central cell on the next
time step. For this rule, array F' must have the following form: F = {0,1,1,1,1,0,0,0}. In
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Wolfram’s numbering scheme for one-dimensional automata [175] and in the litterature, this
rule is called rule 30 because the lower line of the table is the binary representation of 30.

In order to generate random numbers from this automaton, only & cells are used, starting count
at the center of the grid. Assuming that the parameters ts and cs are 0, then 32 time steps will
be used to generate k random integers, the 32 bits of a cell over time making up one random
number. For example, if N = 10 and k& = 3, then only cells 4, 5, 6 will be used to generate
random numbers, though all the cells contribute to the evolution of the cellular automaton.

The parameters ts and cs implements time spacings and cell spacings respectively. Thus only
the bits generated at every ts + 1 time step are considered as part of the random sequence, the
bits generated at the ts successive time steps in-between are disregarded. For example, if ts
=1, one keeps only the bits at 1 time step out of 2 to build the random numbers. The default
value is ts = 0. Similarly, only cells spaced cs + 1 apart are used to generate random numbers;
the output of the cs cells in-between is not considered part of the random sequence, though
they still contribute to the evolution of the cellular automaton. For example, if N =20, k =3
and cs = 2, then only the bits generated by cells 7, 10, 13 are used to make up the random
numbers returned by the cellular automaton. The default value is cs = 0.

The parameter rot indicates a circular shift of the cells at each time step. If rot > 0, the value
of cell i at the end of each time step will become the value of cell (i + rot) mod N before going
to the next time step. If rot < 0, cell ¢ will become the value of cell (i — rot) mod N instead.
There is no shift when rot = 0.

Restrictions: k* (cs + 1) < N + cs.

unif01_Gen * uautomata_CreateCA90mp (int m, int S[]);

Implements Matsumoto’s cellular automaton CA90(m)" (see [123]). It is a uniform boolean
one-dimensional automaton with m cells based on rule 90 (as defined by Wolfram in [174]),
i.e., the value of a cell at time ¢t + 1 depends only on the state of its two closest neighbors
at time ¢t and is given by z;(t + 1) = z;_1(¢t) + x;4+1(t) mod 2. There are two extra cells that
implements the boundary conditions at both ends. The null boundary condition, xy(¢) = 0, is
applied permanently at the left end, while the mirror boundary condition, x,,4+1(t) = zp, (), is
applied permanently at the right end. The output is the value of cell m. Thus each time step
generates one bit of output and 32 time steps generate one 32-bit integer. The initial state of
the cells must be given in S[j] for j = 1,2,..., m. Restriction: S[j] € {0, 1}.

Clean-up functions

void uautomata_DeleteCA90mp (unifOl1_Gen *gen);

Frees the dynamic memory allocated by uautomata_CreateCA90mp.

void uautomata_DeleteGen (unifOl_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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ucrypto

This module implements different versions of some random number generators proposed
or used in the world of cryptology.

#include <testu01/unif01.h>

typedef enum {

ucrypto_OFB, /* Output Feedback mode */
ucrypto_CTR, /* Counter mode */
ucrypto_KTR /* Key counter mode */

} ucrypto_Mode;

Block modes of operation [26] for this module. Given an algorithm (for example, encryption or
hashing) used as a generator of random numbers, then the output feedback mode (0FB) uses the
result of the last application of the algorithm as input block for the current application. The
counter mode (CTR) applies the algorithm on a counter used as input and incremented by 1 at
each application. The key counter mode (KTR) applies the algorithm on the seed with a different
key at each application of the algorithm; the key is incremented by 1 before each application.

unif01_Gen * ucrypto_CreateAES (unsigned char #*Key, int klen,

unsigned char *Seed, ucrypto_Mode mode,

int r, int s);
Uses the Advanced Encryption standard (AES) as a source of random numbers [19, 130, 52, 3],
based on the optimized C code for the Rijndael cipher written by V. Rijmen, A. Bosselsers and
P. Barreto [144]. klen is the number of bits in the cipher Key, which must be given as an array
of 16,24 or 32 bytes for a key of 128, 192 or 256 bits, respectively. Seed is the initial state,
which must be an array of 16 bytes making in all 128 bits. At each encryption step j, the AES
encryption algorithm is applied on the input block to obtain a new block of 128 bits (16 bytes).
Of these, the first r bytes are dropped and the next s bytes are used to build 32-bit random
numbers. Each call to the generator returns a 32-bit random number. For example, if r = 2
and s = 8, then the 16 (8r) most significant bits of the block are dropped and the next 64 (8s)
bits are used to make two 32-bit random numbers which will be returned by the next two calls
to the generator. Restrictions: klen € {128,192,256}, 0 <r < 15,1 < s <16, and r + s < 16.

