
CHAPTER 12 
Joseph L. Schafer 

issing values are a nuisance in many research efforts but especially so in 
the collection and analysis of longitudinal data. Multiple occasions bring M greater opportunities for missed measurements. Fortunately, missing data 

is one area where statisticians have made substantial progress in recent years. 
In this chapter, I present a strategy for analyzing incomplete longitudinal data 
by multiple imputation (Rubin, 1987; Schafer, 1997a). 

Missing data pose a difficulty because the overwhelming majority of para- 
digms and software for statistical analysis assume that the input data are com- 
plete. For this reason, the quickest and most convenient method for handling 
incomplete observations is case deletion, that is, ignoring participants with 
missing information. Case deletion suffers from a number of serious drawbacks, 
which have been well documented (e.g., Little Or Rubin, 1987). For multivariate 
analyses involving a large numDer of items case deletion can be very inefficient, 
discarding an unacceptably high proportion of participants; even if the per-item 
rates of missingness are low, few participants may have complete data for all 
items. Moreover, case deletion leads to valid inferences in general only when 
missing data are missing completely at random (MCAR), in the sense that the 
discarded cases are like a random subsample of all cases. If the discarded cases 
differ systematically from the rest, then the resulting estimates may have po- 
tentially serious bias. 

A natural alternative to case deletion is imputation, the practice of replacing 
missing data with plausible values. Various forms of imputation have been ap- 
plied in federal surveys and censuses for decades (Madow, Nisselson, Q Olkin, 
1983). Imputation has been the survey statistician’s method of choice for han- 
dling item nonresponse, situations in which a participant provides some infor- 
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mation but fails to respond to one or more individual items on a questionnaire. 
Imputation is attractive because it apparently solves the missing-data problem 
at the outset; once the missing values have been imputed, the data set can be 
summarized and analyzed by familiar complete-data methods. Another attrac- 
tive feature of imputation is its efficiency: Unlike case deletion, imputation 
allows one to make full use of the data at hand. 

Methods of imputation range from simple procedures, such as mean sub- 
stitution-replacing each missing value with the observed mean for that vari- 
able-to elaborate hot-deck algorithms that jointly replace missing items with 
data obtained from donor cases chosen to match the original on selected items 
(e.g., Bailey, Chapman, & Kasprzyk, 1985). In longitudinal data sets with sub- 
stantial participant-to-participant variation, analysts have sometimes filled in 
missed measurements by linear interpolation, extrapolation, or “last value car- 
ried forward.” Unless great care is taken, these ad hoc imputation procedures 
may seriously distort important aspects of the distribution of a variable or its 
relationships with other variables. In general, it is desirable for the distribution 
of imputed values to resemble the distribution of the observed values, partic- 
ularly with respect to intervariable relationships. 

Even if an imputation method successfully preserves important aspects of 
the data distributions, a potentially serious problem remains: Imputation adds 
fictitious information to a data set. If imputed values are treated the same way 
as observed values in subsequent analyses, then the resulting inferences will be 
artificially precise, because the imputed values are imperfect proxies for the 
data they represent. With single imputation, there is no simple way to reflect 
uncertainty in the imputed values. In response, Rubin (1987, 1996) proposed 
the method of multiple imputation, by which each missing value is represented 
by a set of rn > 1 simulated values. Let Y = (Y&,, Y,,,) denote a generic data set, 
in which Yobl is the observed part and Y,,, is the missing part. Multiple impu- 
tation replaces Y,,, with a set of simulated draws Y::, Yz,),, . . . , Y z :  from a 
predictive probability distribution P(Ym,s 1 Yobr) arising from a model. After mul- 
tiple imputation, one has m simulated complete data sets, YcJ)  = (Yobsr Y:b), j = 

1, 2 ,  . . . , rn, which are analyzed with standard complete-data methods. The 
results are then combined, using simple arithmetic rules, to produce overall 
estimates and standard errors that account for missing-data uncertainty. I re- 
viewed these rules (Schafer, 1997a) and demonstrate them in the example near 
the end of this chapter. 

The key idea of multiple imputation is that it treats missing data as an 
explicit source of random variability over which to be averaged. The process of 
creating imputations, analyzing the imputed data sets, and combining the re- 
sults is a Monte Carlo version of averaging the statistical results over the pre- 
dictive distribution P(Y,,,I Yob5). In practice, a large number of multiple impu- 
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tations are not required; sufficiently accurate results can often be obtained with 
m 5 10. 

