
SISL
The SINTEF Spline Library

(version 4.4)

User’s Guide

SINTEF ICT, Applied Mathematics
September 21, 2010

Contents

1 Preface 1

1.1 A word of welcome . 1

1.2 The structure of this document . 2

1.3 The structure of the software package 2

1.4 Licensing information . 3

2 General Introduction 4

2.1 C Syntax Used in Manual . 5

2.2 Dynamic Allocation in SISL . 5

2.3 Creating a Program . 6

2.4 B-spline Curves . 7

2.4.1 B-splines . 8

2.4.2 The Control Polygon . 10

2.4.3 The Knot Vector . 11

2.4.4 NURBS Curves . 12

2.5 B-spline Surfaces . 13

2.5.1 The Basis Functions . 14

2.5.2 NURBS Surfaces . 16

3 Tutorial programs 17

3.1 Compiling the programs . 17

3.2 Description and commentaries on the sample programs 17

3.2.1 example01.C . 18

3.2.2 example02.C . 18

3.2.3 example03.C . 19

3.2.4 example04.C . 19

3.2.5 example05.C . 20

3.2.6 example06.C . 21

3.2.7 example07.C . 21

3.2.8 example08.C . 22

3.2.9 example09.C . 22

i

ii CONTENTS

3.2.10 example10.C . 23
3.2.11 example11.C . 23
3.2.12 example12.C . 23
3.2.13 example13.C . 24
3.2.14 example14.C . 25
3.2.15 example15.C . 25

4 The object viewer program 28
4.1 General . 28
4.2 Command line arguments . 28
4.3 User controls . 29

4.3.1 Mouse commands . 29
4.3.2 Keyboard commands . 30

A The GNU General Public License 31

Chapter 1

Preface

1.1 A word of welcome

Welcome to the SISL 4.4 user’s guide! This document is written to make you able
to use the powerful routines of SISL in as short time as possible. SISL stands
for Sintef Spline Library, and has been gradually developed and enhanced for
more than two decades by the geometry group at SINTEF in Oslo. Although it
is very comprehensive, its organisation is simple. There are but a few structures,
and its nearly four hundred main functions can usually be employed directly and
individually. The SISL 4.4 distribution comes with a comprehensive reference
manual, which organises and explains the main routines. However, much of this
information can also be found directly in the code in the form of commentaries.

The complete software package you have in your hands should contain the
following:

• The SISL 4.4 distribution and reference guide

• The User’s Guide (the document you are reading now)

• Supplementary routines for writing SISL objects to streams (including file
streams) in a simple ASCII format called Go (Geometric Object)

• A selection of sample programs, designed to demonstrate functionalities and
use of SISL

• Source code for a viewer that can be used to view geometric objects stored
in the Go-format. This allows visual inspection of SISL-generated curves and
surfaces, as well as points

1

2 CHAPTER 1. PREFACE

1.2 The structure of this document

Chapter 2 is a general introduction to SISL and its programming style. Since it
is strongly recommended that the user has some general knowledge of splines, this
chapter also contains a couple of sections introducing the subject of spline curves
and surfaces. The text in chapter 2 can also be found in the SISL 4.4 reference
guide.

Chapter 3 goes through the provided sample programs and explain what these
do, and what the user can expect to learn from them. There are a total of 15
sample programs, ranging from very basic to intermediate complexity.

The goal of Chapter 4 is to explain the use of the viewer program, which is
a small but handy tool for visually inspecting results from SISL routines.

Finally there is an annex, citing the text of the General Public License.

1.3 The structure of the software package

There are five directories:

• sisl/ - the source code of the 4.4 release of SISL

• doc/ - documentation (reference manual and user’s guide)

• streaming/ - source code for the routines that can read and write SISL
objects to a stream

• examples/ - sample programs making use of the SISL 4.4 source code

• viewer/ - source code for a viewer that can be used to view SISL objects
saved in the Go-format

Compiling libraries and example programs

Each of these directories, with the exception of doc/, contains a Makefile, which
can be used to compile the code in that directory. The programs in the examples/
directory links with libraries generated from sisl_4.4/ and streaming/, so these
should be compiled first. In order to compile the source code, this is what you
should do:

• To compile SISL 4.4, enter the sisl_4.4/ directory and type ’make lib’ .

1.4. LICENSING INFORMATION 3

• To compile the streaming routines, enter the streaming directory and type
’make lib’ .

• To compile an example program, enter the examples/ directory and type
’make exampleXX’, where XX is a number from 01 to 15. In order to link
successfully, make sure you have already compiled the streaming routines as
well as SISL 4.4.

• To compile the viewer, enter the viewer/ directory and type ’make viewer’.

By default, the files will be compiled in optimized mode. If you want to com-
pile in non-optimized mode, you should add the argument OPT_TAG=nopt to your
command line.

1.4 Licensing information

SISL is distibuted under the General Public License (GPL). The license text is
given in its entirety as an annex to this document. Commercial licenses are also
available from SINTEF. You can contact Tor Dokken (tor.dokken@sintef.no) for
more information.

Chapter 2

General Introduction

SISL is a geometric toolkit to model with curves and surfaces. It is a library of C
functions to perform operations such as the definition, intersection and evaluation
of NURBS (Non-Uniform Rational B-spline) geometries. Since many applications
use implicit geometric representation such as planes, cylinders, tori etc., SISL can
also handle the interaction between such geometries and NURBS.

