TRAL
BT

Microsoft go-cose

Security Assessment

July 26, 2022

Prepared for:
Steve Lasker and Roy Williams
Microsoft

Prepared by: Tjaden Hess and Evan Sultanik



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’'s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)


https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Microsoft
under the terms of the project statement of work and has been made public at Microsoft's
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Executive Summary 4
Project Summary 6
Project Goals 7
Project Targets 8
Project Coverage 9
Automated Testing 10
Codebase Maturity Evaluation 12
Summary of Findings 14
Detailed Findings 15

1. Unmarshalling can cause a panic if any header labels are unhashable 15

2. crit label is permitted in unvalidated headers 16

3. Generic COSE header types are not validated 17
Summary of Recommendations 19
A. Vulnerability Categories 20
B. Code Maturity Categories 22
C. Performance Profiling 24
Trail of Bits 3 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Executive Summary

Engagement Overview

Microsoft engaged Trail of Bits to review the security of the Veraison go-cose CBOR object
signing and encryption library. From June 16 to June 30, 2022, a team of two consultants
conducted a security review of the client-provided source code, with four person-weeks of
effort. Details of the project's timeline, test targets, and coverage are provided in
subsequent sections of this report. Appendix C includes an evaluation of the library to
quantify its performance for varying types of input.

Project Scope

Our testing efforts were focused on the identification of flaws that could resultin a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the software. We performed static and dynamic testing of
the target system and its codebase, using both automated and manual processes.

Summary of Findings

The audit uncovered a significant flaw that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 1 Data Validation 2
Low 1 Denial of Service 1
Informational 1

Trail of Bits 4 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Notable Findings

Significant flaws that impact system confidentiality, integrity, or availability are listed below.

e TOB-GOCOSE-1

Unmarshalling a COSE message can cause a panic and, thereby, a denial of service if

any header labels are unhashable. This finding was reported to Microsoft and
mitigated.

Trail of Bits 5 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Cara Pearson, Project Manager
dan@trailofbits.com cara.pearson@trailofbits.com

The following engineers were associated with this project:

Tjaden Hess, Consultant Evan Sultanik, Consultant
tjaden.hess@trailofbits.com evan.sultanik@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

June 14, 2022 Pre-project kickoff call

June 22, 2022 Status update meeting #1

June 29, 2022 Delivery of report draft

June 29, 2022 Report readout meeting

July 26, 2022 Delivery of final report

Trail of Bits 6 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)


mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the go-cose library.
Specifically, we sought to answer the following non-exhaustive list of questions:

e Does go-cose conform to the RFC 8152 COSE specification?

e Does go-cose behave similarly to other COSE implementations?

e |s go-cose robust against malicious CBOR input?

e Does go-cose perform efficiently with large or maliciously constructed input?
e Does the implementation use cryptographic APIs securely and correctly?

e Does the implementation use secure coding practices?

e Will go-cose operate similarly regardless of whether it is compiled via “vanilla” Go
versus Microsoft's FIPS-compliant Go fork?

Trail of Bits 7 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



Project Targets

The engagement involved a review and testing of the following target.

go-cose

Repository https://github.com/veraison/go-cose

Version 07090f4bee9fd2d7f45c40b35acdc05690877244 (first week)
634ecd083227403fe45d45b2d99f95c08a741393 (second week)

Type CBOR Object Signing and Encryption (COSE) library

Platform Go

go-crypto-openssl

Repository https://github.com/microsoft/go-crypto-openssl/

Version 561693b272da%9ec15071a306dbb4c851312abf84

Type Library for replacing Go's internal hashing functions with those of
openssl for FIPS compliance in use with go-cose

Platform Go

Trail of Bits 8 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)


https://github.com/microsoft/go-crypto-openssl/

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches include the following:

Running static analysis tools such as Semgrep and CodeQL queries and triaging the
results

A manual review of cryptographic library usage

Extension of the preexisting fuzzing tests using the go-fuzz coverage-guided fuzz
tester

Use of fuzzing outputs to validate interoperability with t_cose, a C implementation of
COSE

Extension of the go-crypto-openssl unit tests to accept randomly generated fuzz
inputs

Extension of the benchmarking suite to cover edge cases and large inputs

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

While we did run a fuzzing campaign against go-crypto-openssl, we did not
thoroughly manually review its code.