Carrymg out multiple imputation requires two sets of assumptions. First, one 
must propose a model for the distribution of Y. This data model should be 
plausible and should bear some relation to the type of analysis to be performed. 
For example, one could assume that the variables in the data set are jointly 
normally distributed. In the case of longitudinal analyses the model should be 
capable of preserving the correlation structure and time trends within individ- 
uals. The second set of assumptions pertains to the manner in which the miss- 
ing values became missing. It is most common to assume that the missing data 
are missing at random (MAR) in the technical sense defined by Rubin (1976), 
which means that the probabilities of missingness may depend on the observed 
values YobL but not on the missing data Y,,,. The MAR assumption is primarily 
a mathematical convenience that allows one to perform imputation without 
explicitly modeling the missing-data mechanism. In practice, MAR is essentially 
untestable; it cannot be verified or contradicted by examination of the observed 
data. If the assumption seems prima facie implausible, then alternative proce- 
dures can be developed by modeling the probabilities of missingness. General 
techniques and software for creating multiple imputations under non-MAR 
models have not yet been developed; this is an important area for future re- 
search. Further discussion on the plausibility and ramifications of MAR was 
given by Little and Rubin (1987); Graham, Hofer, and Piccinin (1994); and 
Schafer (1997a). 

Multiple imputation is not the only principled method for handling missing 
data. For parametric models, a main competitor is the technique of direct max- 
imum likelihood, sometimes called raw or full-information maximum likelihood, 
which maximizes a likelihood function on the basis of the observed data Yobr 
alone. This likelihood function may be written as 

r 
(12.1) 

where 8 represents the unknown parameters of the data model, and L(O I Yobsr 
Y,,,,,) denotes the likelihood function that one would use if no data were missing. 
The integration in Equation 12.1 eliminates the dependence on Y,,,,,, broadening 
the likelihood function to reflect the additional uncertainty due to the fact that 
Y,,,,, is unknown. In effect, this integration is nearly the same as the averaging 
over P(Y,,,,, I YubJ that takes place in multiple imputation. Except in very simple 
problems, the likelihood function Equation 12.1 tends to be complicated, often 
requiring complicated numerical techniques or approximations. When carried 
out properly. direct maximum likelihood can be statistically more efficient than 
multiple imputation because it is a deterministic procedure; no simulation is 
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involved, so no extra variability is introduced into summary statistics. (In most 
cases, this extra randomness introduced by multiple imputation is quite minor.) 
In large samples, estimates and standard errors obtained by direct maximum 
likelihood and by multiple imputation tend to be very similar. 

Applications of direct maximum likelihood are now common in longitu- 
dinal analyses. Modern algorithms for growth modeling as implemented in hi- 
erarchical linear modeling (HLM; Bryk, Raudenbush, & Congdon, 19961, Proc 
Mixed in SAS (Littell, Milliken, Stroup, & Wolfinger, 19961, and similar pack- 
ages are designed for unbalanced data, where measurements on each participant 
may be taken at a different set of time points. Responses that are missing, either 
unintentionally or by design, are removed from the likelihood by integration 
as in Equation 12.1. An important limitation of these packages is that the 
missing values must be confined to the response variable; missing values on 
predictors are not allowed. If the individuals in the study have been assessed 
at a common set of occasions, models equivalent to those fit by HLM and Proc 
Mixed can be formulated using latent growth curves (McArdle, 1988; Meredith 
& Tisak, 1990; Willett & Sayer, 1994) and structural equations software. Two 
recent programs for structural equations, Mx (Neale, 1994) and Amos (Ar- 
buckle, 1995), perform direct maximum likelihood from a raw data set with 
missing values. Missing data can be accommodated in other structural equations 
software by using the technique of multiple groups (Allison, 1987; Duncan Q 
Duncan, 1994; Muthen, Kaplan, & Hollis, 1987). An advantage of the latent 
growth curve approach is that missing values may occur on predictors as well 
as the response; however, the measurements must be taken at a relatively small 
number of common time points. 

When a direct maximum-likelihood procedure is available for a particular 
analysis, it may indeed be the most convenient and attractive method. Despite 
the increasing popularity of direct maximum likelihood, however, multiple im- 
putation still offers some unique advantages for data analysts. First, it allows 
them to use their favorite models and software; an imputed data set may be 
analyzed by virtually any method that would be appropriate if the data were 
complete. As computing environments and statistical models grow increasingly 
complex, the value of using familiar methods and software should not be un- 
derestimated. Second, there are still many classes of problems for which no 
direct maximum-likelihood procedure is available. For example, in longitudinal 
analyses there is no direct maximum-likelihood method for incomplete covar- 
iates when occasions of measurement vary by individual. 

A third reason why multiple imputation can be more attractive than direct 
maximum likelihood is that the separation of the imputation phase from the 
analysis phase lends a greater flexibility to the entire process. With multiple 
imputation the imputer is free to use additional variables that may be helpful 
for imputation but that are not of direct interest for the analysis. For example, 
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consider a covariate that helps to explain reasons for nonresponse. Using this 
variable in the imputation procedure tends to reduce bias in subsequent anal- 
yses, even in analyses that do not involve that variable. 