Throughout this manual, a distinction is made between NURBS (the default)
and B-splines. The term B-splines is used for non-uniform non-rational (or poly-
nomial) B-splines. B-splines are used only where it does not make sense to employ
NURBS (such as the approximation of a circle by a B-spline) or in cases where the
research community has yet to develop stable technology for treating NURBS. A
NURBS require more memory space than a B-spline, even when the extra degrees
of freedom in a NURBS are not used. Therefore the routines are specified to give
B-spline output whenever the extra degrees of freedom are not required.

Transferring a B-spline into NURBS format is done by constructing a new
coefficient vector using the original B-spline coefficients and setting all the rational
weights equal to one (1). This new coefficient vector is then given as input to the
routine for creating a new curve/surface object while specifying that the object to
be created should be of the NURBS (rational B-spline) type.

To approximate a NURBS by a B-spline, use the offset calculation routines
with an offset of zero.

The routines in SISL are designed to function on curves and surfaces which
are at least continuously differentiable. However many routines will also handle
continuous curves and surfaces, including piecewise linear ones.

SISL is divided into seven modules, partly in order to provide a logical struc-
ture, but also to enable users with a specific application to use subsets of SISL.
There are three modules dealing with curves, three with surfaces, and one module
to perform data reduction on curves and surfaces (this last module is largely in

4

2.1. C SYNTAX USED IN MANUAL 5

Fortran). The modules for curves and surfaces focus on functions for creation and
definition, intersection and interrogation, and general utilities.

The three important data structures used by SISL are SISLCurve, SISLSurf,
and SISLIntcurve. These are defined in the Curve Utilities, Surface Utilities, and
Surface Interrogation modules respectively. It is important to remember to always
free these structures and also to free internally allocated structures used to pass
results to the application, otherwise strange errors might result.

Each chapter in this manual contains information concerning the top level func-
tions of each module. Lower level functions not usually required by an application
are not included. Each top level function is documented by describing the purpose,
the input and output arguments and an example of use. To get you started, this
chapter contains an Example Program.

2.1 C Syntax Used in Manual

This manual uses the K&R style C syntax for historic reasons, but both the
ISO/ANSI and the K&R C standards are supported by the library and the in-
clude files.

2.2 Dynamic Allocation in SISL

In the description of all the functions in this manual, a convention exists on when to
declare or allocate arrays/objects outside a function and when an array is allocated
internally. NB! When memory for output arrays/objects are allocated inside a
function you must remember to free the allocated memory when it is not in use
any more.

The convention is the following:

• If [] is used in the synopsis and in the example it means that the array has
to be declared or allocated outside the function.

• If ∗ is used it means that the function requires a pointer and that the allo-
cation will be done outside the function if necessary.

• When either an array or an array of pointers or an object is to be allocated
in a function, two or three stars are used in the synopsis. To use the function
you declare the parameter with one star less and use & in the argument list.

• For all output variables except arrays or objects that are declared or allocated
outside the function you have to use & in the argument list.

6 CHAPTER 2. GENERAL INTRODUCTION

2.3 Creating a Program

In order to access SISL from your program you need only one inclusion, namely
the header file sisl.h. The statement

#include "sisl.h"

must be written at the top of your main program. In this header file all types are
defined. It also contains all the SISL top level function declarations.

To compile the calling program you merely need to remember to include the
name of the directory where sisl.h resides. For example, if the directory is called
sisldir then,

$ cc -c -Isisldir prog1.c

will compile the source code prog1.c to produce prog1.o.
In order to build the executable, the c parts of the SISL library libsislc.a must

be included. Thus

$ cc prog1.o -Lsisldir -lsisl -o prog1

will build the test program prog1.

2.4. B-SPLINE CURVES 7

2.4 B-spline Curves

This section is optional reading for those who want to become acquainted with
some of the mathematics of B-splines curves. For a description of the data structure
for B-spline curves in SISL, see the SISL 4.4 manual.

A B-spline curve is defined by the formula

c(t) =
n∑

i=1

piBi,k,t(t).

The dimension of the curve c is equal to that of its control points pi. For example, if
the dimension of the control points is one, the curve is a function, if the dimension
is two, the curve is planar, and if the dimension is three, the curve is spatial.
Usually the dimension of the curve will be at most three, but SISL also allows
higher dimensions.

Thus, a B-spline curve is a linear combination of a sequence of B-splines Bi,k,t

(called a B-basis) uniquely determined by a knot vector t and the order k. Order
is equivalent to polynomial degree plus one. For example, if the order is two,
the degree is one and the B-splines and the curve c they generate are (piecewise)
linear. If the order is three, the degree is two and the B-splines and the curve are
quadratic. Cubic B-splines and curves have order 4 and degree 3, etc.

The parameter range of a B-spline curve c is the interval

[tk, tn+1],

and so mathematically, the curve is a mapping c : [tk, tn+1]→ IRd, where d is the
Euclidean space dimension of its control points.

