Class FilteredClassifier

  • All Implemented Interfaces:
    java.io.Serializable, java.lang.Cloneable, CapabilitiesHandler, Drawable, OptionHandler, RevisionHandler

    public class FilteredClassifier
    extends SingleClassifierEnhancer
    implements Drawable
    Class for running an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure.

    Valid options are:

     -F <filter specification>
      Full class name of filter to use, followed
      by filter options.
      eg: "weka.filters.unsupervised.attribute.Remove -V -R 1,2"
     -D
      If set, classifier is run in debug mode and
      may output additional info to the console
     -W
      Full name of base classifier.
      (default: weka.classifiers.trees.J48)
     
     Options specific to classifier weka.classifiers.trees.J48:
     
     -U
      Use unpruned tree.
     -C <pruning confidence>
      Set confidence threshold for pruning.
      (default 0.25)
     -M <minimum number of instances>
      Set minimum number of instances per leaf.
      (default 2)
     -R
      Use reduced error pruning.
     -N <number of folds>
      Set number of folds for reduced error
      pruning. One fold is used as pruning set.
      (default 3)
     -B
      Use binary splits only.
     -S
      Don't perform subtree raising.
     -L
      Do not clean up after the tree has been built.
     -A
      Laplace smoothing for predicted probabilities.
     -Q <seed>
      Seed for random data shuffling (default 1).
    Version:
    $Revision: 1.28 $
    Author:
    Len Trigg (trigg@cs.waikato.ac.nz)
    See Also:
    Serialized Form
    • Constructor Detail

      • FilteredClassifier

        public FilteredClassifier()
        Default constructor.
    • Method Detail

      • globalInfo

        public java.lang.String globalInfo()
        Returns a string describing this classifier
        Returns:
        a description of the classifier suitable for displaying in the explorer/experimenter gui
      • graphType

        public int graphType()
        Returns the type of graph this classifier represents.
        Specified by:
        graphType in interface Drawable
        Returns:
        the graph type of this classifier
      • graph

        public java.lang.String graph()
                               throws java.lang.Exception
        Returns graph describing the classifier (if possible).
        Specified by:
        graph in interface Drawable
        Returns:
        the graph of the classifier in dotty format
        Throws:
        java.lang.Exception - if the classifier cannot be graphed
      • setOptions

        public void setOptions​(java.lang.String[] options)
                        throws java.lang.Exception
        Parses a given list of options.

        Valid options are:

         -F <filter specification>
          Full class name of filter to use, followed
          by filter options.
          eg: "weka.filters.unsupervised.attribute.Remove -V -R 1,2"
         -D
          If set, classifier is run in debug mode and
          may output additional info to the console
         -W
          Full name of base classifier.
          (default: weka.classifiers.trees.J48)
         
         Options specific to classifier weka.classifiers.trees.J48:
         
         -U
          Use unpruned tree.
         -C <pruning confidence>
          Set confidence threshold for pruning.
          (default 0.25)
         -M <minimum number of instances>
          Set minimum number of instances per leaf.
          (default 2)
         -R
          Use reduced error pruning.
         -N <number of folds>
          Set number of folds for reduced error
          pruning. One fold is used as pruning set.
          (default 3)
         -B
          Use binary splits only.
         -S
          Don't perform subtree raising.
         -L
          Do not clean up after the tree has been built.
         -A
          Laplace smoothing for predicted probabilities.
         -Q <seed>
          Seed for random data shuffling (default 1).
        Specified by:
        setOptions in interface OptionHandler
        Overrides:
        setOptions in class SingleClassifierEnhancer
        Parameters:
        options - the list of options as an array of strings
        Throws:
        java.lang.Exception - if an option is not supported
      • filterTipText

        public java.lang.String filterTipText()
        Returns the tip text for this property
        Returns:
        tip text for this property suitable for displaying in the explorer/experimenter gui
      • setFilter

        public void setFilter​(Filter filter)
        Sets the filter
        Parameters:
        filter - the filter with all options set.
      • getFilter

        public Filter getFilter()
        Gets the filter used.
        Returns:
        the filter
      • buildClassifier

        public void buildClassifier​(Instances data)
                             throws java.lang.Exception
        Build the classifier on the filtered data.
        Specified by:
        buildClassifier in class Classifier
        Parameters:
        data - the training data
        Throws:
        java.lang.Exception - if the classifier could not be built successfully
      • distributionForInstance

        public double[] distributionForInstance​(Instance instance)
                                         throws java.lang.Exception
        Classifies a given instance after filtering.
        Overrides:
        distributionForInstance in class Classifier
        Parameters:
        instance - the instance to be classified
        Returns:
        the class distribution for the given instance
        Throws:
        java.lang.Exception - if instance could not be classified successfully
      • toString

        public java.lang.String toString()
        Output a representation of this classifier
        Overrides:
        toString in class java.lang.Object
        Returns:
        a representation of this classifier
      • main

        public static void main​(java.lang.String[] argv)
        Main method for testing this class.
        Parameters:
        argv - should contain the following arguments: -t training file [-T test file] [-c class index]