Finally, an important advantage of multiple imputation over direct maxi- 
mum likelihood is that it singles out missing data as a source of random vari- 
ation distinct from ordinary sampling variability. The likelihood function Equa- 
tion 12.1 lumps these two types of variability together; summary statistics (e.g., 
standard errors) derived from direct maximum likelihood do not reveal two 
sources. With multiple imputation, however, the overall uncertainty is formally 
partitioned into sampling variability and missing-data uncertainty. This partition 
immediately yields an estimated rate of missing information, which can be quite 
helpful for assessing the impact of missing data on inferences for any parameter 
of interest. 

The purpose of this chapter is not to criticize direct maximum likelihood 
in favor of multiple imputation; rather, it is my hope that more analysts will 
recognize the important advantages offered by both of these modern missing- 
data methods and begin to use them instead of case deletion or other ad hoc 
procedures. In most real-life applications, missing data are not the main focus 
of scientific inquiry but an unpleasant nuisance. Missing data should be handled 
quickly and effectively but without compromising the integrity of the analytic 
results. Multiple imputation might not be the optimal choice for every analysis, 
but it is a handy statistical tool and a valuable addition to a researcher's meth- 
odological toolkit. 

In the remainder of this chapter, I describe a method for creating multiple 
imputations in longitudinal databases. Previous algorithms and software for 
multiple imputation, as described in Schafer (1997a), have focused on missing 
data in general multivariate settings. In response to the specific need for lon- 
gitudinal analyses, a library of algorithms called PAN has been developed for 
imputing multivariate panel data, where a group of variables is measured for 
individuals at multiple time points. Alternatively, PAN may be applied to clus- 
tered data where variables are measured at a single point for participants nested 
within some larger unit (e.g., students within classrooms). Future versions of 
the software will be able to handle repeated measures and clustering simulta- 
neously 

PAN is at present available as a library of functions for the statistical pro- 
gramming language s-PLUS (Mathsoft, Inc., 1997) .' Current efforts are focused 
on developing a version of PAN that operates as a stand-alone program in the 
Windows 95/98/NT environment. 

'This can be downloaded free of charge from http://www.stat.psu.edu/-jldmisoftwa.htm1. 
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The PAN Model 

Suppose that a group of time-varying continuous variables Y,, Y2, . . . , Y, is 
measured for individuals i = 1, 2, . . . , N at multiple occasions. The responses 
for participant i may be arranged as a matrix with one column for each variable 
and one row for each occasion, 

i (12.2) 

where yllh denotes the value of variable Yh at occasion j.  The number of occasions 
n, and their temporal spacing may vary by participant. I assume that missing 
values occur throughout the matrices y,, y2, . . . , y, and that these missing 
values are MAR. The immediate goal is to multiply impute the missing values 
so that the data can be analyzed in a straightforward manner. Ultimately, the 
analyst may choose to regard one column of Equation 12.2 as a response and 
the other columns as potential predictors in a conventional growth model. For 
the moment, however, I regard all r columns of yl as random responses and 
model them jointly for the purpose of imputation. I construct a multivariate 
growth model to describe the joint distribution of the variables Y,, Y2, . . . , Y,, 
possibly given other time-varying or static covariates that are fully observed and 
require no imputation. 

The model used by PAN was designed to preserve the following relation- 
ships: (a) relationships among the variables Y,, Y2,  . . . , Y, within an individual 
at each time point. These are reflected by the covariances among the elements 
of any row of yI. (b) Growth or change in any variable Y, within an individual 
across time points. This growth is reflected by trends within the columns of y,. 
(c) Relationships between the response variables YI, Y2, . . . , Y, and any addi- 
tional participant-level (non-time-varying) covariates included in the model. 
The participant-level covariates may be continuous or categorical, but they must 
be fully observed; missing values on these non-time-varylng variables are al- 
lowed in the current version. Missing values in time-varying covariates are al- 
lowed and will be imputed, provided that they are included among Y1, 
Y2, . . . , Y,. 

PAN relies on a multivariate extension of a linear mixed-effects model that 
has been popular for nearly 20 years. The model is 

y, = X,P + Z,b, + & I ,  (12.3) 

where X,(q X p )  and Z,(q X q) are known covariate matrices, p contains 
regression coefficients common to all units, and b, contains coefficients specific 
to unit i.  Note that Equation 12.3 is a multivariate regression; P and b, are 
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matrices with r columns, one column for predicting each of the variables Y,, 
Y2,  . , . , Y,, and E,  is also a matrix with the same dimensions asy,(q, X r). The 
univariate (r = 1) version, which was proposed by Hartley and Rao (1967) and 
later popularized by Laird and Ware (1982), Jennrich and Schluchter (1986), 
Bryk and Raudenbush (1992), and others, is the basis for many of the linear 
growth models in use today. The coefficients p and b, are often called “fixed 
effects” and “random effects,” respectively. 