Let C' = E(K,T) denote the AES encryption operation with key K on plain text 7" resulting
in encrypted text C.

e For the OFB mode, each new block of 128 bits C; is obtained by C; = E(K,Cj_1), where
Cp = Seed.

e The CTR mode uses a 128-bit counter ¢ whose initial value is equal to Seed, and which is
incremented by 1 at each encryption step j. Each new block of 128 bits C; is obtained by
C; = E(K,1i).

e The KTR mode uses a counter ¢ as the key which is incremented by 1 at each encryption step
Jj as i < i+ 1. Each new block of 128 bits C; is obtained by C; = E(i,Seed), where the
initial value of ¢ is Key viewed as an integer.
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unif01_Gen * ucrypto_CreateSHA1l (unsigned char *Seed, int len,
ucrypto_Mode mode, int r, int s);

Uses the Secure Hash Algorithm SHA-1 as a source of random numbers [131, 3|. Seed is an
array of size len used to initialize the generator. At each hashing step j, the SHA-1 algorithm
is applied on the input block to obtain a hashed string of 160 bits (20 bytes). Of these, the
first r bytes are dropped and the next s bytes are used to build 32-bit random numbers. Each
call to the generator returns a 32-bit random number. For example, if r = 2 and s = &, then
the 16 (8r) most significant bits of the 160-bit string are dropped and the next 64 (8s) bits are
used to make two 32-bit random numbers which will be returned by the next two calls to the
generator. Restrictions: len < 55,0 <r <19, 1<s<20, and r + s < 20.

Let C' = H(T') denote the SHA-1 operation applied on the original text 7" hashed to the 160-bit
string C'. (When T is too short, it is padded automatically by the SHA-1 algorithm to have the
required block length of 512 bits.)

e For the OFB mode, each new block of 160 C; is obtained by C; = H(Cj_1), where Cy =
H(Seed).

e The CTR mode uses a 440-bit counter ¢ whose initial value is equal to Seed, and which is
incremented by 1 at each hashing step j. Each new block of 160 bits C; is obtained by
C; = H(i).

unif01_Gen * ucrypto_CreateISAAC (int flag, unsigned int A[256]);

This is the generator ISAAC (Indirection, Shift, Accumulate, Add, and Count), proposed and
implemented by Bob Jenkins Jr. in [57]. The version used here is the one recommended for
cryptography, with RANDSIZL = 8. If flag = 0, the array A is not used and the initial state
is obtained from a complicated initialization procedure used in Jenkins’ implementation. If
flag = 1, the array A is used and transformed by Jenkins’ initialization procedure to obtain the
initial state. If flag = 2, the array A is used as the starting state. Restriction: flag € {0, 1, 2}.

Clean-up functions

void ucrypto_DeleteAES (unifOl_Gen * gen);
void ucrypto_DeleteSHA1 (unifO1_Gen * gen);
void ucrypto_DeleteISAAC (unifOl1_Gen * gen);

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.

'From Richard: In his test program in file rand.c, Jenkins outputs the ISAAC random numbers as
randrsl[0], randrsl[1], randrsl[2], ...In TestUO1, they are outputted in the order randrsl[255],
randrsl[254], randrsl[253], ..., because it is simpler.
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usoft

This module implements (or, in some cases, provides an interface to) some random num-
ber generators used in popular software products. The macros of the form USE_... are
defined in module gdef in directory mylib.

#include <testuOl/gdef.h>
#include <testuO1l/unifO1.h>

unif01_Gen * usoft_CreateSPlus (long S1, long S2);

Generator used in the statistical software environment S-PLUS [146, 122]. It is based on
Marsaglia’s Super-Duper generator of 1973 (see the description of SupDup73 on page 61 of this
guide). The generator never returns 0. Restrictions: 0 < 81 <23 —1and 0 < S2 < 23! —1.

#ifdef HAVE_RANDOM
unif01_Gen * usoft_CreateUnixRandom (unsigned int s);
#endif

Provides an interface to the set of five additive feedback random number generators imple-
mented in the function random() in the Unix or Linux C library stdlib (see the documentation
of random). It uses a default table of long integers to return successive pseudo-random numbers.
The size of the state array determines the period of the random number generator; increasing
the state array size increases the period. The parameter s determines the order of the re-
currence. This generator is not part of the standard ANSI C library. Since it uses global

variables, no more than one generator of this type can be in use at any given time. Restrictions:
s € {8,32,64,128,256}.