We examined the patch differentials between Microsoft's custom, FIPS-compliant Go
implementation and upstream, “vanilla” Go, but performed no further analysis.

Trail of Bits 9 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)


https://github.com/laurencelundblade/t_cose

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration

We used the following tools in the automated testing phase of this project:

Tool Description Policies
Semgrep An open-source static analysis tool https://semgrep.dev/p/gosec
for finding bugs and enforcing code
standards when editing or https://raw.githubusercontent.
committing code and during build com/snowflakedb/gosnowflak
time e/master/.semgrep.yml
go-fuzz A coverage-guided Go fuzz tester A port of the preexisting
that, unlike the built-in Go fuzzer, will go-cose fuzz tests
continue searching after finding a
crash

Areas of Focus

Our automated testing and verification work focused on the following system properties:

e The library will not unexpectedly panic, causing a denial of service
e The library’s output is consistent with other CBOR/COSE implementations

Trail of Bits 10 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)


https://github.com/returntocorp/semgrep
https://semgrep.dev/p/gosec
https://raw.githubusercontent.com/snowflakedb/gosnowflake/master/.semgrep.yml
https://raw.githubusercontent.com/snowflakedb/gosnowflake/master/.semgrep.yml
https://raw.githubusercontent.com/snowflakedb/gosnowflake/master/.semgrep.yml
https://github.com/dvyukov/go-fuzz

Test Results

The results of this focused testing are detailed below.

go-cose: The Veraison project, go-cose implementation in Go.

Property Tool Result

The library will not unexpectedly panic. go-fuzz TOB-GOCOSE-1
The library’s output is consistent with other CBOR/COSE ~ Custom TOB-GOCOSE-3
implementations. differential

testing script

go-crypto-openssl: Microsoft's wrapper around openss1 that replaces Go's built-in
hashing libraries in its FIPS-compliant fork of Go.

Property Tool Result
The library will not unexpectedly panic. go-fuzz Passed
Trail of Bits 11 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result
Arithmetic The library makes proper use of mathematical Strong
operations and semantics.
Auditing The programmer using the go-cose library is Not
responsible for auditing its output. Applicable
Authentication / The library does not implement any authentication or Not
Access Controls access controls. Applicable
Complexity The codebase is well organized and succinct. Strong
Management
Configuration The library has a minimal amount of configuration, which Strong
is all specified through its API.
Cryptography Cryptographic signature APIs are used correctly and Strong
and Key signed data is properly validated.
Management
Data Handling All three findings in this report are due to data validation Moderate

Documentation

Trail of Bits

errors.

APl usage is documented with module-level and inline
comments. Usage examples are provided. However, the
documentation does not clarify which IANA-registered
headers are validated.

Satisfactory

12 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Maintenance

Memory Safety
and Error
Handling

Testing and
Verification

Trail of Bits

The codebase is actively maintained.

Go's inherent memory safety and error handling provides
strong guarantees for the library, modulo any panics
resulting from improper data validation (see above).

The codebase has adequate unit test and fuzz test
coverage; however, the fuzz tests are not regularly run in
Cl. Despite having a golangci linting configuration file, the
linter also does not appear to be run in Cl; the lints
currently fail.

Satisfactory

Strong

Satisfactory

13 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Unmarshalling can cause a panic if any header Denial of Service | High
labels are unhashable

2 crit label is permitted in unvalidated headers Data Validation Low
3 Generic COSE header types are not validated Data Validation Informational
Trail of Bits 14 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



Detailed Findings

1. Unmarshalling can cause a panic if any header labels are unhashable
Severity: High Difficulty: Low
Type: Denial of Service Finding ID: TOB-GOCOSE-1

Target: headers.go

Description
The ensureCritical function checks that all critical labels exist in the protected header.
The check for each label is shown in Figure 1.1.

161 if _, ok := h[label]; 'ok {
Figure 1.1: Line 161 of headers.go

The label in this case is deserialized from the user's CBOR input. If the label is a
non-hashable type (e.g., a slice or a map), then Go will runtime panic on line 161.

Exploit Scenario

Alice wishes to crash a server running go-cose. She sends the following CBOR message to
the server: \xd2\x84G\xc2\xa1\x02\xc2\x84@0000C000C000. When the server
attempts to validate the critical headers during unmarshalling, it panics on line 161.