With univariate versions of this model, it is common to assume that the 
random effects and residuals are independently drawn from normal popula- 
tions, b, - N ( 0 ,  JI) and E, - N ( 0 ,  a21), i = 1, 2, . , . , N, where 9 is a q X q 
covariance matrix and I is the identity matrix (n, X n,). For the multivariate 
case, one generalizes these assumptions to 

vec(b,) - N(0 ,  ‘If) (12.4) 

vecW - “ 0 ,  (C 0 01, (12.5) 

where vec denotes the vectorization of a matrix by stacking its columns. The 
covariance matrix ‘If in Equation 12.4 has dimension qr X qr, and the Kro- 
necker product notation in Equation 12.5 indicates that the rows of E, are 
independently distributed as N ( 0 ,  C), where I; is r X r. 

In typical applications, the times of measurement are incorporated into X,, 
and perhaps Z,, as linear, quadratic, or higher order polynomials, and Z, is a 
subset of the columns of X,. For example, suppose that the first two columns 
of X, are (1, 1, . . . , 1)’ and ( t l ,  t2.  . . . , t,,)’, respectively, where t l ,  t2,  . . . , tn, 
are the times of measurement for participant i; beyond these, X, may have 
additional columns containing static or time-varyng covariates for participant 
i .  Setting Z, equal to the first column of X, produces a model of linear growth 
with intercepts randomly varying by individuals; setting Z, equal to the first 
two columns of X, produces random intercepts and slopes. Centering the dis- 
tribution of b, at zero causes p to become the population-averaged regression 
coefficients and the random effects b,, . . . , b, become perturbations due to 
interparticipant variation. 

Note that in this multivariate model all of the covariates in X, and Z, appear 
as predictors for each of the columns of y , .  As a result, the same group of 
predictors and the same type of trend over time (e.g., linear mean growth with 
varying slopes and intercepts) are used to describe each of the response variables 
Y , ,  Y2,  . . . , Y,. The actual coefficients for the response variables, as contained 
in the r columns of p and b,, vary, but the same group of predictors is applied 
to each response. At first glance, this may appear to be a serious limitation of 
the model; in many scientific contexts there is no reason to believe that Y,, Y2,  
. . . , Y, should depend on precisely the same set of covariates. One must re- 
member, however, that the purpose of PAN is not to construct a theoretically 
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meaningful model but to impute missing responses in such a way that impor- 
tant relations are preserved. If a covariate appears in subsequent analyses as a 
potential predictor of one or more of the response variables Y,, Y2,  . . . , Y , ,  
then that covariate should be included in the imputation model, even though 
its effects on some of the responses may be irrelevant or null. No biases.incur 
by using an imputation model that is larger or more general than necessary for 
any given analysis. For more discussion on the purpose of imputation modeling 
and the interplay between the imputer’s and analyst’s assumptions, see Meng 
(1994), Rubin (1996), and Schafer (1997a, chapter 4). 

The current version of PAN allows two types of assumptions about 9, the 
covariance matrix for the participant-level random effects b,, b,, . . . , b,. One 
allows the 9 matrix to be either (a) an unstructured or arbitrary covariance 
matrix or (b) a block diagonal covariance matrix of the form 

(12.6) 

where the nonzero blocks 9, , j = 1, . . . , r are covariance matrices of size q X 

q. The unstructured ‘P allows the random effects for any two responses Y, and 
Yk to be correlated, whereas the block-diagonal form assumes that the random 
effects for each response are independent of those for any other response. 

The choice between these two depends on both theoretical and practical 
considerations. Suppose that Y, ,  Yz . . . , Y,  represent achievement scores (math- 
ematics, reading comprehension, etc.) recorded for schoolchildren over time, 
and one applies a model of linear growth with intercepts and slopes that vary 
by individual. If there is reason to believe that growth patterns for the various 
achievement scores are related-for example, that participants with high rates 
of increase for mathematics may also tend to have high rates of increase for 
reading comprehension-then it would be wise to use an unstructured 9. As 
the number of response variables grows, however, it often becomes impractical 
to estimate covariances among all of their random effects unless the number of 
participants is very large; to obtain a stable estimate for 9 one may need to 
specify a block-diagonal structure. Unless the correlations among the random 
effects for some pairs of responses are unusually strong, the potential biases 
incurred by using a block-diagonal ‘P rather than an unstructured 9 tend to 
be minor. 

The basic strategy for specifying a PAN model can be summarized as fol- 
lows. First, any time-varymg covariates with missing values should be placed 
in the columns of y,, regardless of whether they are treated as “responses” or 
“predictors” in later analyses. If a variable is to be imputed, then it must be 
included among the variables Y, ,  Y,, . . . , Y,. Second, other covariates of interest 
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should be included in the columns of X, and, possibly, 2,. These include (a) 
variables that may be related to Y l ,  Y2,  . . . , Y,  and (b) variables that may explain 
missingness on Y,, Y2,  . . . , Y,. Placing a covariate in X, allows it to influence 
the distribution of any or all of the variables Y, ,  Y2,  , . . , Y,  in the population. 
Placing a time-vayng covariate in both X, and Z, allows its degree of influ- 
ence on Y,,  Y,, . . . , Y,  to vary across individuals. Note that static or non-time- 
varying covariates (e.g., gender or pretest measures) should not be included in 
Z, because it is impossible to estimate participant-specific effects for such var- 
iables. Finally, polynomial terms such as 1, time, time', and so on, may be 
appended to X, and 2, as desired, to allow the mean levels of Y, ,  Y,, . . . , Y,  
and the trends in these variables over time to vary across individuals. The choice 
of which terms to include will depend on what types of effects are believed to 
exist and what effects will be investigated in subsequent analyses. 