#ifdef USE_LONGLONG
unif01_Gen * usoft_CreateJava48 (ulonglong s, int jflag);
#endif

Implements the same generator as the method nextDouble, in class java.util.Random of the
Java standard library (http://java.sun.com/j2se/1.4.2/docs/api/java/util/Random.html).
It is based on a linear recurrence with period length 248, but each output value is constructed
by taking two successive values from the linear recurrence, as follows:

zi1 = (25214903917 x; + 11) mod 2*®
2% 29 /22| + |w2i11/2%
u; = 253 .

Note that the generator rand48 in the Unix standard library uses exactly the same recurrence,
but produces its output simply via u; = x;/2%8. If jflag > 0, s is transformed via “s =
s~ 0xB5DEECE66D” at initialization, as is done in the Java class Random; one will then obtain the
same numbers as in Java Random with the given seed. If jflag = 0, s is used directly as initial
seed. Restriction: s < 281474976710656.
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unif01_Gen * usoft_CreateExcel2003 (int x0, int y0, int z0);

This is the generator implemented by the RAND function in Microsoft Office Excel 2003 (see
https://support.microsoft.com/en-us/kb/828795/). It uses the Wichmann-Hill generator
(171, 172]

z; = 170z;_1 mod 30323
y; = 172y;_1 mod 30307
zi = 171 z_1 mod 30269
T Y Zi )
= di.
Ui (30323 * 30307 T 30269/ ™°

The Wichmann-Hill generators are described in this guide on page 26. The Excel generator
is equivalent to the call ulcg_CreateCombWH3 (30323, 30307, 30269, 170, 172, 171, O,
0, 0, x0, yO, z0). The initial seeds are x0, yO and z0. Restrictions: 0 < x0 < 30323,
0 < y0 < 30307 and 0 < z0 < 30269.

unifO01_Gen * usoft_CreateVisualBasic (unsigned long s);

The random number generator included in Microsoft VisualBasic. It is an LCG defined as:
x; = (1140671485 ;1 + 12820163) mod 2*4;  w; = x;/2*

(see http://support.microsoft.com/support/kb/articles/Q231/8/47.ASP). The parame-

ter s gives the seed xy. Note that the multiplier 1140671485 in the equation above is equivalent
to 16598013, since 1140671485 mod 22* = 16598013.

#if defined(USE_GMP) && defined(USE_LONGLONG)
unif01_Gen * usoft_CreateMaple_9 (longlong s);
#endif

Implements the generator included in MAPLE 9.5 and earlier versions. It is a linear congruential
generator (see the definition on page 23) with m = 999999999989, a = 427419669081 and ¢ = 0.
The seed is s. Restriction: 0 < s < 999999999989. Note: MAPLE 10 uses the Mersenne twister
MT19937 as its basic generator (see page 40 of this guide).

#ifdef USE_LONGLONG

unif01_Gen * usoft_CreateMATLAB (int i, unsigned int j, int bf,
double Z[]);

#endif

Implements the basic generator (function rand) included in MATLAB [128] to generate uniform
random numbers. It is a combination of the subtract-with-borrow generator (2.29) proposed in
[116], where z is an array of 32 floating-point numbers in [0, 1) and b is a borrow flag, with the
Xorshift generator (2.30) described in [111]:

Zi = Zi+20 — Ri+5 — b (2.29)
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Jr=0<13); ji=0>17); j = <5); (2.30)

The combination is done by taking the bitwise exclusive-or of the bits of the mantissa of z; with
a 52-bit shifted version of j, and this gives the mantissa of the returned number in [0,1). If
i < 0, then j, bf and Z are unused, and the generator is initialized using the same procedure as
the one described in Cleve Moler’s MATLAB M-file randtx.m (see http://www.mathworks.
com/moler/ncm/randtx.m) when z is empty. If i > 0, then j, bf and Z are used as initial
values for the generator state. If the flag bf = 0, then the initial borrow is set to b = 0, while
if bf # 0, then it is set to b = 27°3. Restrictions: i < 32, bf € {0,1}, and 0 < Z[i] < 1.

Another uniform generator included in MATLAB is used to generate normal random variables.
It is Marsaglia’s additive SuperDuper of 1996, with ¢ = 1234567, described on page 61 of
this guide (see umarsa_CreateSupDup96Add). MATLAB includes also the Mersenne twister
generator of Matsumoto and Nishimura [126] (see ugfsr_CreateMT19937 on page 40 of this
guide).