Recommendations

Short term, add a validation step to ensure that the elements of the critical header are valid
labels.

Long term, integrate go-cose’s existing fuzz tests into the Cl pipeline. Although this bug
was not discovered using go-cose’s preexisting fuzz tests, the tests likely would have
discovered it if they ran for enough time.

Fix Analysis

This issue has been resolved. Pull request #78, committed to the main branch in
b870a00b4abB455ab5¢c3da1902570021e2bac12da, adds validations to ensure that critical
headers are only integers or strings.

Trail of Bits 15 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)


https://github.com/veraison/go-cose/blob/07090f4bee9fd2d7f45c40b35acdc05690877244/headers.go#L161
https://github.com/veraison/go-cose/pull/78

2. crit label is permitted in unvalidated headers
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-GOCOSE-2

Target: headers.go

Description

The crit header parameter identifies which header labels must be understood by an
application receiving the COSE message. Per RFC 8152, this value must be placed in the
protected header bucket, which is authenticated by the message signature.

crit: The parameter is used to indicate which protected header
labels an application that is processing a message is required to
understand. Parameters defined in this document do not need to be
included as they should be understood by all implementations.
When present, this parameter MUST be placed in the protected
header bucket. The array MUST have at least one value in it.
Not all labels need to be included in the 'crit' parameter. The

Figure 2.1: Excerpt from REC_8152 section 3.1

Currently, the implementation ensures during marshaling and unmarshaling that if the
crit parameter is present in the protected header, then all indicated labels are also
present in the protected header. However, the implementation does not ensure that the
crit parameter is not present in the unprotected bucket. If a user mistakenly uses the
unprotected header for the crit parameter, then other conforming COSE
implementations may reject the message and the message may be exposed to tampering.

Exploit Scenario

A library user mistakenly places the crit label in the unprotected header, allowing an
adversary to manipulate the meaning of the message by adding, removing, or changing the
set of critical headers.

Recommendations
Add a check during ensureCritical to verify that the crit label is not present in the
unprotected header bucket.

Fix Analysis

This issue has been resolved. Pull request #81, committed to the main branch in
62383c287782d0ba5a6f82f984dabb841e434298, adds validations to ensure that the
crit label is not present in unprotected headers.

Trail of Bits 16 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)


https://datatracker.ietf.org/doc/html/rfc8152
https://github.com/veraison/go-cose/pull/81

3. Generic COSE header types are not validated

Severity: Informational

Type: Data Validation

Target: headers.go

Description

Difficulty: Low

Finding ID: TOB-GOCOSE-3

Section 3.1 of RFC 8152 defines a number of common COSE header parameters and their
associated value types. Applications using the go-cose library may rely on COSE-defined
headers decoded by the library to be of a specified type. For example, the COSE
specification defines the content-type header (label #3) as one of two types: a text string
or an unsigned integer. The go-cose library validates only the alg and crit parameters,
not content-type. See Figure 3.1 for a list of defined header types.

Name

alg

crit

content
type

kid
Iv

Partial
Iv

counter
signature

+
|
|

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+

COSE_Signature

/ o[+

COSE_Signature

1

CBOR-encoded
signature
structure

- - ———— - -+ - -+

Value Type | value | Description
| Registry | |
- - ———— - -+ - -+
int / tstr | cose | cryptographic |
| Algorithms | algorithm to |
| registry | use |
[+ label] | COSE Header | Critical |
| Parameters | headers to be |

| registry | understood

tstr / uint | coap | Content type

| content- | of the payload |
| Formats or | |
| Media Types | |
| registries | |
bstr | | Key identifier |
bstr | | Full |
| | Initialization |
| | vector |
bstr | | partial |
| | Initialization |
| | Vector |
| | |
| | |
| | |
| | |
+ -+ -+

Figure 3.1: REC 8152 Section 3.1, Table 2

Further header types are defined by the IANA COSE Header Parameter Registry.

Trail of Bits

17

Microsoft go-cose Security Assessment

PUBLIC (DRAFT)


https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://www.iana.org/assignments/cose/cose.xhtml#header-parameters

Exploit Scenario

An application uses go-cose to verify and validate incoming COSE messages. The
application uses the content-type header to index a map, expecting the content type to
be a valid string or integer. An attacker could, however, supply an unhashable value,
causing the application to panic.