Computational Algorithms 

The computational engine of PAN is a Markov chain Monte Carlo (MCMC) 
algorithm called a Gibbs sampler. MCMC is a relatively new class of simulation 
techniques that are especially useful in Bayesian statistical analyses. A review of 
MCMC is beyond the scope of this chapter, but a gentle introduction is given 
by Casella and George (1992) and Schafer (1997a, chapters 3-4); more com- 
prehensive references are the volume edited by Gilks, Richardson, and Spie- 
gelhalter (1996) and the article by Gelfand and Smith (1990). Specific details 
and formulas for the computations used in PAN have been provided by me 
(Schafer, 1997b; Yucel Q Schafer, 1998). 

The MCMC algorithm in PAN is based on the observation that the model 
specified by Equations 12.3- 12.5 has the following unknown components: the 
missing values in y,, y2. . . . , yN, the random effects b,, b,, . . . , bN, the fixed 
effects p, and the covariance matrices 2 and 9. For the purpose of imputation, 
I am interested only in simulating the missing data in y L ,  y,, . . . , yN; the other 
unknown quantities are merely a nuisance. To simulate the missing data prop- 
erly, however, one must take into account the uncertainty in these other quan- 
tities and how it contributes to missing-data uncertainty. Expressing this un- 
certainty through mathematical formulas is difficult, so one accounts for the 
interdependence among the unknown quantities through a process of iterative 
simulation. 

PAN simulates the unknown quantities in a three-step cycle. 

1. Draw random values of b,, b,, . . . , b, on the basis of some plau- 
sible assumed values for the missing data and the parameters p, 
2, and 9. 

2. Draw new random values of the unknown parameters p, 2,  and 
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* on the basis of the assumed values for the missing data and the 
values of b,, b,, . . . , b, obtained in Step 1. 

3. Draw new random values for the missing data given the values of 
b,, b,, . . . , b, obtained in Step 1 and the parameters obtained in 
Step 2. 

At the end of this cycle the parameters and missing data from Steps 2 and 3 
become the values assumed in Step 1 at the start of the next cycle. Repeating 
Steps 1, 2, and 3 in turn defines a Markov chain, a sequence in which the 
distribution of the unknown quantities at any cycle depends on their simulated 
values at the previous cycle. The state of the process at Cycle 2 may be strongly 
correlated with its state at Cycle 1, but at subsequent Cycles 3 ,  4, 5, and so 
on, the relationship to the original state weakens. When a sufficient number of 
cycles has been taken to make the resulting state essentially independent of the 
original state, then the process is said to have converged or achieved stationarity. 
On convergence, the final simulated values for the missing data have in fact 
come from the distribution from which multiple imputations should be drawn. 

This algorithm may be used to create rn multiple imputations in the fol- 
lowing way Starting with some plausible initial values, run the Gibbs sampler 
for k cycles where k is large enough to ensure convergence, and take the final 
simulated version of the missing data as the first imputation; then return to the 
original starting values, run the Gibbs sampler for another k cycles, and take 
the final simulated version of the missing data as the second imputation; and 
so on. This method requires rn runs of length k cycles each. Another and 
perhaps more convenient way is to perform one long run of rnk cycles, saving 
the simulated values of the missing data after cycle k ,  2 k ,  . . . , rnk as the rn 
imputations. The latter method differs from the former only in that the final 
values from each subchain of length k become the starting values for the next 
subchain of length k.  

It is important to note that convergence of an MCMC procedure means 
convergence to a probability distribution rather than convergence to a set of 
fixed values. To say that the algorithm has converged by k cycles actually means 
that the random state of the process at cycle t + k is statistically independent 
of its state at cycle t for t = 1, 2 ,  . . .. After running the Gibbs sampler, one can 
examine the output stream over many cycles to see how many are needed to 
achieve this independence. Suppose that one collects and stores the simulated 
values for one parameter e (a particular element of @, q, or 2)  over a large 
number C of consecutive cycles. These values e"', e(2), . . . , (3'"' can be regarded 
as a time series. The lag-k autocorrelation, which is the correlation between 
pairs ($L) and pk) (t = 1, 2, . , . , C - k), can be calculated for various values 
of k to determine how large k must be for the correlations to die down. In 
principle, one should examine autocorrelations for each parameter in the model 
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and identify a value of k large enough to guarantee that the lag-k autocorrela- 
tions for all parameters are effectively zero. In my experiences with real data, 
however, I have found that the greatest levels of serial dependence are almost 
always seen in variance and covariance parameters, and in particular within the 
elements of ?. It is usually sufficient to monitor the behavior of the elements 
of q because it is with respect to these parameters that the algorithm tends to 
converge the most slowly For more discussion on monitoring the convergence 
of MCMC algorithms, see Schafer (1997a, chapter 4). 

