
norp User's Guide
Abstract

The NRL Nack-Oriented Proxy (norp) project includes software for an RFC 1928 SOCKS5-compatible proxy
server daemon that is able to use the RFC 5740 Nack-Oriented Reliable Multicast (NORM) transport protocol for
efficient and robust data transfer between norp proxy instances. The norp proxy automatically supports conven-
tional SOCKS TCP proxy operation when a remote norp peer is unavailable. This software was developed by the
Naval Research Laboratory (NRL) PROTocol Engineering Advanced Networking Research Group. The NRL
reference implementation of NORM used here is available from http://www.nrl.navy.mil/itd/ncs/products/norm.

Table of Contents
1. Overview .. 1
2. Theory of Operation .. 1

2.1. SOCKS Loopback and Intermediate System .. 2
2.2. NORM Protocol Usage ... 2

3. Usage ... 2
3.1. SOCKS Client Configuration ... 5
3.2. Usage Examples .. 5

4. The "NORP" UDP Signaling Message Format .. 5
5. Future Plans .. 6

1. Overview
The norp application

2.Theory of Operation
The norp program acts as a SOCKS proxy server. It supports the SOCKS5 "CONNECT", "BIND" and "UDP-
ASSOCIATE" proxy methods for conventional SOCKS proxy operation. The current norp implementation does
not require (or support) any client authentication. Future versions may provide authentication or other access
control mechanisms. The current norp implementation only provides NORM transport for the SOCKS TCP
"CONNECT" requests. SOCKS "UDP-ASSOCIATE" over NORM will be supported in a future version.

Unlike a conventional SOCKS server, it is expected that the norp daemon can be installed and run as a local
"loopback" server that is co-resident on the host running applications that wish to take advantage of NORM
transport benefits. The norp daemon implements its own signaling protocol that will automatically determine,
upon TCP (or UDP) connection establishment, if a remote destination is also similarly "norp-enabled" and establish
a NORM transport connection as the proxy connection. Otherwise a "business-as-usual" TCP (or UDP) connection
is established on the application's behalf and thus compatibility with "non-norp" hosts is also supported. Figure 1,
“NORP Concept of Operation” illustrates this high level concept of operation.

1

http://www.nrl.navy.mil/
http://www.nrl.navy.mil/itd/ncs/products/norm

Figure 1. NORP Concept of Operation

TBD - provide some more details on norp signaling for peer detection and NORM session establishment

Note that as an alternative to making proxied connections directly to connection destination addresses as illustrated
above, a remote norp peer "correspondent" can be specified as part of the forward command or, for SOCKS
connections, with the correspondent command (see command descriptions below). Future versions of norp will
include more sophisticated "routing" options for different destinations and traffic types.

2.1. SOCKS Loopback and Intermediate System

As noted above the principal use case for norp is to act as a local, "loopback" SOCKS server that can be used in
conjunction with a properly configured SOCKS client. In this way, all of the configuration parameters are localized
and implicit and no precoordinated configuration with norp peers (or non-norp hosts) is required other than using
a common UDP port number for NORP signaling.

However, there may be use cases where it may be desirable to deploy norp on intermediate systems at the connection
originating site (or domain) and/or the destination site(s) (or domain(s)). This is easily supported by the norp design
and future norp versions will provide configuration options for this type of deployment.

2.2. NORM Protocol Usage

TBD - describe how the NORM streaming capability is used in a flow-controlled, positively-acknowledged fashion
to provide a reliable TCP proxy function. Also describe the NORM congestion control options here.

3. Usage
Typically, norp can be run in its default configuration with no command-line options required. However, a number
of options are available via the command-line. This is a summary of norp usage:

norp [interface <ifaceName>][address <publicAddr>][sport <socksPort>][port <norpPort>]
 [norm {on|off}][id <normId>][nport <normPort>][cce | ccl | rate <bits/sec>]
 [limit <bits/sec>][persist <seconds>][segment <segmentSize>]
 [correspondent <remoteNorpAddr>][forward <tcpPort>,<destAddr>/<destPort>[,<remoteNorpAddr>]]
 [version][debug <level>][trace][dlog <debugLog>][lport <localNorpPort>][rport <remoteNorpPort>]

The norp program command-line options include ...

2

norp User's Guide

Table 1. norp Command-line Options

The given <interfaceName> specifies the name (or IP address) of the host network
interface norp uses as its "public" proxy address. Currently a single interface may

interface <interfaceName>

be designated for an instance of norp. Future version of norp may allow for mul-
tiple interfaces to be designated depending upon the source and/or destination
address of SOCKS proxy connections.

