Ucto: Unicode Tokeniser
version 0.9.6

Reference Guide

Maarten van Gompel Ko van der Sloot
Antal van den Bosch
Centre for Language Studies
Radboud University Nijmegen

URL: https://languagemachines.github.io/ucto/

January 23, 2017

Contents

1 GNU General Public License
2 Installation

3 Implementation

3.1 Configuration L

4 Usage

Introduction

Tokenisation is a process in which text is segmented into the various sentence
and word tokens that constitute the text. Most notably, words are separated
from any punctuation attached and sentence boundaries are detected. To-
kenisation is a common and necessary pre-processing step for almost any
Natural Language Processing task, and preceeds further processing such as
Part-of-Speech tagging, lemmatisation or syntactic parsing.

Whilst tokenisation may at first seem a trivial problem, it does pose various
challenges. For instance, the detection of sentence boundaries is complicated
by the usage of periods abbreviations and the usage of capital letters in
proper names. Furthermore, tokens may be contracted in constructions such
as “I'm”, “you’re”, “father’s”. A tokeniser will generally split those.

Ucto is an advanced rule-based tokeniser. The tokenisation rules used by
ucto are implemented as regular expressions and read from external config-
uration files, making ucto flexible and extensible. Configuration files can be
further customised for specific needs and for languages not yet supported.
Tokenisation rules have first been developed for Dutch, but configurations
for English, German, French, Italian, and Swedish are also provided. Ucto
features full unicode support. Ucto is not just a standalone program, but is
also a C++ library that you can use in your own software.

This reference guide is structured as follows. In Chapter 1 you can find the
terms of the license according to which you are allowed to use, copy, and
modify Ucto. The subsequent chapter gives instructions on how to install
the software on your computer. Next, Chapter 3 descibres the underlying
implementation of the software. Chapter 4 explains the usage.

i

Chapter 1

GNU General Public License

Ucto is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version.

Ucto is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Pub-
lic License for more details.

You should have received a copy of the GNU General Public License along
with Ucto. If not, see <http://www.gnu.org/licenses/>.

In publication of research that makes use of the Software, a citation should
be given of: “Maarten van Gompel, Ko van der Sloot, Antal van den Bosch
(2012). Ucto: Unicode Tokeniser. Reference Guide. ILK Technical Report
12-05,

Available fromhttp://ilk.uvt.nl/downloads/pub/papers/ilk.1205.pdf”

For information about commercial licenses for the Software, contact lamasoftware@science.ru.r
or send your request to:

Prof. dr. Antal van den Bosch
Radboud University Nijmegen

P.O. Box 9103 — 6500 HD Nijmegen
The Netherlands

Email: a.vandenbosch@let.ru.nl

Chapter 2

Installation

The ucto source can be obtained from:
https://github.com/LanguageMachines/ucto
These sources need to be compiled for the software to run.

However, on most recent Debian and Ubuntu systems, Ucto can be found in
the respective software repositories and can be installed with a simple:

$ apt-get install ucto

On Arch Linux, ucto is available from the Arch User Repository. If you have
a package for your distribution, you can skip the remainder of this section.

To facilitate installation in other situations, we recommend to use our LaMa-
chine software distribution, which includes ucto and all dependencies:

http://proycon.github.io/LaMachine/

If you however install from the source archive, the compilation and instal-
lation should also be relatively straightforward on most UNIX systems, and
will be explained in the remainder of this section.

Ucto depends on the 1libicu library. This library can be obtained from
http://site.icu-project.org/ but is also present in the package man-
ager of all major Linux distributions. Ucto also depends on uctodata,
libfolia (available from http://proycon.github.com/folia), which in
turn depends on libticcutils (available from
http://github.com/LanguageMachines/ticcutils). It will not compile
without any of them.

If all dependencies are satisfied, to compile ucto on your computer, run the

CHAPTER 2. INSTALLATION 3

following from the ucto source directory:
$ bash bootstrap.sh
$./configure

Note: It is possible to install Ucto in a different location than the global
default using the --prefix=<dir> option, but this tends to make further
operations (such as compiling higher-level packages like Frog!) more compli-
cated. Use the -—with-ucto= option in configure.

After configure you can compile Ucto:
$ make

and install:

$ make install

If the process was completed successfully, you should now have executable
file named ucto in the installation directory (/usr/local/bin by default,
we will assume this in the reminder of this section), and a dynamic library
libucto.so in the library directory (/usr/local/lib/). The configuration
files for the tokeniser can be found in /usr/local/etc/ucto/.

Ucto should now be ready for use. Reopen your terminal and issue the ucto
command to verify this. If not found, you may need to add the installation
directory (/usr/local/bin to your $PATH.

That’s all!

The e-mail address for problems with the installation, bug reports, comments
and questions is lamasoftware@science.ru.nl.