#ifdef HAVE_MATHEMATICA

unif01_Gen * usoft_CreateMathematicaReal (int argc, char * argv[],

long s);

#endif
This provides an interface to the random number generator for real numbers in [0,1) imple-
mented by function “Random[ ]1” of Mathematica 5 and earlier releases (see the web site of
Wolfram Research Inc. at http://www.wolfram.com). It is a subtract-with-borrow generator
(described on page 31 of this guide) of the type proposed by Marsaglia and Zaman in [116],
apparently of the form x; = (7;_g — 2;_4s — ¢) mod 23!, and each returned number in [0,1)
uses two successive numbers of the recurrence to get a double of 53 bits. The parameters argc
and argv are the usual arguments of the “main” function and the parameter s is the initial
seed. The random numbers are generated in batches of 2'® = 262144 numbers, for greater
speed. Since this generator uses file variables, no more than one generator of this type can
be in use at any given time. See the documentation in module gdef of MyLib concerning the
macro HAVE_MATHEMATICA. If the executable program is called, say tulip, then the program
is launched on a Unix/Linux platform by the command tulip -linkname ’math -mathlink’
-linklaunch.

#ifdef HAVE_MATHEMATICA

unif01_Gen * usoft_CreateMathematicalnteger (int argc, char * argv[],
long s);

#endif

Provides an interface to the random number generator for integers in [0,230 — 1] implemented
by function “Random[Integer, 230 —1]” of Mathematica 5 and earlier releases. It is based on
a cellular automata with rule 30 proposed by Wolfram [175]. See also the documentation of
usoft_CreateMathematicaReal above.
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Clean-up functions

#ifdef USE_LONGLONG
void usoft_DeleteMATLAB (unifO1_Gen *gen);
#tendif

Frees the dynamic memory used by the MATLAB generator and allocated by the corresponding
Create function above

#ifdef HAVE_MATHEMATICA

void usoft_DeleteMathematicaReal (unifO1_Gen *);

void usoft_DeleteMathematicalnteger (unifO1_Gen *);
Frees the dynamic memory used by the MATHEMATICA generators and allocated by the corre-
sponding Create function above.

#endif

#ifdef HAVE_RANDOM
void usoft_DeleteUnixRandom (unifO1_Gen *);

Frees the dynamic memory used by the UnixRandom generator and allocated by the correspond-
ing Create function above
#endif

#if defined (USE_GMP) && defined(USE_LONGLONG)
void usoft_DeleteMaple_9 (unifOl1_Gen *gen);

Frees the dynamic memory used by the MAPLE generator and allocated by the corresponding

Create function above.
#endif

void usoft_DeleteGen (unifO1_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.
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uvaria

Implements various special generators proposed in the litterature.

#include <testu01l/unif01.h>

unif01_Gen * uvaria_CreateACORN (int k, double S[]);

Initializes a generator ACORN (Additive COngruential Random Number) [173] of order k and
whose initial state is given by the vector S[0. . (k-1)].

unifO01_Gen * uvaria_CreateCSD (long v, long s);

Implements the generator proposed by Sherif and Dear in [151]. The initial state of the gen-
erator is given by v. The generator uses a MLCG generator whose initial state is given by s.
Restrictions: 0 < v <9999 and 0 < s < 231 — 1.

unifO01_Gen * uvaria_CreateRanrotB (unsigned int seed);

This is a lagged-Fibonacci-type random number generator, but with a rotation of bits, called
RANROT, and proposed by Fog [42]. The variant programmed here is RANROT of type B.
The algorithm is:

Xn = ((Xp—j rotl 1) + (X,,—k rotl 72)) mod 2b

where rotl denotes a left rotation of the bits, each X, is an unsigned int, and b is the number
of bits in an unsigned int. The output value is u, = X,/ 20 The last k values of X are stored
in a circular buffer (here of size 17, with 71 = 5 and ro = 3). Information about RANROT
generators can be found at http://www.agner.org/random/.

Since Fog’s code is copied verbatim here, there are global variables in the implementation. Thus
no more than one generator of that type can be in use at any given time.

unif0l1_Gen * uvaria_CreateRey97 (double al, double a2, double b2, long n0);
Generator proposed by W. Rey [143]. It uses the recurrence:

zi = aysin(bi(i + ng)) mod 1; (2.31)
u; = (ag+ z;)sin(byz) mod 1, (2.32)

where by = (v/5 — 1)7/2. According to the author, aj, as and by should be chosen sufficiently
large.

unifO01_Gen * uvaria_CreateTindo (long b, long Delta, int s, int k);

Initializes the parameters of the generator proposed by Tindo in [161], with ag = b — Delta
and a; = Delta + 1. Assumes that 0 < Delta < b — 1 and b < 215 = 32768. Restrictions:
1<k<32,1<5<32.
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Clean-up functions

void uvaria_DeleteACORN (unifO1_Gen *gen);

Frees the dynamic memory used by the ACORN generator and allocated by the corresponding
Create function above.

void uvaria_DeleteRanrotB (unifO1_Gen *gen);

Frees the dynamic memory used by the RanrotB generator and allocated by the corresponding
Create function above.

void uvaria_DeleteGen (unifOl1_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.
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ufile

This module allows the implementation of generators in the form of numbers read directly
from an arbitrary file. No more than one generator of each type in this module can be in
use at any given time.

