
Metalang99 Specification (v1.13.3)

Hirrolot
e-mail: hirrolot@gmail.com

March 11, 2023

Abstract

This paper formally describes the syntax and semantics of metapro-
grams written in Metalang99, a metalanguage aimed at full-blown
C99 preprocessor metaprogramming. For the motivation and a user-
friendly overview, please see the official repository [2].

Contents

1 EBNF Grammar 2

2 Notations 3

3 Reduction Semantics 3
3.1 Examples . 6

4 Properties 7
4.1 Progress . 7

5 Caveats 7

1

mailto:hirrolot@gmail.com

1 EBNF Grammar

<eval> ::= "ML99_EVAL(" <term-seq> ")" ;

<term-seq> ::= <term> { "," <term> }* ;

<term> ::=

"ML99_call(" <op> "," <term-seq> ")"

| "ML99_callUneval(" <ident> "," <pp-token-list> ")"

| "ML99_abort(" <term-seq> ")"

| "ML99_fatal(" <ident> "," <pp-token-list> ")"

| "v(" <pp-token-list> ")" ;

<op> ::= <ident> | <term> ;

Figure 1: Grammar rules

Notes:

� <pp-token-list> stands for a list of preprocessor tokens (e.g., a 123,

hello!).

� The grammar above describes metaprograms already expanded by the
preprocessor, except for ML99 EVAL, ML99 call, ML99 callUneval,
ML99 abort, ML99 fatal, and v.

� ML99 call accepts op either as an identifier or as a term that reduces
to an identifier.

� ML99 callUneval accepts an operation strictly as an identifier.

The ML99 call syntax hurts IDE support (no parameters documentation
highlighting) and is also less natural. The workaround is to define a wrapper
around an implementation macro like this:

/// The documentation string.

#define FOO(a, b, c) ML99_call(FOO, a, b, c)

#define FOO_IMPL(a, b, c) // The implementation.

Then FOO can be conveniently called as FOO(v(1), v(2), v(3)).

2

2 Notations

Notation 1 (Sequence)
� x := x1 . . . xn. Examples:

– Metalang99 terms: v(abc), ML99 call(FOO, v(123)), v(u 8

9)

– Preprocessor tokens: abc 13 "hello" + -

� () denotes the empty sequence.

� Appending to a sequence:

– Appending an element: S y := x1 . . . xn y, where S = x1 . . . xn

– Appending a sequence: S1 S2 := x1 . . . xn y1 . . . ym, where S1 =
x1 . . . xn and S2 = y1 . . . ym

Notation 2 (Reduction step)
→ denotes a single step of reduction (computation, evaluation).

Notation 3 (Metavariables)

tok preprocessor token
ident preprocessor identifier

t Metalang99 term
a Metalang99 term used as an argument

3 Reduction Semantics

We define a reduction semantics for Metalang99 2. The abstract machine
executes configurations of the form ⟨K;F ;A;C⟩:

� K is a continuation of the form ⟨K;F ;A;C⟩, where C includes the ?
sign denoting a result passed into the continuation. For example, let
K be ⟨K ′; (1, 2, 3); v(x), ?⟩, then K(v(y)) is ⟨K ′; (1, 2, 3); v(x), v(y)⟩.
A special continuation halt terminates the abstract machine and sub-
stitutes itself with a provided result. For example, when the abstract
machine encounters halt(1 + 2), it will just stop and paste 1 + 2.

3

� F is a left folder of the form (acc, tok) → acc. It is used to flexi-
bly append a newly evaluated term to an accumulator without extra
reduction steps. There are the only two folders:

– fspace(acc, tok) := acc tok

– fcomma(acc, tok) := if(acc is ()) then tok else acc ”, ” tok

� A (accumulator) is a sequence of already computed results.

� C (control) is a sequence of terms upon which the abstract machine is
operating right now.

Notes:

� Metalang99 follows applicative evaluation strategy [3].

� (args) Metalang99 generates a usual C-style macro invocation with
fully evaluated arguments, which will be then expanded by the prepro-
cessor, resulting in yet another concrete sequence of Metalang99 terms
to be evaluated by the computational rules.

� (args) Metalang99 appends IMPL to every macro identifier called using
ML99 call – it makes easier to follow the convention that all implemen-
tations of metafunctions must have the postfix IMPL.

� (callUneval) ML99 callUneval is used when an operation and all ar-
guments are already evaluated. It is semantically the same as
ML99 call(ident, v(...)) but performs one less reduction steps to
benefit in performance.

� (fatal) The ellipsis means that an implementation is free to provide
diagnostics in any format.

� (fatal) interprets its variadic arguments without preprocessor expan-
sion – i.e., they are pasted as-is. This is intended because otherwise
identifiers located in an error message may stand for other macros that
will be unintentionally expanded.

� The number of reduction steps is finite and may vary from version to
version. If the limit is exceeded, Metalang99 will not be able to perform
reduction of a given metaprogram anymore.