"http://ilk.uvt.nl/frog

Chapter 3

Implementation

Ucto is a regular-expression-based tokeniser. Regular expressions are read
from an external configuration file and processed in an order explicitly spec-
ified in this same configuration file. Each regular expression has a named
label. These labels are propagated to the tokeniser output as tokens pro-
cessed by a certain regular expression are assigned its identifier.

The tokeniser will first split on the spaces already present in the input, result-
ing in various fragments. Each fragment is then matched against the ordered
set of regular expressions, until a match is found. If a match is found, the
matching part is a token and is assigned the label of the matching regular
expression. The matching part may be a only a substring of the fragment,
in which case there are one or two remaining parts on the left and/or right
side of the match. These will be treated as any other fragments and all
regular expressions are again tested in the specified order, from the start,
and in exactly the same way. This process continues until all fragments are
processed.

If a regular expression contains subgroups (marked by parentheses), then not
the whole match, but rather the subgroups themselves will become separate
tokens. Parts within the whole match but not in subgroups are discarded,
whilst parts completely outside the match are treated as usual.

Ucto performs sentence segmentation by looking at a specified list of end-of-
sentence markers. Whenever an end-of-sentence marker is found, a sentence
ends. However, special treatment is given to the period (“.”), because of its
common use in abbreviations. Ucto will attempt to use capitalisation (for

scripts that distinguish case) and sentence length cues to determine whether

CHAPTER 3. IMPLEMENTATION 5

a period is an actual end of sentence marker or not.

Simple paragraph detection is available in Ucto: a double newline triggers a
paragraph break.

Quote detection is also available, but still experimental and by default dis-
abled as it quickly fails on input that is not well prepared.If your input can
be trusted on quotes being paired, you can try to enable it. Note that quotes
spanning over paragraphs are not supported.

3.1 Configuration

The regular expressions on which ucto relies are read from external config-
uration files. A configuration file is passed to ucto using the -c or -L flags.
Configuration files are included for several languages, but it has to be noted
that at this time only the Dutch one has been stress-tested to sufficient ex-
tent.

The configuration file consists of the following sections:

e RULE-ORDER — Specifies which rules are included and in what order they
are tried. This section takes a space separated list (on one line) of rule
identifiers as defined in the RULES section. Rules not included here but
only in RULES will be automatically added to the far end of the chain,
which often renders them ineffective.

e RULES — Contains the actual rules in format ID=regexp, where ID is a
label identifying the rule, and regexp is a regular expression in libicu
syntax. This syntax is thoroughly described on
http://userguide.icu-project.org/strings/regexp . The order
is specified seperately in RULE-ORDER, so the order of definition here
does not matter.

e ABBREVIATIONS — Contains a list of known abbreviations, one per line.
These may occur with a trailing period in the text, the trailing period
is not specified in the configuration. This list will be processed prior
to any of the explicit rules. Libicu regular expression syntax is used
again. Tokens that match abbreviations from this section get assigned
the label ABBREVIATION-KNOWN.

CHAPTER 3. IMPLEMENTATION 6

e SUFFIXES — Contains a list of known suffixes, one per line, that the
tokeniser should consider separate tokens. This list will be processed
prior to any of the explicit rules. Libicu regular expression syntax is
used again. Tokens that match any suffixes in this section receive the
label SUFFIX.

e PREFIXES — Contains a list of known prefixes, one per line, that the
tokeniser should consider separate tokens. This list will be processed
prior to any of the explicit rules. Libicu regular expression syntax is
used again. Tokens that match any suffixes in this section receive the
label PREFIX.

e TOKENS — Treat any of the tokens, one per line, in this list as inte-
gral units and do not split it. This list will be processed prior to any
of the explicit rules. Once more, libicu regular expression syntax is
used. Tokens that match any suffixes in this section receive the label
WORD-TOKEN.

e ATTACHEDSUFFIXES — This section contains suffixes, one per line, that
should not be split. Words containing such suffixes will be marked
WORD-WITHSUFFIX.

e ATTACHEDPREFIXES — This section contains prefixes, one per line, that
should not be split. Words containing such prefixes will be marked
WORD-WITHPREFIX.

e ORDINALS — Contains suffixes, one per line, used for ordinal numbers.
Number followed by such a suffix will be marked as NUMBER-ORDINAL.

e UNITS — This category is reserved for units of measurements, one per
line, but is currently disabled due to problems.

e CURRENCY — This category is reserved for currency symbols, one per
line, but is currently disabled due to problems.

e EOSMARKERS — Contains a list of end-of-sentence markers, one per line
and in \uXXXX format, where XXXX is a hexadecimal number indicating
a unicode code-point. The period is generally not included in this list
as ucto treats it specially considering its role in abbreviations.

e QUOTES — Contains a list of quote-pairs in the format beginquotes \s
endquotes \n. Multiple begin quotes and endquotes are assumed to
be ambiguous.

