next up previous
Next: unweighted average of single-locus Up: IAM distances Previous: Sanghvi's (1953) distance[Takezaki, N. 96]

Reynold's genetic distance for short-term evolution (1983) [Reynolds, J. 83]


\begin{displaymath}
DReynold=-\ln (1-\theta )\end{displaymath}

the following notation is used, for all \( \theta \) estimators:

\( \bar{n}=\sum ^{r}_{i=1}\frac{n_{i}}{r} \), \( n_{c}=\frac{\left( r\bar{n}-\sum ^{r}_{i=1}\frac{n^{2}_{i}}{r\bar{n}}\right) }{\left( r-1\right) } \), \( \tilde{p}_{lu}=\sum ^{r}_{i=1}\frac{n_{i}\tilde{p}_{ilu}}{r\bar{n}} \), \( \tilde{\alpha }_{il}=1-\sum ^{v_{l}}_{u=1}\tilde{p}_{ilu}^{2} \)



Subsections

Olivier Langella 2002-03-20