The complete representation of a B-spline curve consists of

dim : The dimension of the underlying Euclidean space, 1, 2, 3,

n : The number of vertices (also the number of B-splines)

k : The order of the B-splines.

t : The knot vector of the B-splines. t = (t1, t2, . . . , tn+k).

p : The control points of the B-spline curve. pd,i , d = 1, . . . , dim , i = 1, . . . , n.
e.g. when dim = 3, we have p = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn).

We note that arrays in c start at index 0 which means, for example, that if
the array t holds the knot vector, then t[0] = t1, . . . , t[n + k − 1] = tn+k and the
parameter interval goes from t[k − 1] to t[n]. Similar considerations apply to the
other arrays.

The data in the representation must satisfy certain conditions:

8 CHAPTER 2. GENERAL INTRODUCTION

q q q

6

0.0

1.0

,
,
,
,
,
,
,ZZ

Z
Z
Z
Z
Z
Z

Figure 2.1: A linear B-spline (order 2) defined by three knots.

• The knot vector must be non-decreasing: ti ≤ ti+1. Moreover, two knots ti
and ti+k must be distinct: ti < ti+k.

• The number of vertices should be greater than or equal to the order of the
curve: n ≥ k.

• There should be k equal knots at the beginning and at the end of the knot
vector; that is the knot vector t must satisfy the conditions t1 = t2 = . . . = tk
and tn+1 = tn+2 = . . . = tn+k.

To understand the representation better, we will look at three parts of the
representation: the B-splines (the basis functions), the knot vector and the control
polygon.

2.4.1 B-splines

A set of B-splines is determined by the order k and the knots. For example, to
define a single B-spline of degree one, we need three knots. In figure 2.1 the three
knots are marked as dots. Knots can also be equal as shown in figure 2.2. By
taking a linear combination of the three types of B-splines shown in figures 2.1
and 2.2 we can generate a linear spline function as shown in figure 2.3.

A quadratic B-spline is a linear combination of two linear B-splines. Shown in
figure 2.4 is a quadratic B-spline defined by four knots. A quadratic B-spline is the
sum of two products, the first product between the linear B-spline on the left and
a corresponding line from 0 to 1, the second product between the linear B-spline
on the right and a corresponding line from 1 to 0; see figure 2.4. For higher degree
B-splines there is a similar definition. A B-spline of order k is the sum of two
B-splines of order k − 1, each weighted with weights in the interval [0,1]. In fact
we define B-splines of order 1 explicitly as box functions,

Bi,1(t) =

{
1 if ti ≤ t < ti+1;
0 otherwise,

2.4. B-SPLINE CURVES 9

q qq qq q

6

0.0

1.0 6

0.0

1.0

Z
Z
Z

Z
Z
Z

Z
Z

�
�
�
�
�
�
�
�

Figure 2.2: Linear B-splines of with multiple knots at one end.

qq q q q q qq,
,
,
,
,

Q
Q

Q
Q

Q

(((
((
l

l
l

l
l

�
�
�
XX

X
�
�
�
�
�
�

XX
XX

XX

�
�
�
�
�

SS

SS

SS

SS

SS

(((
(((Q

Q
Q
Q
Q
Q��

���
�
�
�
�
�
�
�PPPPPP

Figure 2.3: A B-spline curve of dimension 1 as a linear combination of a sequence
of B-splines. Each B-spline (dashed) is scaled by a coefficient.

10 CHAPTER 2. GENERAL INTRODUCTION

6

0.0

1.0

q q q q�
�
�
�
�
�
�

H
H

H
H

H
H

H

�
�
�
�
�
�

�
�
�
�
�
�

@
@

@
@

@
@

@
@

@
@

@
@

Figure 2.4: A quadratic B-spline, the two linear B-splines and the corresponding
lines (dashed) in the quadratic B-spline definition.

and then the complete definition of a k-th order B-spline is

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t

ti+k − ti+1
Bi−1,k−1(t).

B-splines satisfy some important properties for curve and surface design. Each
B-spline is non-negative and it can be shown that they sum to one,

n∑
i=1

Bi,k,t(t) = 1.

These properties combined mean that B-spline curves satisfy the convex hull prop-
erty: the curve lies in the convex hull of its control points. Furthermore, the
support of the B-spline Bi,k,t is the interval [ti, ti+k] which means that B-spline
curves has local control: moving one control point only alters the curve locally.

Due to the demand of k multiple knots at the ends of the knot vector, B-spline
curves in SISL also have the endpoint property: the start point of the B-spline
curve equals the first control point and the end point equals the last control point,
in other words

c(tk) = p1 and c(tn+1) = pn.

2.4.2 The Control Polygon

The control points pi define the vertices The control polygon of a B-spline curve
is the polygonal arc formed by its control points, p0,p1, . . . ,pn. This means that
the control polygon, regarded as a parametric curve, is itself piecewise linear B-
spline curve (order two). If we increase the order, the distance between the control
polygon and the curve increases (see figure 2.5). A higher order B-spline curve
tends to smooth the control polygon and at the same time mimic its shape. For
example, if the control polygon is convex, so is the B-spline curve.

Another property of the control polygon is that it will get closer to the curve if
it is redefined by inserting knots into the curve and thereby increasing the number

2.4. B-SPLINE CURVES 11

��
��

�
��

�@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�

Figure 2.5: Linear, quadratic, and cubic B-spline curves sharing the same control
polygon. The control polygon is equal to the linear B-spline curve. The curves are
planar, i.e. the space dimension is two.