CHAPTER 3. IMPLEMENTATION 7

e FILTER - Contains a list of transformations. In the format pattern \s
replacement \n. Each occurrence of pattern will be replaced. This
is useful for deconstructing ligatures for example.

Lines starting with a hash sign are treated as comments. Lines starting with
%include will include the contents of another file. This may be useful if for
example multiple configurations share many of the same rules, as is often the
case. This directive is for the moment only supported within RULES, FILTER,
QUOTES and EOSMARKERS.

You can see several sections specifying lists. These are implicit regular ex-
pressions as all are converted to regular expressions. They are checked prior

to any of the explicit rules, in the following order of precedence: SUFFIXES,
PREFIXES, ATTACHEDSUFFIXES, ATTACHEDPREFIXES, TOKENS, ABBREVIATIONS,
ORDINALS.

When creating your own configuration, it is recommended to start by copying
an existing configuration and use it as example. For debugging purposes, run
ucto in a debug mode using -d. The higher the level, the more debug output
is produced, showing the exact pattern matching.

Chapter 4

Usage

Ucto is a command-line tool. The following options are available:

Usage:

ucto [[options]] [input-file] [[output-file]]

Options:

-c <configfile> - Explicitly specify a configuration file
-d <value> - set debug level

-e <string> set input encoding (default UTF8)

-N <string> - set output normalization (default NFC)

-f - Disable filtering of special characters

-L <language> - Automatically selects a configuration file
by language code

-1 - Convert to all lowercase

-u - Convert to all uppercase

-n - One sentence per line (output)

-m - One sentence per line (input)

-v - Verbose mode

-s <string> End-of-Sentence marker (default: <utt>)

--passthru - Don’t tokenize, but perform input decoding
and simple token role detection

-P - Disable paragraph detection

-S - Disable sentence detection!

-Q - Enable quote detection (experimental)

-V - Show version information

-F - Input file is in FoLiA XML. All untokenised

sentences will be tokenised.

CHAPTER 4. USAGE 9

-X - Output FoLiA XML, use the Document ID
specified with --id=
--id <DocID> - use the specified Document ID to label

the FolLia doc.
(-x and -F disable usage of
most other options: -nulPQVsS)

Ucto has two input formats and three output formats. It can take either
an untokenised plain text UTF-8 as input, or a FoLiA XML document with
untokenised sentences. If the latter is the case, the -F flag should be added.

Output by default is to standard error output in a simplistic format which
will simply show all of the tokens and places a <utt> symbol where sentence
boundaries are detected. Consider the following untokenised input text: Mr.
John Doe goes to the pet store. He sees a cute rabbit, falls in love, and buys
it. They lived happily ever after., and observe the output in the example
below.

We save the file to /tmp/input.txt and we run ucto on it. The -L eng
option sets the language to English and loads the English configuration for
ucto. Instead of -L, which is nothign more than a convenient shortcut, we
could also use -c and point to the full path of the configuration file.

$ ucto -L eng /tmp/input.txt

configfile = tokconfig-eng

inputfile = /tmp/input.txt

outputfile =

Initiating tokeniser...

Mr. John Doe goes to the pet store . <utt> He sees a cute rabbit , falls
in love , and buys it . <utt> They lived happily ever after . <utt>

Alternatively, you can use the —-n option to output each sentence on a separate
line, instead of using the <utt> symbol:

$ ucto -L eng -n /tmp/input.txt
configfile = tokconfig-eng
inputfile = /tmp/input.txt
outputfile =

Initiating tokeniser...

Mr. John Doe goes to the pet store .

CHAPTER 4. USAGE 10

He sees a cute rabbit , falls in love , and buys it
They lived happily ever after .

To output to an output file instead of standard output, we would invoke ucto
as follows:

$ ucto -L eng /tmp/input.txt /tmp/output.txt

This simplest form of output does not show all of the information ucto has
on the tokens. For a more verbose view, add the -v option:

$ ucto -L eng -v /tmp/input.txt
configfile = tokconfig-eng
inputfile = /tmp/input.txt
outputfile =

Initiating tokeniser...

Mr. ABBREVIATION-KNOWN BEGINOFSENTENCE NEWPARAGRAPH
John WORD

Doe WORD

goes WORD

to WORD

the WORD

pet WORD

store WORD NOSPACE

. PUNCTUATION ENDOFSENTENCE

He WORD BEGINOFSENTENCE
sees WORD

a WORD

cute WORD

rabbit WORD NOSPACE
,PUNCTUATION

falls WORD

in WORD

love WORD NOSPACE
,PUNCTUATION

and WORD

buys WORD

it WORD NOSPACE

CHAPTER 4. USAGE

. PUNCTUATION ENDOFSENTENCE

They WORD BEGINOFSENTENCE
lived WORD

happily WORD

ever WORD

after WORD NOSPACE

. PUNCTUATION ENDOFSENTENCE

11

As you see, this outputs the token types (the matching regular expres-
sions) and roles such as BEGINOFSENTENCE, ENDOFSENTENCE, NEWPARAGRAPH,

BEGINQUOTE, ENDQUOTE, NOSPACE.