#include <testu0l1/unifO1.h>

unifO01_Gen * ufile_CreateReadText (char *fname, long nbuf);

Reads numbers (assumed to be in text format) from input file fname. The numbers must be
floating-point numbers in [0, 1), separated by whitespace characters. Numbers in the file can be
grouped in any way: there may be blank lines, some lines may contain many numbers, others
only one. The file must contain only valid real numbers, nothing else. The numbers are read in
batches of nbuf at a time and kept in an array (if nbuf is very large, a smaller but still large
array will be used instead).

void ufile_InitReadText (void);

Reinitializes the generator obtained from ufile_CreateReadText to the beginning of the file.

unif01_Gen * ufile_CreateReadBin (char *fname, long nbuf);

Reads numbers from input file fname. This file is assumed to be in binary format. The numbers
are read in batches of 4 nbuf unsigned char’s at a time, transformed into nbuf unsigned 32-bit
integers and kept in an array (if nbuf is very large, a smaller but still large array will be used
instead). This function is used in order to test (random) bit sequences kept in a file.

void ufile_InitReadBin (void);

Reinitializes the generator obtained from ufile_CreateReadBin to the beginning of the file.

Clean-up functions

void ufile_DeleteReadText (unifO1_Gen *);

Closes the file and frees the dynamic memory allocated by ufile_CreateReadText.

void ufile_DeleteReadBin (unifO1_Gen *);

Closes the file and frees the dynamic memory allocated by ufile_CreateReadBin.
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Useful functions

void ufile_Gen2Bin (unifOl1_Gen *gen, char *fname, double n, int r, int s);

Creates the file fname containing n random bits using the output of generator gen. From each
random number returned by gen, the r most significant bits will be dropped and the s following
bits will be written to the file until n bits have been written. Restriction: s € {8, 16,24, 32}.
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Chapter 3

STATISTICAL TESTS

This chapter describes the different statistical tests available in TestUO1 and how they can
be applied. These tests are organized in different modules, sometimes according to their
similarity and sometimes according to the author of the book/article from which they were
taken. Each test looks, in its own way, for empirical evidence against the null hypothesis H
defined in the introduction. It computes a test statistic Y whose distribution under H, is
known (or for which a good approximation is available).

Single-level tests.

A first-order (or single-level) test observes the value of Y, say y, and rejects H, if the

p-value (or significance level)
p=PY >y | H

is much too close to either 0 or 1. If the distribution of Y is [approximately| continuous,
p is [approximately| a U(0, 1) random variable under Hy. Sometimes, this p can be viewed
as a measure of uniformity, in the sense that it will be close to 1 if the generator produces
its values with excessive uniformity, and close to 0 in the opposite situation (see, e.g., the
module smultin).

In the case where Y has a discrete distribution under Hy, we distinguish the right p-value
pr = P[Y >y | Ho| and the left p-value p, = P[Y <y | Ho]. We then define the p-value as

PR, if pr <pr
p = 1—pr, ifpr>prand pr <05
0.5 otherwise.

Why such a definition? Consider for example a Poisson random variable ¥ with mean 1
under Hy. If Y takes the value 0, the right p-value is pp = P[Y > 0 | Ho] = 1. In the
uniform case, this would obviously lead to rejecting Hy on the basis that the p-value is too
close to 1. However, P[Y =0 | Ho|] = 1/e =~ 0.368, so it does not really make sense to reject
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Ho in this case. In fact, the left p-value here is p;, = 0.368, and the p-value computed with
the above definition is p = 1 — p;, &~ 0.632. Note that if p;, is very small, with this definition,
p becomes close to 1. If the left p-value was defined as pp, = 1 — pgp = P[Y <y | Ho, this
would also lead to problems; in the example, one would have p;, = 0.

Two-level tests.

In a second-order (or two-level) test, one generates N “independent” copies of Y, say
Y1, ..., Yy, by replicating the first-order test N times. Let F' be the theoretical distribution
function of Y under Hy. In the case where F' is continuous, the transformed observations
Uy = F(Y1),...,Ux = F(Yy) should behave as i.i.d. uniform random variables. One way
of performing the two-level test is to compare the empirical distribution of these U;’s to the
uniform distribution, via a goodness-of-fit (GOF) test such as those of Kolmogorov-Smirnov,
Anderson-Darling, Cramer-von Mises, etc. These GOF test statistics are defined in module
gofs and their p-values are computed by the functions of module gofw (these two modules
are in library ProbDist). For example, if d}; is the sample value taken by the Kolmogorov-
Smirnov statistic D} (defined in module gofs), the corresponding p-value at the second level
is 0t = P[D} > d{|Ho]. Under Hy, 6T has the U(0, 1) distribution.