This is similar to the "interface" command, but allows a specific address to be
set. For example, hosts with multiple addresses assigned may wish to use a spe-
cific address for proxy functions.

address <publicAddr>

This command is used to specify the port number on which the norp server listens
for SOCKS client connections. The default port is currently port number 7000.

sport <socksPort>

This command is used to specify the UDP port number used for norp session
setup signaling. The default norp UDP signaling port is 7001. The configured

port <norpPort>

norp port number (and NORM port number) MUST be unblocked by any network
firewalls between norp peers. The given port number is used by norp to listen for
remote connection request and is used as the destination port to signal remote
norp peers.

By default, norp attempts to signal the SOCKS connection endpoint to setup a
NORM transport connection to handle reliable data transfer for the TCP connection

norm {on | off}

being instantiated. This command with the "off" argument will disable this
function and norp will act as a conventional SOCKS proxy server.

By default, norp will attempt to self-configure a NORM protocol node identifier
using the IP address of the server host. This command allows a specific NORM

id <normId>

node identifier value to be set. It is generally not necessary to explicitly set this
value for norp unicast proxy connections.

This command can be used to specify a UDP port number that will be used for
NORM protocol transport connections. The default NORM port number used by

nport <normPort>

norp is 7002. The configured NORM port number (and norp UDP signaling port
number) MUST be unblocked by any network firewalls between norp peers.

This option enables NORM-CCE congestion control operation that uses Explicit
Congestion Notification (ECN) information for NORM protocol end-to-end

cce

transmission rate adaption. This is an alternative to the TCP-friendly congestion
control mechanism used for NORM by default. Routers in the path of the norp
peers using the NORM-CCE option MUST be configured for ECN packet marking
in response to congestion.

This option enables experimental NORM-CCL ("Loss Tolerant") congestion
control operation that uses some simple heuristics to try to differentiate packet

ccl

loss due to congestion versus duo to channel bit errors. This is another alternative
to the TCP-friendly congestion control mechanism used for NORM by default.
No special intermediate system configuration is required, and while more loss
tolerant than the default TCP-friendly behavior, is not as effective as the NORM-
CCE mode of operation.

This option causes norp to use a preset and fixed transmission rate for each
proxied data flow (e.g. TCP connection). This should only be used when the net-

rate <bits/sec>

work connectivity usage is carefully pre-planned and previsioned for the expected
(i.e. a priori known) flows. At this time, one common transmission rate is used
for all flows.

3

norp User's Guide

This option sets a limit for the cumulative transmit rate for all flows that norp is
proxying. For automated congestion operation, this can also work to "jump start"
the usual "slow start" transport rate control by setting the lower bound of rate ad-
justment based on the limit <bits/sec> / <numFlows>. For example, a single
flow will immediately "jump" to close the full limit rate, while the second of two
flows would "jump" to half of the "limit" rate. Also, by setting a limit based on
a priori connectivity information, this can avoid rate adjustment "overshoot" and
help congestion control operate more effectively as compared to a "blind" situation.
IMPORTANT: This options should only be applied when the connectivity path
is well known and the impact of the lower bound enforcement here will not ad-
versely impact other network traffic flows. A future option may be provided to
further reduce or eliminate the lower bound enforcement that would eliminate
this concern in less controlled network deployments. A limit value of "-1.0" (de-
fault) disables the limit enforcement.

limit <bits/sec>

This option sets the NORM protocol maximum packet payload size where is
<segmentSize> is in units of bytes. . For norp that uses the NORM_OB-
JECT_STREAM, the maximum NORM UDP payload size is 40 bytes of NORM
header plus the configured segment size. The resultant total maximum IPv4 UDP
packet size (including IP and UDP headers) is then 28 + 40 + <segmentSize>

bytes. For IPv6, the resultant maximum packet size is 48 + 40 + <segmentSize>

bytes. The default NORM segment size, if this option is not invoked, is 1400
bytes, resulting in NORM UDP packets with 1440 byte payloads. Thus, for IPv4
that has 28 bytes of IP + UDP header, this results in a maximum norp packet size
of 1468 bytes while, for IPv6, the maximum norp packet size would be 1488
bytes.

segment <segmentSize>

This option causes norp to "route" connections through a norp peer at the specified
<remoteNorpAddr>. This is an alternative to the default behavior where norp at-
tempts to connect directly to the connection destination addresses.