The rate of convergence of this Gibbs sampler is influenced by a combi- 
nation of factors pertaining to the data and the model. First, it is affected by 
the amounts and patterns of missing data in the matrices yi ,  y r ,  . . . , yN; greater 
rates of missing information lead to slower convergence. It is also affected by 
one’s ability to estimate the individual random effects b,, b,, . . . , b,; if estimates 
of random effects are highly variable, then convergence is slowed. Finally, con- 
vergence behavior is also influenced by the number of participants (N). As the 
sample size grows, the distribution of the random 9 matrix at each cycle be- 
comes more tightly concentrated around the sample covariance matrix of b,, 
b,, . , . , b, from the previous cycle. As this distribution becomes tighter, the 
elements of q are less free to wander away from their values at the previous 
cycle, producing higher correlations from one cycle to the next. It is somewhat 
ironic that the algorithm converges more slowly as one’s ability to estimate the 
parameters increases. With a large number of participants and a small number 
of occasions per participant, it is not uncommon for the Gibbs sampler to 
require several hundred or even 1,000 cycles to converge. Slow convergence is 
not necessarily a problem, however, because in most cases only a few impu- 
tations are necessary. If k = 1,000 cycles are needed to achieve stationarity, then 
five imputations can be produced in 5,000 cycles, which even for a large data 
set requires no more than a few hours on a personal computer. 

In addition to deciding how many cycles are needed, the user must also 
specify Bayesian prior distributions for the covariance matrices ? and x. Bayes- 
ian procedures, which are becoming increasingly popular in many areas of 
statistical analyses, treat unknown parameters as random variables and assign 
prior probability distributions to them to reflect one’s knowledge of or belief 
about the parameters before the data are seen. An excellent introduction to the 
Bayesian statistical paradigm was given by Novick and Jackson (1974); for a 
modern overview of Bayesian modeling and computation, see Gelman, Rubin, 
Carlin, and Stem (1995). Some statisticians tend to prefer Bayesian procedures 
on principle, whereas others avoid them on principle. I hold a pragmatic view, 
accepting the prior distribution simply as a mathematical device that allows 
one to generate the imputations in a principled fashion. In applications, I like 
to use prior distributions that are weak or highly dispersed, reflecting a state 
of relative ignorance about model parameters. Weak priors tend to minimize 
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the subjective influence of the prior, allowing the observed data to speak for 
themselves. 

The prior distribution most commonly applied to a covariance matrix is 
the inverted Wishart distribution. The Wishart, a natural generalization of the 
chi-square to random matrices, is discussed in standard texts on multivariate 
analysis (e.g., Anderson, 1984; Johnson & Wichern, 1992). The prior distri- 
bution for Z is 

Z-' - W(a, B ) ,  (12.7) 

where W(a, B) denotes a Wishart with a degrees of freedom and scale B.  The 
scale is a symmetric, positive definite matrix with the same dimensions (r X r) 
as 2. The degrees of freedom, which should be greater than or equal to r ,  
govern the spread or variability; lower values of a make the distribution more 
dispersed. The user of PAN must provide numeric values for a and B - ' .  Our 
usual practice is to set a = r to make the prior as dispersed as possible and 
then to set B-' = a$, where 3 is a reasonable prior guess or estimate of C. If 
a guess for C. is unavailable, the data themselves may be used to obtain one. 
Yucel and Schafer (1998) recently developed a new expectation-maximization 
algorithm for calculating maximum-likelihood estimates of the parameters f3, 
?, and 2, from the incomplete data. Running this EM algorithm before the 
Gibbs sampler is an excellent way to obtain a reasonable guess for 2.  

In a similar fashion, I also use inverted Wishart prior distributions for the 
between-subjects covariance matrix 9. If 9 is unstructured, one assumes ?-' 
- W(c, D )  where D is a qr X qr matrix and c > qr. My usual practice is to set 
c = qr and D-' = c@, where @ is a prior guess or estimate of 9. If 9 is taken 
to be block diagonal as in Equation 12.6, then independent inverted Wishart 
prior distributions are applied to the nonzero blocks, ?,-' - W(cJ, D,), j = 1, 
. . . , r, where cJ 2 q. To make the priors weak, one sets c, = q and DJ-' = 

c,@~ where qJ is an estimate or guess for JI,. The EM algorithm described by 
Yucel and Schafer (1998) provides a maximum-likelihood estimate for an un- 
structured + or estimates of the submatrices 9, . . . , 9, when ? is block 
diagonal. 