For further processing of your file in a natural language processing pipeline,
or when releasing a corpus. It is recommended to make use of the FoLLiA

XML format [1] 1. FoLiA is a format for linguistic annotation supporting a
wide variety of annotation types. FoLiA XML output is enabled by specifying

the -X flag. An ID for the FolLiA document can be specified using the --id=

flag.

$ ucto —L eng —v —X ——id=example /tmp/input.txt
configfile = tokconfig—eng

inputfile = /tmp/input. txt

outputfile =

Initiating tokeniser ...

<?xml version="1.0" encoding="UTF-8" 7>
<?xml-stylesheet type="text/xsl” href="folia.xsl”?>
<FoLiA xmlns:xlink="http://www.w3.o0rg/1999/xlink”

xmlns="http://ilk .uvt.nl/folia” xml:id="example” generator="

libfolia—v0.107>
<metadata type="native”>
<annotations>
<token—annotation annotator="ucto” annotatortype="auto”
set="tokconfig—en” />
</annotations>
</metadata>
<text xml:id="example.text”>
<p xml:id="example.p.1”">
<s xml:id="example.p.1.s.1”">
<w xml:id="example.p.1.s.1.
KNOWN” >
<t>Mr.</t>
</w>
<w xml:id="example.p.1.s.1.w.2”7 class="WORD’>

w.1” class="ABBREVIATION-

1See also: http://proycon.github.com /folia

CHAPTER 4. USAGE

<t>John</t>

</w>

<w xml:id="example.
<t>Doe</t>

</w>

<w xml:id="example.
<t>goes</t>

</w>

<w xml:id="example.
<t>to</t>

</w>

<w xml:id="example.
<t>the</t>

</w>

<w xml:id="example.
<t>pet</t>

</w>

<w xml:id="example.
<t>store</t>

</w>

<w xml:id="example.
<t>.</t>

<Jw>

</s>

<s xml:id="example.p.
<w xml:id="example.

<t>He</t>

</w>

<w xml:id="example.
<t>sees</t>

</w>

<w xml:id="example.
<t>a</t>

</w>

<w xml:id="example.
<t>cute</t>

</w>

<w xml:id="example.
<t>rabbit</t>

</w>

<w xml:id="example.
<t>,</t>

</w>

<w xml:id="example.
<t>falls</t>

</w>

<w xml:id="example.

<t>in</t>
</w>

—_

LS.

LS.

12

class="WORD’>

class="WORD’ >

class="WORD’>

class="WORD’ >

class="WORD’>

class="WORD" space="no”>

class="PUNCTUATION”>

class="WORD" >

class="WORD’>

class="WORD’ >

class="WORD’>

class="WORD” space="no">

class="PUNCTUATION" >

class="WORD’ >

class="WORD’>

CHAPTER 4. USAGE

<w xml:id="example.

<t>love</t>
</w>

<w xml:id="example.

<t>,</t>
</w>

<w xml:id="example.

<t>and</t>
</w>

<w xml:id="example.

<t>buys</t>
</w>

<w xml:id="example.

>
<t>it</t>
</w>

<w xml:id="example.

<t>.</t>
</w>
</s>

<s xml:id="example.p.
<w xml:id="example.

<t>They</t>

</w>

<w xml:id="example.
<t>lived</t>

</w>

<w xml:id="example.
<t>happily</t>

</w>

<w xml:id="example.
<t>ever</t>

</w>

<w xml:id="example.
<t>after</t>

</w>

<w xml:id="example.
<t>.</t>

</w>

</s>
</p>
</text>
</FoLiA>

.S

LS.

97

.107

117

127

137

.147

13

class="WORD"’

space="no">

class="PUNCTUATION” >

class="WORD’ >

class="WORD" >

class="WORD" space="no"

class="PUNCTUATION" >

class="WORD’ >

class="WORD’">

class="WORD’ >

class="WORD" >

class="WORD"’

space="no”">

class="PUNCTUATION”>

Ucto can also take FoLiA XML documents with untokenised sentences as

input, using the -F option.

Bibliography

[1] Maarten van Gompel. FoLiA: Format for Linguistic Annota-
tion. Documentation. ILK Technical Report 12-03. available from
http://ilk.uvt.nl/downloads/pub/papers/ilk.1203.pdf. ILK Technical Re-
port, 2012.

14