In TestUO1, several of these GOF tests can actually be applied simultaneously, and all
their p-values are reported in the results. Those that are too close to 0 or 1 are marked by
special indicators in the printouts. The GOF tests that are applied are those that belong to
the set gofw_ActiveTests. This kind of flexibility is sometimes convenient for comparing
the power of these GOF tests to detect the weaknesses of specific classes of generators.

This type of two-level testing procedure has been widely applied for testing RNGs [40,
66, 74, 99, 103]. The arguments supporting it are that (i) it sometimes permits one to apply
the test with a larger total sample size to increase its power (for example, if the memory
size of the computer limits the sample size of a single-level test), and (ii) it tests the RNG
sequence at the local level, not only at the global level (i.e., there could be very bad behavior
over short subsequences, which cancels out when averaging over larger subsequences). As
an example of this, consider the extreme case of a generator whose output values are 7/23%,
for i = 1,2,...,23 — 1, in this order. A simple test of uniformity over the entire sequence
would give a perfect fit, whereas the same test applied repeatedly over (disjoint) shorter
sub-sequences would easily detect the anomaly.

Another way of performing the test at the second level is to simply add the /N observations
of the first level and reject H, if the sum is too large or too small. For the great majority
of the tests in this library, the distribution of Y is either chi-square, normal, or Poisson. In
these three cases, the sum Y = ¥; + --- 4+ Yy has the same type of distribution. That is,
if Y is chi-square with k degrees of freedom [resp., normal with mean p and variance o2,
Poisson with mean \J, Y is chi-square with Nk degrees of freedom [resp., normal with mean
Ny and variance N202, Poisson with mean N)A|. TestU01 usually reports the results of the
test based on Y in these situations, in addition to the second-order GOF tests specified by

gofs_ActiveTests (for the Poisson case, where the second-order GOF tests are not valid
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unless A is large enough for the Poisson distribution to be well approximated by a normal,
only the results of the tests base on Y are reported).

Our empirical investigations indicate that for a fixed total sample size Nn, when testing
RNGs, a test with N = 1 is often more efficient than the corresponding test with N > 1.
. This means that for typical RNGs, the type of structure found in one (reasonably long)
subsequence is usually found in (practically) all subsequences of the same length. In other
words, when a RNG started from a given seed fails spectacularly a certain test, it usually
fails that test for most admissible seeds, though there are some exceptions. In the case
where N > 1, the test based on Y is usually more powerful than the second-order GOF tests
comparing the empirical distribution of F(Y7),..., F(Yy) to the uniform, according to our
experience.

Rejecting H,.

In statistical studies where a limited amount of data is available, people sometimes fix
the significance level « in advance to arbitrary values such as 0.05 or 0.01, and reject Hy if
and only if the p-value is below a. However, statisticians often recommend to just report the
p-value, because this provides more information than reporting a “reject” or “do not reject”
verdict based on a fixed a.

When a p-value is extremely close to 0 or to 1 (for example, if it is less than 10719),
one can obviously conclude that the generator fails the test. If the p-value is suspicious
but failure is not clear enough, (p = 0.0005, for example), then the test can be replicated
independently until either failure becomes obvious or suspicion disappears (i.e., one finds
that the suspect p-value was obtained only by chance). This approach is possible because
there is no limit (other than CPU time) on the amount of data that can be produced by a
RNG to increase the sample size and the power of the test.

Common parameters and tools.

Three parameters, called N, n, and r, are common to all the functions that apply a test
in the s modules. The parameter N gives the number of independent replications of the base
test, i.e. the number of distinct subsequences on which it is applied, and n is the sample size
for each replication. The parameter r gives the number of bits that are discarded from each
generated random number. That is, each real-valued random number is multiplied by 2"
modulo 1, to drop its r most significant bits. These three parameters are not re-explained in
each test description. It is implicit that the first r bits of each uniform are always discarded,
that the test explained in the function description is always replicated N times, and that a
two-level test is applied whenever N > 1.

For the tests based on bit strings, another parameter that usually appears is s. It
represents the number of bits of each uniform that are effectively used by the test. That is,
when s appears, the test drops the r most significant bits and takes the s bits that follow.
In this case, it is important to make sure that r» + s does not exceed the number of bits of
precision provided by the RNG. For example, if the RNG’s output is always a multiple of
1/231 r 4 s should not exceed 31.
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Reports.