�
��

� HHH
HHH((((

((�
�
�
�

Figure 2.6: The cubic B-spline curve with a redefined knot vector.

of vertices; see figure 2.6. If the refinement is infinite then the control polygon
converges to the curve.

2.4.3 The Knot Vector

The knots of a B-spline curve describe the following properties of the curve:

• The parameterization of the B-spline curve

• The continuity at the joins between the adjacent polynomial segments of the
B-spline curve.

In figure 2.7 we have two curves with the same control polygon and order but with
different parameterization.

This example is not meant as an encouragement to use parameterization for
modelling, rather to make users aware of the effect of parameterization. Something
close to curve length parameterization is in most cases preferable. For interpola-
tion, chord-length parameterization is used in most cases.

12 CHAPTER 2. GENERAL INTRODUCTION

qqq qqqq

qqqq qqq

��
��

�
��

�@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�

��
�
��

�
��@

@
@
@
@
@
@
@�

�
�
�
�
�
�
�

Figure 2.7: Two quadratic B-spline curves with the same control polygon but
different knot vectors. The curves and the control polygons are two-dimensional.

The number of equal knots determines the degree of continuity. If k consecutive
internal knots are equal, the curve is discontinuous. Similarly if k − 1 consecutive
internal knots are equal, the curve is continuous but not in general differentiable.
A continuously differentiable curve with a discontinuity in the second derivative
can be modelled using k − 2 equal knots etc. (see figure 2.8). Normally, B-spline
curves in SISL are expected to be continuous. For intersection algorithms, curves
are usually expected to be continuously differentiable (C1).

2.4.4 NURBS Curves

A NURBS (Non-Uniform Rational B-Spline) curve is a generalization of a B-spline
curve,

c(t) =

∑n
i=1wipiBi,k,t(t)∑n
i=1wiBi,k,t(t)

.

In addition to the data of a B-spline curve, the NURBS curve c has a sequence
of weights w1, . . . , wn. One of the advantages of NURBS curves over B-spline
curves is that they can be used to represent conic sections exactly (taking the
order k to be three). A disadvantage is that NURBS curves depend nonlinearly on

2.5. B-SPLINE SURFACES 13

qqq qq qqq
Figure 2.8: A quadratic B-spline curve with two equal internal knots.

their weights, making some calculations, like the evaluation of derivatives, more
complicated and less efficient than with B-spline curves.

The representation of a NURBS curve is the same as for a B-spline except that
it also includes

w : A sequence of weights w = (w1, w2, . . . , wn).

In SISL we make the assumption that

• The weights are (strictly) positive: wi > 0.

Under this condition, a NURBS curve, like its B-spline cousin, enjoys the con-
vex hull property. Due to k-fold knots at the ends of the knot vector, NURBS
curves in SISL also have the endpoint property.

2.5 B-spline Surfaces

This section is optional reading for those who want to become acquainted with
some of the mathematics of tensor-product B-splines surfaces. For a description
of the data structure for B-spline surfaces in SISL, see the reference manual.

A tensor product B-spline surface is defined as

s(u, v) =
n1∑
i=1

n2∑
j=1

pi,jBi,k1,u(u)Bj,k2,v(v)

with control points pi,j and two variables (or parameters) u and v. The formula
shows that a basis function of a B-spline surface is a product of two basis functions
of B-spline curves (B-splines). This is why a B-spline surface is called a tensor-
product surface. The following is a list of the components of the representation:

dim : The dimension of the underlying Euclidean space.

14 CHAPTER 2. GENERAL INTRODUCTION

n1 : The number of vertices with respect to the first parameter.

n1 : The number of vertices with respect to the second parameter.

k1 : The order of the B-splines in the first parameter.

k2 : The order of the B-splines in the second parameter.

u : The knot vector of the B-splines with respect to the first parameter, u =
(u1, u2, . . . , un1+k1).

v : The knot vector of the B-splines with respect to the second parameter, v =
(v1, v2, . . . , vn2+k2).

p : The control points of the B-spline surface, cd,i,j , d = 1, . . . , dim, i = 1, . . . , n1,
j = 1, . . . , n2. When dim = 3, we have p = (x1,1, y1,1, z1,1, x2,1, y2,1, z2,1, . . .,
xn1,1, yn1,1, zn1,1, . . ., xn1,n2 , yn1,n2 , zn1,n2).

The data of the B-spline surface must fulfill the following requirements:

• Both knot vectors must be non-decreasing.

• The number of vertices must be greater than or equal to the order with
respect to both parameters: n1 ≥ k1 and n2 ≥ k2.

• There should be k1 equal knots at the beginning and end of knot vector u
and k2 equal knots at the beginning and end of knot vector v.

The properties of the representation of a B-spline surface are similar to the
properties of the representation of a B-spline curve. The control points pi,j form
a control net as shown in figure 2.9. The control net has similar properties to the
control polygon of a B-spline curve, described in section 2.4.2. A B-spline surface
has two knot vectors, one for each parameter. In figure 2.9 we can see isocurves,
surface curves defined by fixing the value of one of the parameters.

2.5.1 The Basis Functions

A basis function of a B-spline surface is the product of two basis functions of two
B-spline curves,

Bi,k1,u(u)Bj,k2,v(v).