correspondent <remoteN-

orpAddr>

This option controls how persistently norp attempts to deliver data to the remote
endpoint when the remote endpoint fails to acknowledge reception. A persist value
of -1 makes norp infinitely persistent and the corresponding norp session remains
in place until all data is delivered. If not, an orphaned session will remain in place
if the remote endpoint is permanently disconnected. The default persist value is
120 seconds (2 minutes).

persist <seconds>

This command sets up a "preset" TCP proxy (non-SOCKS) port forwarding session
by listening on the specified TCP <tcpPort> for connections and then connecting
to the given remote <dstAddr>/<dstPort>. Optionally, a separate remote
<norpAddr> may be given. Otherwise, a norp proxy connection is attempted to
the given <dstAddr> platform on the norp <port> (or <rport> if specified). Note
that multiple such "preset" proxy sessions may be specified on the command-line
and each "preset" proxy session can handle multiple connections as needed.

forward <tcpPort>,<dstAd-

dr>/<dstPort>[,<norpAd-

dr>]

This command can be used to control the verbosity of norp debug logging output.
Generally, the range of the value is 0-12. A higher value results in more verbose,
detailed debug output.

debug <debugLevel>

This command enables NORM send and receive packet trace logging.trace

This command can be used to direct norp debug logging output to a given file.
The default norp debug logging is to STDERR.

dlog <fileName>

This command can enable single host, loopback testing by a having norp listen
on a different port number than which it uses as the destination port for remote
norp peer signaling. E.g., two norp instances on a single machine can be set up
with unique <localNorpPort> values and then use the "rport" command to
specify each other's destination norp port numbers.

lport <localNorpPort>

4

norp User's Guide

This command is intended to be used in conjunction with the "lport" command
to allow separate specification of the destination port number used for remote
norp peer signaling.

rport <remoteNorpPort>

3.1. SOCKS Client Configuration

TBD - provide overview and examples (for specific SOCKS clients of note such as Dante, Proxifier, etc) of SOCKS
client configuration

3.2. Usage Examples

The SOCKS client(s) must be configured to use the norp server unless a preset TCP port forward is specified.
For example the Dante proxy distribution (available from http://www.inet.no/dante/) has a socksify command that
is installed and can be used to launch existing network applications so their socket communications are directed
through the configured server. With Dante, a SOCKS configuration file (typically /etc/socks.conf) or the
SOCKS5_SERVER environment variable can be used to set the server address and port number.

The norp "server" is a lightweight module and can be installed on the same end systems requiring the performance
benefits of NORM transport. In this case the SOCKS client server configuration is the loopback address and norp
SOCKS port number (i.e. 127.0.0.1:7000). The locally installed norp SOCKS server will signal remote network
destinations (e.g., upon TCP connection initiation) to determine if the destination is norp-capable. If possible, it
will establish a NORM-connection to the remote norp correspondent that connects to the final destination. Otherwise
a direct TCP connection (or UDP relay) will be made to the remote destination.

4.The "NORP" UDP Signaling Message Format
The norp proxy uses UDP signaling to confirm presence of a remote norp peer and to set up (and tear down)
NORM transport protocol sessions to support the proxied TCP (and eventually UDP) transport connections. The
norp instance originating a SOCKS session request is referred to here as the "originator" and the remote norp peer
to which the request is directed is referred to as the "correspondent". The norp "originator" is the server associated
with the SOCKS client making a request while the "correspondent" establishes connections with the remote SOCKS
destination.

The following UDP payload format is used for NORP signaling:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| msgType | reserved | sessionId |
+-+
| normNodeId |
+-+
| normSrcPort | normDstPort |
+-+
| timestamp_sec |
+-+
| timestamp_usec |
+-+
| content ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The NORP message types include:

SOCKS_REQ The message content contains a SOCKS5 Request message from the "originator" to the "corres-
pondent" norp server.

ACK_REQ The message is used to acknowledge receipt of a SOCKS_REQ message. There is no "content"

SOCKS_REP The message content contains a SOCKS5 Reply message from the "correspondent" norp server.

5

norp User's Guide

http://www.inet.no/dante/

ACK_REP The message is used to acknowledge receipt of a SOCKS_REP message. There is no "content".

ORIG_END This message indicates the "originator" norp server is terminating the given session. There is no
"content".

CORR_END This message indicates the "correspondent" norp server is terminating the given session. There is
no "content".

ACK_END This message is used to acknowledge receipt of either an ORIG_END or CORR_END message.
There is no "content".

TBD - describe NORP signaling and the message format given here.

5. Future Plans
There are a number of additional features and refinements planned for the norp implementation. Some of these
include:

1. Source / destination configuration and "routing" options

2. Data compression options

3. Security features

6

norp User's Guide