By default, each test prints a report, on standard output, giving the name of the test, the
name of the tested generator, the test parameters, the values of the statistics, the significance
level of those statistics and the CPU time used by the test. This report may also contain
information specific to a given test.

It is possible to print more or less detailed statistical reports by setting one or more of
the lebool flags defined in module swrite. One may wish to see, for example, the value of
the test statistic Y for each of the N replications, the values of the counters, the groupings
of the classes, their expected and observed numbers for the chi-square test, etc. For some
of the tests, printing the counters would generate huge reports and is not practically useful.
For other tests (for example those based on a chi-square test), seeing the counters and the
classes may be enlightening as to why a given generator fails a test. It is even possible to
have no output at all from any of the s modules of TestUO1 by setting all the 1ebool flags
in module swrite to FALSE.

The test functions automatically print the state of the generator at the beginning of an
experiment and at the end of each test. If more than one test are called in a program, the
initial state of the generator at the beginning of a test will be the final state of the generator
at the end of the preceding test. This permits one to keep track of which segment of the
stream of random numbers has been used by each test.

A more flexible way of examining detailed information about what has happened in the
tests, to have a closer look at specific details or perhaps for post-processing the results of
the tests, is via the ..._Res structures. These data structures are specific to each type of
test and are described explicitly in the detailed version of this guide (see also module sres).
Each function implementing a test has a parameter ..._Res * pointing to a structure that
keeps the results.

Perhaps in the majority of situations, the automatic printout made by the testing function
suffices and there is no need to examine the ..._Res structure(s) after the test(s). In this
case, it suffices to pass a NULL pointer for the ..._Res * parameter. The structure will then
be created internally and destroyed automatically after the results are printed.

Scatter plots.

There is a module scatter that permits one to plot points produced by a generator in
the ¢-dimensional hypercube [0,1)". A rectangular box is defined in this hypercube, and the
points lying in this box are projected on a selected two-dimensional subspace and placed on
a 2-dimensional scatter plot. The plot is put in a file ready to be processed by KTEX or
Gnuplot.
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An example: The birthday spacings tests applied to an LCG.

Figure 3.1 shows how to apply a test to a generator. The call to ulcg_CreateLCG creates
and initializes the generator gen to the LCG with modulus m = 2147483647, multiplier a
= 397204094, additive constant ¢ = 0, and initial state x¢o = 12345. This LCG is used
in the SAS statistical software [149]. Then the birthday spacings test is applied twice to
this generator, with N = 1, r = 0, in ¢t = 2 dimensions. The sample sizes are n = 10°
and n = 10%, and the number d of divisions along each coordinate is chosen so that the
expected number of collisions A = n3/(4d") is 2.5 in the first case and 0.25 in the second
case (the values of d are 10* and 10°, respectively). Under Hy, the number of collisions is
approximately a Poisson random variable with mean .

#include <testu01/unif01.h>
#include <testuO1/ulcg.h>
#include <testuOl/smarsa.h>
#include <stddef.h>

int main (void)

unifO1_Gen *gen;

gen = ulcg_CreateLCG (2147483647, 397204094, 0, 12345);
smarsa_BirthdaySpacings (gen, NULL, 1, 1000, O, 10000, 2, 1);
smarsa_BirthdaySpacings (gen, NULL, 1, 10000, 0, 1000000, 2, 1);
ulcg_DeleteGen (gen);

return O;

Figure 3.1: Applying two birthday spacings tests to a LCG.

The results are in Figure 3.2. These results are printed to the standard output, which
may be redirected to a file if desired. At sample size n = 103, there are 6 collisions and
the p-value is 0.04, which is not extreme enough to reject Hy. At sample size n = 10%,
there are 44 collisions and the p-value is close to 1078 (i.e., if Y is Poisson with mean 0.25,
P[Y > 44] < 1078"). The generator fails miserably in this case, with a sample size as small
as ten thousands. This test took approximately 0.02 second to run.
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HOST =

ulcg_CreatelCG: m = 2147483647,

smarsa_BirthdaySpacings test:

Number of cells = d°t
Lambda = Poisson mean

Total expected number = N*Lambda
Total observed number
p-value of test

CPU time used

Generator state:
s = 1858647048
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HOST =

ulcg_CreatelCG: m = 2147483647,

smarsa_BirthdaySpacings test:

Number of cells = d°t
Lambda = Poisson mean

Total expected number = N*Lambda
Total observed number

p-value of test

CPU time used

Generator state:
s = 731506484

a = 397204094, c =0, s =
= 10000, t=2, p=1
100000000
2.5000
2.50
6
0.04
00:00:00.00
a = 397204094, c =0, s =
d = 1000000, t=2, p=1
1000000000000
0.2500
0.25
44
9.5e-82 *kokokk
00:00:00.00

Figure 3.2: Results of the two birthday spacings tests.
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This module contains some functions used in writing statistical test results, inside the

swrite

implementation of other modules.