Its support is the rectangle [ui, ui+k1] × [vj , vj+k2]. If the basis functions in both
directions are of degree one and all knots have multiplicity one, then the sur-
face basis functions are pyramid-shaped (see figure 2.10). For higher degrees, the
surface basis functions are bell shaped.

2.5. B-SPLINE SURFACES 15

Figure 2.9: A B-spline surface and its control net. The surface is drawn using
isocurves. The dimension is 3.

6

0.0

1.0

q q q q
q

q
�
�
�
�
�

�

�

�

�
�
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C
C
C

Q
Q

Q
Q

Q
Q
QQ

�

�

�

Figure 2.10: A basis function of degree one in both variables.

16 CHAPTER 2. GENERAL INTRODUCTION

2.5.2 NURBS Surfaces

A NURBS (Non-Uniform Rational B-Spline) surface is a generalization of a B-
spline surface,

s(u, v) =

∑n1
i=1

∑n2
j=1wi,jpi,jBi,k1,u(u)Bj,k2,v(v)∑n1

i=1

∑n2
j=1wi,jBi,k1,u(u)Bj,k2,v(v)

.

In addition to the data of a B-spline surface, the NURBS surface has a weights
wi,j . NURBS surfaces can be used to exactly represent several common ‘analytic’
surfaces such as spheres, cylinders, tori, and cones. A disadvantage is that NURBS
surfaces depend nonlinearly on their weights, making some calculations, like with
NURBS curves, less efficient.

The representation of a NURBS surface is the same as for a B-spline except
that it also includes

w : The weights of the NURBS surface, wi,j , i = 1, . . . , n1, j = 1, . . . , n2, so
w = (w1,1, w2,1, . . . , wn1,1, . . ., w1,2, . . . , wn1,n2).

In SISL we make the assumption that

• The weights are (strictly) positive: wi,j > 0.

Chapter 3

Tutorial programs

This release of SISL is bundled with a number of sample programs which are in-
tended to make the user more familiar with the use of the API, as well as demon-
strating some of its capabilities.

3.1 Compiling the programs

Makefiles are provided to compile all provided source code, included the sample
programs. Refer to (1.3) for details on using the provided makefiles. Please note
that since these executables link both with SISL 4.4 and the ‘streaming’ library,
these must be compiled first.

The compilation of the example code has been verified for the GCC 3.3.3 com-
piler and the Microsoft Visual C++ .NET 2002 compiler, but it should be general
enough to compile relatively troublefree on most platforms.

3.2 Description and commentaries on the sample pro-
grams

The example programs are named example01 through example15. Each of the
program demonstrates the use of a single or a couple of SISL functions. The
programs produces output files that contain geometric objects in the Go-format,
which can then be visualised by the provided KRULL-viewer.

To keep things as simple as possible, the example programs (with the exception
of example15) take no command line arguments. Instead, upon execution they
inform the user about what they are about to do, and which files will be read
from and written to. The names of the input and output files are hard-coded in
each example, but the user can experiment by changing the name of these files if

17

18 CHAPTER 3. TUTORIAL PROGRAMS

she wants to. Several of the sample programs rely upon files generated by earlier
examples, so the user should make sure she runs through them in chronological
order.

3.2.1 example01.C

What it does

This program demonstrates how to directly specify a spline curve by providing the
position of control points and a knotvector (parametrization). It generates such a
curve by using hard-coded values as input to the SISL newCurve routine.

What it demonstrates

1. How control points and knotvectors are specified in memory

2. How to use the newCurve routine

3. How to clean up memory using freeCurve

Input/output

The program takes no input files.
The program generates the files example1_curve.g2 and example1_points.g2.
The former contains the curve object and the latter contains the control points,
expressed in the Go-format.

3.2.2 example02.C

What it does

This program demonstrates one of the simplest interpolation cases for spline curves
in SISL. A sequence of 6 3D-points are provided (hardcoded), and the routine
generates a spline curve that fits exactly through these points. Note that this is a
simple example of a more general routine, which can also take into consideration
tangents, end point conditions, etc.

What it demonstrates

1. The use of the SISL routine s1356 for interpolating points with a curve

3.2. DESCRIPTION AND COMMENTARIES ON THE SAMPLE PROGRAMS19

Input/output

The program takes no input files.
The program generates the file example2_points.g2 and example2_curve.g2.
The first file contains the points to be interpolated, and the second file contains
the generated curve.

3.2.3 example03.C

What it does

This program creates a so-called blend-curve between two other curves, creating a
smooth connection between these. In this program, the blend curve connects the
end points of the two other curves, but in its generality, the routine can be used
to create blend curves connecting to any point on the other curves.

What it demonstrates

1. What a blend curve is and how it can be specified

2. The use of the SISL routine s1606 which computes the blend curve

3. The use of the SISL routine s1227 which evaluates points (and derivatives)
on a spline curve

4. How to directly access data members of the SISLCurve struct.

Input/output

The program takes as input the files example1_curve.g2 and example2_points.g2,
which are respectively generated by the programs example01 and example02. The
generated blend curve will be saved to the file example3_curve.g2.

3.2.4 example04.C

What it does

This program generates an offset curve from another curve. An offset curve is
specified as having a fixed distance in a specified direction from the original curve.
The generated offset curve will not be exact, as this would in general be impossible
using spline-function. We can however obtain an approximation within a user-
specified tolerance.