An Example: Exptamies and Alcohol Use in the Adolescent 
Alcohol Prevention Trial 

The Adolescent Alcohol Prevention Trial (AAPT) was a longitudinal school- 
based intervention study of substance use carried out in the Los Angeles area 
(Hansen Q Graham, 1991). In one panel of AAPT, attitudes and behaviors 
pertaining to the use of alcohol, tobacco, and marijuana were measured by self- 
report questionnaires administered yearly in Grades 5- 10. The data exhibit 
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typical rates of uncontrolled nonresponse due to absenteeism, attrition, and so 
on, which I assume to be MAR. This assumption has been given careful con- 
sideration by the researchers and appears to be plausible; for example, much 
of the attrition is due to students moving to other schools or districts, which 
is at most only weakly associated with substance use patterns (Graham et al., 
1994). 

In addition to this uncontrolled nonresponse, large amounts of tmly MAR 
missing data (MCAR, in fact) arose by design. The AAPT study made use of an 
innovative three-form design in which each student received only a subset of 
the items in any year, as described in chapter 11 of this volume, by Graham, 
Taylor, and Cumsille. In some years, certain items were omitted entirely. For 
the present analysis, I examine a cohort of m = 3,574 children and focus at- 
tention on three variables: “drinking,” a composite measure of self-reported 
alcohol use; POSCON, a measure of the degree to which the student perceives 
that alcohol use has positive consequences; and NEGCON, a measure of the 
perceived negative consequences of use. Drinking appeared on the question- 
naire every year, where POSCON was omitted in Grade 8 and NEGCON was 
omitted in Grades 8-10. Missingness rates for the three variables by grade are 
shown in Table 12.1; observed means and standard deviations appear in 
Table 12.2. 

My analysis will focus on the possible influences of POSCON and 
NEGCON on drinking. Without missing data, it would be straightforward to 
build a growth model for drinking that includes the expectancy measures 
POSCON and NEGCON as time-varying covariates. Current software for mul- 
tilevel models cannot accommodate missing values on covariates, however, so 
I first use PAN to jointly impute the missing values for drinking, POSCON, 
and NEGCON. 

Notice in Table 12.2 that both the average level of drinking and its variation 
increase dramatically over time. This is somewhat problematic, because stan- 
dard growth models-and the multivariate model used by PAN-assume con- 
stant variance in a response over time. To make the assumption of constant 

TABLE 1 2 . 1  

Missingness Rates I%! for Three Variables by Grade 

GRADE 

VARIABLE 5 6 7 a 9 10 

Drinking 2 24 24 33 35 44 

POSCON 47 55 62 100 66 63 

NEGCON 48 56 62 100 100 100 

Note. POSCON = positive consequences; NEGCON = negative consequences. 
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variance more plausible, I transformed drinking by taking its logarithm (after 
adding a small constant to ensure that all values were positive). After this trans- 
formation, the increase in variation became much less noticeable. The log- 
transformed version of drinking was used both in the imputation procedure 
and in subsequent analysis described below, because the transformed version 
more closely fit the assumptions of both the imputation procedure and the 
analysis. With multiple imputation, however, it is not necessary for variables to 
be imputed and analyzed on the same scale. Applying transformations at the 
imputation phase can be a highly effective tool for preserving important distri- 
butional features of nonnormal variables, regardless of how the variables are 
later analyzed (Schafer & Olsen, 1998). 

To set up the data for PAN, one fi.rst arranges the responses for each in- 
dividual in the form of a matrix y L  of dimension 6 X 3,  with the rows corre- 
sponding to occasions (Grades 5 ,  . . . , 10) and columns for drinking, POSCON, 
and NEGCON. In devising the imputation model the primary concern is to 
preserve growth in the variable drinking and its potential relationships to the 
expectancy measures. With only six time points, the model for growth must be 
rather simple, so let us posit a linear model with intercepts and slopes randomly 
varying across individuals. That is, we create a model in which drinking, 
POSCON, and NEGCON are each described by a linear trend with a random 
intercept and a random slope, for a total of six random effects in each b,. 
Random intercepts and slopes are specified by placing (1, 1, 1, 1, 1, 1)' and 
(1, 2,  3,  4, 5, 6)T into the columns of X, and 2,. Finally, to incorporate potential 
gender differences, I allow the population average slopes and intercepts for boys 
and girls to vary by adding two additional columns to each X, matrix: sex, X 

(1, 1, 1, 1, 1, and sex, X (1, 2, 3 ,  4, 5 ,  6)*, where sex, is a dummy indicator 
for participant i's gender (0 for girl, 1 for boy). 