Each testing function in the s modules normally writes a report (on standard output,
by default) that contains the description of the generator being tested, the name of the
experiment, the name of the test and its parameters, the values and significance levels
of statistics, and the CPU time used by each test.
information specific to a given test. More detailed results in the printouts can be obtained
by setting the lebool variables below to TRUE before calling the test. If all 1lebool flags

below are set to FALSE, then no output will be printed.

This report may contain additional

#include
#include
#include
#include

<testu01/gdef .h>
<testu0l1l/chrono.h>
<testu01/unif01.h>
<testull/sres.h>

Environment variables

extern lebool swrite_Basic; /* Prints basic results */
extern lebool swrite_Parameters; /* Prints details on parameters  */
extern lebool swrite_Collectors; /* Prints statistical collectors x*/
extern lebool swrite_Classes; /* Prints classes for ChiSquare  */
extern lebool swrite_Counters; /* Prints counters */

These environment variables (which are boolean switches) are used to control the level of detail
in the output printed by the tests. By default, all are set to FALSE, except for swrite_Basic
which is set to TRUE. When swrite_Basic is TRUE, the test results are printed with a standard
level of detail. If it is FALSE, then nothing from the u or s modules is printed.

The other switches permit one to obtain more detailed information than usual, in a selective
way. The details are printed when the corresponding switch is set to TRUE. This could be useful,
for example, to examine more closely the kind of defect exhibited by a random number generator
that fails a test.

The switch swrite_Parameters controls the printing of internal parameters that are specific
to each test. The switch swrite_Collectors controls the printing of the statistical collectors
holding the N values of the main statistics Y of the test. The switch swrite_Classes controls
the printing of details concerning the regroupings into classes (or categories), with the expected
numbers of observations in each class, in the situations where such regrouping is performed in
order to apply a chi-square test (see function gofs_MergeClasses in module gofs of library
ProbDist). The switch swrite_Counters controls the printing of the different counters that
hold the numbers of observations.

extern lebool swrite_Host;

If this variable is TRUE, the name of the machine on which the tests are run is printed before
each test; otherwise it is not printed.
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Sres

This module defines common structures used to keep the results of tests in the s modules.
They are described in the detailed version of this guide.

The first argument of each testing function is the random number generator to be tested.
It must be created by calling the appropriate function in one of the module u, and deleted
when no longer needed. The second argument of each testing function is a structure s. . . _Res
that can keep the test results (intermediate and final). This is useful if one wishes to do
something else with the results or the information generated during a test. If one does not
want to post-process or use the results after a test, it suffices to set the ..._Res argument to
the NULL pointer. Then, the structure is created and deleted automatically inside the testing
function.
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smultin

Testing the uniformity and independence of a RNG amounts to testing that ¢-dimensional
vectors (U, ..., u;44—1) of successive output values of the RNG behave like random points
uniformly distributed over the unit hypercube [0, 1]*, for all ¢. A natural approach for testing
this is to generate such vectors and measure (in some way) the uniformity of their distribution
in the unit hypercube.

A class of tests based on the multinomial distribution.

One simple way of measuring this uniformity is as follows. For some integer d, partition
the interval [0,1) into d equal segments. This determines a partition of [0,1)" into k = d*
small hypercubes (or cubic cells) of equal sizes. Then, generate n random points in the unit
hypercube, using nt output values from the generator, and let X; be the number of points
falling into cell j, for 0 < 7 < k—1. Under H,, the vector (X, . .., Xx_1) has the multinomial
distribution with parameters (n,1/k,...,1/k). The next step is to measure how well the
observed vector (Xo, ..., X;_1) “agrees” with this multinomial distribution. For example, if
n > k, the X,’s should not be too far from their expected values E[X;] = A = n/k. The
most popular test statistic in this context is Pearson’s chi-square [66, 70, 142]:

X2 — i: (X; —N)? — —n+ 1 X2 (3.1)

=0 j=0

.

Its distribution under H, is approximately chi-square with £ — 1 degrees of freedom, if X is
large enough. Other test statistics can be used as well, and some of them turn out to be
better than the chi-square for detecting deficiencies in typical RNGs.

The present module implements several such tests for the multinomial distribution, and
for a variant of it where the points are formed by overlapping vectors. These tests are
described and studied by L’Ecuyer, Simard, and Wegenkittl [96]. The test statistic has the
general form

V= ) (3.2)

where f, i is a real-valued function which may depend on n and k. A subclass is the power

divergence statistic
k—1 5
2 X;
Ds = g — X, () -1 .
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studied in [142],