20 CHAPTER 3. TUTORIAL PROGRAMS

What it demonstrates

1. What an offset curve is and how it can be specified

2. The way in which many SISL routines deal with geometric tolerances

3. The use of the SISL routine s1360 which computes the offset curve within a
specified, geometric tolerance

Input/output

The original curve is read from the file example1_curve.g2, which is generated
by the program example01. The resulting approximation of the offset curve will
be written to the file example4_curve.g2.

3.2.5 example05.C

What it does

This program generates a family of conic section curves, which are represented as
rational splines. Conic sections can be exactly represented with such splines, so
no geometric tolerance specification is needed. The program will generate three
ellipse segments, one parabola segment and three hyperbola segments, based on
internal, hard-coded data.

What it demonstrates

1. The use of the SISL routine s1011 to generate all kinds of conic sections

2. The important fact that conic sections can be exactly represented by rational
splines

3. How a single shape parameter can specify whether the generated curve will
be an ellipse, a parabola or a hyperbola

Input/output

The program takes no input files.
The program generates the file example5_curve.g2 which contains all the gener-
ated curves.

3.2. DESCRIPTION AND COMMENTARIES ON THE SAMPLE PROGRAMS21

3.2.6 example06.C

What it does

This program generates two curves (from internal, hardcoded data), and computes
their intersections. Computation of intersections is an extremely important part
of SISL, although the intersection of two curves is a minor problem in this respect.

What it demonstrates

1. The use of the SISL routine s1857 for computing the intersection points
between two given spline curves

2. Underlines the fact that the detected intersection points are returned as
parameter values, and have to be evaluated in order to find their 3D positions

3. How to clean up an array of intersection curves (SISLIntcurve), although, in
this example, this array will already be empty

Input/output

The program takes no input files (the data for the curves is hard-coded).
The generated curves will be written to the files example6_curve_1.g2 and
example6_curve_2.g2. The intersection point positions will be written to the file
example6_isectpoints.g2.

3.2.7 example07.C

What it does

This is a very short and simple program that calculates the arc length of a curve.

What it demonstrates

1. The use of the SISL routine s1240 for computing the length of a spline curve

Input/output

The curve whose length is calculated is read from the file example6_curve_1,
which has been generated by the sample program example06. The calculated
length will be written to standard output.

22 CHAPTER 3. TUTORIAL PROGRAMS

3.2.8 example08.C

What it does

This program generates two non-intersecting spline curves (from internal, hard-
coded cata), and computes their mutual closest point. The call is very similar to
the one in example06, where we wanted to compute curve intersections.

What it demonstrates

1. The use of the SISL routine s1955 for locating the closest points of two
curves.

Input/output

As the curves are specified directly by internal data, no input files are needed.
The two generated curves will be saved to the two files example8_curve_1.g2 and
example8_curve_2.g2. The closest points will be written to the file
example8_closestpoints.g2.

3.2.9 example09.C

What it does

This program generates four different surfaces interpolating an array of spatial
points. The surfaces have different spline order, so that even though they interpo-
late the same points, they have different shapes.

What it demonstrates

1. The use of the SISL routine s1537 for generating an interpolating surface to
a grid of points

2. The effect of the spline order on the interpolating surface

Input/output

The program takes no input files (the points to be interpolated are hard-coded).
The program creates two data files: example9_points.g2, which contains all the
interpolated points, and example9_surf.g2, which contains the four generated
surfaces.

3.2. DESCRIPTION AND COMMENTARIES ON THE SAMPLE PROGRAMS23

3.2.10 example10.C

What it does

This program generates a sequence of spline curves. Moreover, it generates a lofted
surface interpolating these curves. The lofted surface has the original sequence of
curves as isoparametric curves in one of its parameters.

What it demonstrates

1. The use of the SISL routine s1538 for generating lofted spline surfaces

2. Gives a good example of what a lofted surface looks like

Input/output

The program takes no input files (the curves to be interpolated are hard-coded).
The program creates two data files: example10_curves.g2, containing the gener-
ated sequence of curves, and example10_surf.g2, containing the lofted surface.

3.2.11 example11.C

What it does

This program generates a cylindrical surface with an oval base.

What it demonstrates

1. The use of the SISL routine s1021 for generating cylindrical surfaces

2. The fact that cylindrical surfaces are exactly representable as rational spline
surfaces

Input/output

The program takes no input files.
The program creates one data file: example11_surf.g2, containing the generated
surface.

3.2.12 example12.C

What it does

This program finds the intersection points between a curve and a surface. The
curve and the surface in question have been defined by previous example programs.

24 CHAPTER 3. TUTORIAL PROGRAMS

What it demonstrates

1. The use of the SISL routine s1858 for computing intersection points between
a curve and a surface

Input/output

The curve and the surface in question are read from the files example4_curve.g2
and example10_surf.g2, respectively generated by the sample programs example04
and example10. The found intersections are written to the file
example12_isectpoints.g2.