4

(v) : ⟨K;F ;A; v(tok), t⟩ → ⟨K;F ;F (A, tok); t⟩
(op) : ⟨K;F ;A; ML99 call(t, a), t′⟩ → ⟨

⟨K;F ;A; ML99 call(?), t′⟩;
fcomma;

();

t, a⟩
(args) : ⟨K;F ;A; ML99 call(ident, a), t⟩ → ⟨

⟨⟨K;F ;F (A, ?); t⟩; fspace; (); ident IMPL(?)⟩;
fcomma;

();

a⟩
(callUneval) : ⟨K;F ;A; ML99 callUneval(ident, tok), t⟩ → ⟨

⟨K;F ;F (A, ?); t⟩;
fspace;

();

ident IMPL(tok)⟩
(abort) : ⟨K;F ;A; ML99 abort(t), t′⟩ → ⟨halt; fspace; (); t⟩
(fatal) : ⟨K;F ;A; ML99 fatal(ident, tok), t⟩ → halt(. . .)

(end) : ⟨K;F ;A; ()⟩ → K(A)

(start) : ML99 call(t) → ⟨halt; fspace; (); t⟩

Figure 2: Reduction Semantics

5

3.1 Examples

Take the following code:

#define X_IMPL(op) ML99_call(op, v(123))

#define CALL_X_IMPL(_123) ML99_call(X, v(ID))

#define ID_IMPL(x) v(x)

See how ML99 call(X, v(CALL X)) is evaluated:

Example 1 (Evaluation of terms)

ML99 EVAL(ML99 call(X, v(CALL X))) (start)
−−−−→

⟨halt; fspace; (); ML99 call(X, v(CALL X))⟩ (args)
−−−−→

⟨⟨halt; fspace; (); X(?)⟩; fcomma; (); v(CALL X)⟩ (v)
−→

⟨⟨halt; fspace; (); X(?)⟩; fcomma; CALL X; ()⟩ (end)
−−−→

⟨halt; fspace; (); ML99 call(CALL X, v(123))⟩ (args)
−−−−→

⟨⟨halt; fspace; (); CALL X(?)⟩; fcomma; (); v(123)⟩ (v)
−→

⟨⟨halt; fspace; (); CALL X(?)⟩; fcomma; 123; ()⟩ (end)
−−−→

⟨halt; fspace; (); ML99 call(X, v(ID))⟩ (args)
−−−−→

⟨⟨halt; fspace; (); X(?)⟩; fcomma; (); v(ID)⟩ (v)
−→

⟨⟨halt; fspace; (); X(?)⟩; fcomma; ID; ⟩ (end)
−−−→

⟨halt; fspace; (); ML99 call(ID, v(123))⟩ (args)
−−−−→

⟨⟨halt; fspace; (); ID(?)⟩; fcomma; (); v(123)⟩ (v)
−→

⟨⟨halt; fspace; (); ID(?)⟩; fcomma; 123; ()⟩ (end)
−−−→

⟨halt; fspace; (); v(123)⟩ (v)
−→

⟨halt; fspace; 123; ()⟩ (end)
−−−→

halt(123)

The analogous version written in ordinary C looks like this:

6

#define X(op) op(123)

#define CALL_X(_123) X(ID)

#define ID(x) x

However, unlike the Metalang99 version above, X(CALL X) gets blocked [1]
due to the second call to X. The trick is that Metalang99 performs evaluation
step-by-step, unlike the preprocessor:

� The Metalang99 version: X(CALL X) expands to ML99 call(

CALL X, v(123)). This expansion does not contain X, and therefore X
is not blocked by the preprocessor.

� The ordinary version: X(CALL X) expands to X(ID). This expansion
does contains X, and therefore X is blocked by the preprocessor.

4 Properties

4.1 Progress

Proposition 1 (Progress) Either ⟨K;F ;A; t⟩ → ⟨K;F ;A; t′⟩ or
⟨K;F ;A; t⟩ → halt(x). 2

Proof By inspection of 2. ■

5 Caveats

� Consider this scenario:

– You call FOO(1, 2, 3)

– It gets expanded by the preprocessor (not by Metalang99)

– Its expansion contains FOO

Then FOO gets blocked [1] by the preprocessor, i.e. Metalang99 cannot
handle ordinary macro recursion; you must use ML99 call to be sure
that recursive calls will behave as expected. I therefore recommend
to use only primitive C-style macros, e.g. for performance reasons or
because of you cannot express them in terms of Metalang99.

7

References

[1] C99 draft, section 6.10.3.4, paragraph 2 – Rescanning and further re-
placement. url: http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1256.pdf.

[2] Hirrolot. Full-blown preprocessor metaprogramming. url: https : / /

github.com/Hirrolot/metalang99.

[3] Wikipedia. Applicative order. url: https://en.wikipedia.org/wiki/
Evaluation_strategy#Applicative_order.

8

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://github.com/Hirrolot/metalang99
https://github.com/Hirrolot/metalang99
https://en.wikipedia.org/wiki/Evaluation_strategy#Applicative_order
https://en.wikipedia.org/wiki/Evaluation_strategy#Applicative_order

	EBNF Grammar
	Notations
	Reduction Semantics
	Examples

	Properties
	Progress

	Caveats