Recommendations
Short term, explicitly document which IANA-defined headers or label ranges are and are

not validated.

Long term, validate commonly used headers for type and semantic consistency. For
example, once counter signatures are implemented, the counter-signature (label #7)
header should be validated for well-formedness during unmarshalling.

Trail of Bits 18 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



Summary of Recommendations

The Veraison/go-cose library is a work in progress with continuous development. Trail of
Bits recommends the veraison project address the findings detailed in this report and take
the following additional steps prior to deployment:

e Ensure that linting is enforced via CI.
e Ensure that fuzz-testing is run regularly, preferably in ClI.

e Explicitly document which IANA-defined headers or label ranges are and are not
validated.

Trail of Bits 19 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

20 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

21 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria
Rating

Strong
Satisfactory

Moderate

Trail of Bits

Description
No issues were found, and the system exceeds industry standards.
Minor issues were found, but the system is compliant with best practices.

Some issues that may affect system safety were found.

22 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



I Weak Many issues that affect system safety were found.
I Missing A required component is missing, significantly affecting system safety.
Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 23 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



C. Performance Profiling

In order to assess the performance impact of integrating go-cose into applications, we
expanded the existing benchmark suite with a specific focus on worst-case performance
and potential denial-of-service (DoS) vectors. As a consumer of potentially malicious input,
it is important that go-cose spends time proportional to the length of the inputin all
cases; otherwise, an attacker with few resources may force the application to perform an
incommensurate amount of work on their behalf, starving out valid messages.

The relevant axes for scaling are:

e Payload length
e Number of header labels (protected and unprotected)
e Nesting depth of header maps

The desired behavior is that a 100x scaling in input size should correspond to, at most, a
100x scaling in processing time and memory allocation.

For each of the benchmarks, we used protected and unprotected headers structured as
complete trees of specified branching and depth. All protected headers were included in
the critical label set. Signing and verification benchmarks use a no-op algorithm.

We report average execution time (in nanoseconds) and RAM allocation (in bytes) per byte
of CBOR data, as measured on an M1 Macbook Pro.

We find that processing time and memory allocation per byte are bounded in the worst
case by roughly 25 ns and 20 bytes per byte of input CBOR, and no quadratic or worse
behavior was observed.

Trail of Bits 24 Microsoft go-cose Security Assessment
PUBLIC (DRAFT)



Number of

Time (ns) per

RAM (bytes)

Payload Size Header Labels Depth Input Byte  per Input Byte

1 1 1 16.48 10.63

1000 1 1 1.99 2.1

= 100000 1 1 0.12 1.08

£ 1 1000 1 16.2 12

% 1 100000 1 20.93 12.55

_:E‘E 1 10 3 135 11.73

o 1 10 6 13.93 14.12

a 1 1 30 13.84 12.29

© 1 2 10 13.02 12.19

1 2 1 13.14 11.34

1 1 1 25.79 20.69

1000 1 1 3.06 3.25

g 100000 1 1 0.12 1.09

= 1 1000 1 18.09 15.68

£ 1 100000 1 15.96 13.7

E 1 10 3 12.72 17.12

v 1 10 6 12.01 16.83

4 1 1 30 12.52 19.72

© 1 2 10 10.52 16.9

1 2 1 10.98 16.82

1 1 1 13.63 8.62

1000 1 1 2.07 1.94

o 100000 1 1 0.55 1.1

E 1 1000 1 9 6.53
=

7 1 100000 1 11.15 6.69

% 1 10 7.68 6.15

4 1 10 6 7.38 8.03

= 1 1 30 7.87 6.56

1 2 10 76 6.43

1 2 1 7.61 6.3

1 1 1 13.64 8.59

- 1000 1 1 2.05 1.93

2 100000 1 1 0.55 1.1

E 1 1000 1 8.76 6.46

s 1 100000 1 10.91 6.71

- 1 10 3 7.74 6.17

E 1 10 6 7.37 8.37

"su” 1 1 30 7.86 6.56

1 2 10 7.48 6.34

1 2 1 7.27 6.17

Trail of Bits 25 Microsoft go-cose Security Assessment

PUBLIC (DRAFT)