3.2.13 example13.C

What it does

This program computes all intersection curves between two surfaces. This is a
nontrivial task in geometrical modeling. The problem is twofold. The first problem
is to determine the number of intersections, and their topology. The region of an
intersection can be either a point, a curve and a surface. In the two latter cases,
the shape of the region can usually only be approximated. We do not know a priori
how many separate intersections there exists between two surfaces, so we have to
look systematically for them. Intersection curves can take the form either as closed
loops on the interior of the surfaces, or as curves running from the surface edges.
When we have successfully determined the topology of the intersections, the second
problem is to determine their acutal shape. This is usually done by marching
techniques. However, we may run into problems with ’degenerated’ surfaces, or
surfaces being close to coplanar in the intersection.

What it demonstrates

1. The use of the SISL routine s1859 for determining the topology of the in-
tersections between two spline surfaces

2. The use of the SISL routine s1310 for marching out the detected curves after
their topologies have been determined

Input/output

The two surfaces have been generated by the previous sample programs example10
and example11, and can be found in the files example10_surf.g2 and
example11_surf.g2. The resulting intersection curves will be written to the file
example13_isectcurves.g2.

3.2. DESCRIPTION AND COMMENTARIES ON THE SAMPLE PROGRAMS25

3.2.14 example14.C

What it does

This program demonstrates one of the data reduction techniques of SISL. As input
data, it first generates a dense point set by sampling from a (predefined) spline
curve. Then, using this data, it attempts to generate a new spline curve that fits
closely to these samples, while using as few control points as possible. Since we
know that in this case the data points come from a simple spline curve, it should be
no surprise that the generated curve will have approximately the same expression
as the sampled curve (and thus reduce the quantity of data substantially compared
to what is needed to store the points). However, data reduction can be obtained
on any sufficiently smooth point set, even if it originates from other processes.

What it demonstrates

1. The use of the SISL routine s1961 for generating approximating spline curves
through a set of data, using as few control points as possible.

2. The power of this data reduction technique on smooth point data.

Input/output

The program takes no input files, as the curve to be sampled from is hard-coded.
The sampled points will be written to the file example14_points.g2, and the
obtained curve will be stored in example14_curve.g2.

3.2.15 example15.C

What it does

This is the last of the sample programs, and by far the most complicated. It aims
not only to demonstrate a certain feature of SISL, but to show how this feature
can be used for a purpose (raytracing). Moreover, it demonstrates two ways of
achieveing this, one slow and robust method and one rapid but fragile method.
Raytracing can be seen as the process of determining what an object ’looks like’
from a certain viewpoint, through a certain ’window’, as illustrated below. Lines

(’rays’) are extended from the viewpoint through a dense grid of points on the win-
dow, and checked for intersection with the object. If such an intersection exists,
it should be registered as a point on the object ’visible’ from the viewpoint. In

26 CHAPTER 3. TUTORIAL PROGRAMS

computer graphics, these points are projected back on the window, which becomes
a 2D image that can be displayed on the computer screen. For our purposes, we
refrain from doing this projection, and store the full 3D coordinates of the detected
point.
Note that a ray may intersect the object more than once. In these cases, the inter-
section point closest to the viewpoint is chosen, as the other points are ’hidden’ by
it. As mentioned above, there are two raytracing routines in this example program.
The robust routine calculates all possible intersection points for each ray, and then
choses the nearest one. This should always work, but can be slow since no informa-
tion is re-used. When we have found an intersection point for a given ray, we can
usually expect that the next, neighouring ray will intersect in a point close to the
one already found. If this is the case, it would be speedier to use a local algorithm
that converges on the intersection point quickly given a good initial guess. This is
the basis for our ’quick’ routine. This routine uses the robust raytracing algorithm
to find the first point on a surface, and then it switches over to the fast method as
long as it is possible to do so. However, since the quick method never finds more
than one intersection point, and since a ray may generally intersect an object more
than once, we have no guarantee that the point found is the one truly visible from
the viewpoint. There are some checking procedures that make things better, but
we still have no guarantee. If the user inspects the results obtained, he will notice
this problem even on the simple example given here. In general, it can be said that
the rapid algorithm should only be used in some special cases, where we know for
a fact that any ray from the viewpoint will not intersect the surface more than once.

This is the only of the example programs that can be run with a command
line argument. If the first argument is q, then the quick raytracing routine will be
invoked. Else, the robust and slow routine is used.

What it demonstrates

1. The basic setting and principe of a raytracer, with a defined viewpoint,
window and intersection with rays.

2. The use of the SISL routine s1856, which calculates all intersections between
a spline surface and a line.

3. The use of the SISL routine s1518, which converges to an intersection be-
tween a spline surface and a line, given a good initial guess.

Input/output

The surface to be raytraced is read from the file example10_surf.g2, generated
by the example10 program. The other parameters necessary for the raytracing are

3.2. DESCRIPTION AND COMMENTARIES ON THE SAMPLE PROGRAMS27

hard- coded (viewpoint, view window, resolution, etc.). The resulting points are
written to the file example15_points.g2.

Chapter 4

The object viewer program

4.1 General

The object viewer program bundled with this distrubtion of SISL is intended to
be a simple but handy tool for visualising curves and surfaces generated by SISL.
The supported file format is the Go (Geometric Object) format, which is a simple,
ASCII-based format defined by SINTEF. The viewer is based on OpenGL. The
object(s) to be viewed are specified on the command line when starting the pro-
gram. Once the program is started, the user cannot open other files containing
SISL objects. The viewer allows the user to zoom, pan and rotate the objects with
the mouse, and some other useful commands can be accessed through the keyboard.

In the viewer window, several curves and surfaces can be displayed simultane-
ously. At all times, exactly one surface and one curve are defined as being active
(the other ones being passive). With keyboard commands, the user can change
the currently active surface/curve. An object just becoming active will flash for
a few seconds. With other keyboard commands, the user can enable/disable sur-
faces and curves. This refers to turning the display of these objects on or off. For
details, refer to the section on keyboard commands.

4.2 Command line arguments

When starting up the viewer, the options listed below can be used. If no option is
specified, a short text listing the available options is printed on screen.

• s filename - view the surface(s) contained in the file filename. Note: this
command line option can be used repetitively if the user wants to inspect
several surfaces at once.

28

4.3. USER CONTROLS 29

• c filename - view the curve(s) contained in the file filename. Note: this
command can be used repetitively if the user wants to inspect several curves
at once.

• p filename - view the point(s) contained in the file filename. Note: this
command line option can be used repetitively if the user wants to inspect
several surfaces at once.

• r integer set surface refinement factor (number of facets in each direction on
the surface). Default value is 100. Higher values gives smoother drawing of
the surface. NB: this option has to precede the ’s’ option!

• e string the string contains keypresses to execute directly upon start (see
the section on keyboard control keys for details).

• hotkeys does not start the viewer, but displays a list of keyboard commands
that can be used when viewing.

A file can contain one or several curves, or one or several surfaces. Files con-
taining both curves and surfaces are not supported. The viewer can read several
files to be viewed at once. On the command line, each “curve” file should be
preceded with the letter ’c’, and each “surface” file should be preceded with the
letter ’s’. After launch, all the objects contained in the given files are shown si-
multaneously. The user can disable the view of certain curves and surfaces if he
or she wants to.

4.3 User controls

After program launch, the viewing of curves and surfaces can be controlled with
the mouse and keyboard. The mouse is used to define viewing angle, direction and
zoom factor, while keyboard keys are used to turn on/off objects and to change
certain view parameters.

4.3.1 Mouse commands

It is assumed that a 3-button mouse is used. By dragging the mouse while holding
down the left button, the user can rotate the current view in an intuitive way. By
dragging with a certain speed, the view will continue to rotate even after the left
button is released. The middle button is used for zooming. Hold down this button
and move the mouse forwards and backwards in order to zoom in and out. Holding
down the right button while dragging the mouse moves the view up and down.

30 CHAPTER 4. THE OBJECT VIEWER PROGRAM

4.3.2 Keyboard commands

The available keyboard commands are:

• q - quit the viewer program

• <space> - change the currently active curve (cycles through each of them)

• <tab> - change the currently active surface (cycles through each of them)

• w - turn on/off the wireframe display for surfaces

• B - toggle between black and white color for backgrounds

• A - toggle drawing of coordinate axes on/off

• S - toggle drawing of surfaces

• e - toggle visibility of currently active surface

• a - make all loaded surfaces visible

• d - hide all surfaces except the currently active one

• <ctrl>-e - toggle visibility of currently active curve

• <ctrl>-a - make all loaded curves visible

• <ctrl>-d - hide all curves except the currently active one

• O - center all objects around origo, and rescale objects so that they fit inside
the unit volume (does not preserve aspect ratio)

• o - center all objects around origo, no rescaling

• + - increase thickness of axes

• - - decrease thickness of axes

• > - increase size of points

• < - decrease size of points

• / - decrease length of axes

• <esc>-w-[n] - store viewpoint in slot [n], where [n] is a number from 0 to
9. The viewpoint will be saved to file, and can such be preserved from one
session to another.

• <esc>-r-[n] - load a previously saved viewpoint from slot [n], where [n] is
a number from 0 to 9.

Appendix A

The GNU General Public
License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

31

32 APPENDIX A. THE GNU GENERAL PUBLIC LICENSE

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that ev-
eryone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

Terms and Conditions For Copying, Distribution
and Modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifi-
cations and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what
the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice and disclaimer

33

of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is inter-
active but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be rea-
sonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the Program, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective works based on the
Program.

34 APPENDIX A. THE GNU GENERAL PUBLIC LICENSE

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,

35

modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-

36 APPENDIX A. THE GNU GENERAL PUBLIC LICENSE

tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and “any later
version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no war-
ranty for the program, to the extent permitted by applicable
law. Except when otherwise stated in writing the copyright
holders and/or other parties provide the program “as is” with-
out warranty of any kind, either expressed or implied, includ-
ing, but not limited to, the implied warranties of merchantabil-
ity and fitness for a particular purpose. The entire risk as
to the quality and performance of the program is with you.

37

Should the program prove defective, you assume the cost of
all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in
writing will any copyright holder, or any other party who may
modify and/or redistribute the program as permitted above, be
liable to you for damages, including any general, special, in-
cidental or consequential damages arising out of the use or
inability to use the program (including but not limited to loss
of data or data being rendered inaccurate or losses sustained
by you or third parties or a failure of the program to operate
with any other programs), even if such holder or other party
has been advised of the possibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

38 APPENDIX A. THE GNU GENERAL PUBLIC LICENSE

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than show w and show c; they could even be mouse-clicks
or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead of
this License.