In defining a PAN model, there is no particular importance attached to the 
specific coding scheme used to create the design matrices X, and 2,. For ex- 
ample, the linear effect of time could have been expressed as (-5, -3, - 1, 1, 
3, 5)' or any other set of equally spaced scores, and the gender effect sex, could 
have been coded as any two values (e.g., -1 and + I )  rather than as 0 and 1. 
The particulars of the coding scheme affect the precise meaning of the param- 
eters in p, 2, and 9, but these parameters are not of inherent interest-the 
goal at this stage is not to interpret parameters but to impute the missing values 
in y,. Changing the coding scheme in X, and 2, does not change the distribution 
of imputed values, provided that the linear space spanned by the columns of 
these design matrices does not change. 

Table 12.1 indicates that NEGCON is entirely missing for the last 3 years 
of the study It may seem unusual to impute a variable that is entirely missing. 
Under this model the likely values of NEGCON for Grades 8-10 are being 
inferred from two sources: extrapolation from Grades 5-7 on the basis of the 
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assumption of linear growth, and the residual covariances among the three 
response variables in 2,  which are assumed to be constant across time. Neither 
of these assumptions can be effectively tested with the data at hand, so infer- 
ences pertaining to NEGCON are heavily model based. In retrospect, it would 
have been very helpful to collect NEGCON in the final year (Grade 10) to 
provide more stable estimates of this variable’s growth. 

Before running the Gibbs sampler, I first obtained initial estimates of the 
unknown parameters p, c, and W by running the EM algorithm. This EM 
procedure, which assumed an unstructured form for W, converged in 134 it- 
erations and took less than 1 h on a 400 MHz Pentium I1 computer. The 
resulting maximum-likelihood estimates for 2, and iP were then used to for- 
mulate weak prior distributions as described in the Computational Algorithms 
section. 

Because of the high rates of missing information, I anticipated that the 
Gibbs sampler would converge slowly To assess convergence, I ran it for an 
initial 2,000 cycles and examined time series plots and sample autocorrelations 
for a variety of parameters. As anticipated, the elements of W pertaining to the 
slopes and intercepts of NEGCON were among the slowest to converge because 
of the extreme sensitivity of these parameters to missing data. On the basis of 
this exploratory run, it appeared that several hundred cycles might be sufficient 
to achieve approximate stationarity. The Gibbs sampler was then run for an 
additional 9,000 cycles, with the simulated value of Y,,, stored at cycles 2,000, 
3,000, . . . , 11,000. Autocorrelations estimated from cycles 1,001 - 1 1,000 ver- 
ified that the dependence in all components of 8 had indeed died down by lag 
200, so the 10 stored imputations could be reasonably regarded as independent 
draws from P(Y,,,IY0,,J. The entire imputation procedure took less than 2 hr 
with a 400 MHz Pentium 11. 

After imputation, the data were analyzed by a conventional linear growth- 
curve model for the logarithmically transformed drinking. The model was sim- 
ilar to the one used for imputation, except that POSCON and NEGCON now 
appear as time-varymg covariates rather than responses. The model included 
an intercept and fixed effects for gender, grade, gender X grade, POSCON, and 
NEGCON, plus random intercepts and slopes for grade. Time was coded as (1, 
2,  3, 4, 5 ,  6)’, and gender was expressed as a dummy indicator (0 for girls, 1 
for boys). Parameter estimates were computed for each imputed data set using 
a procedure equivalent to that used by standard packages such as HLM. 

Finally, the 10 sets of fixed-effects estimates and their standard errors were 
then combined using Rubin’s (1987) rules for multiple-imputation inference for 
scalar estimands. These rules are summarized as follows. Let Q denote the 
quantity to be estimated, in this case a regression coefficient. Let B ( ’ )  denote 
the estimate of Q from the j th  imputed data set, and U, its squared standard 
error ( j  = 1, 2, . . . , m). The overall estimate of Q is simply the average 
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(12.8) 

To obtain a standard error for g, one calculates the between-imputation variance 
€3 = (m - l)-lS(G(J) - 8)' and the within-imputation variance 0 = m - l ~ U ( J ) .  
The estimated total variance is 

T = (1 + m-')B + 0, (12.9) 

and tests and confidence intervals are based on a Student's t approximation 

(12.10) 

with degrees of freedom 

(1 + m-')B 

The ratio r = (1 + m-')B/D measures the relative increase in variance due to 
missing data, and the rate of missing information in the system is approximately 
A = r/(l + r ) .  A more refined estimate of this rate is 

r + 2/(v + 3) 

l + r  
A =  (12.11) 

The results of this procedure are summarized in Table 12.3, which shows 
the overall estimates, standard errors, degrees of freedom for the t approxima- 
tion, and estimated percentage rates of missing information. All coefficients are 
highly statistically significant. The high rates of missing information indicate 
that the inferences for all coefficients (except sex) may be highly dependent on 
the form of the imputation model and the MAR assumption. The latter as- 
sumption is not particularly troubling for these data because the majority of 

TABLE 1 2 . 3  

Estimad Coefficients (Est.), Standard Emrs, D e g m s  of Freedom, and 
Percentage Missing lnibrmation From Multiply Imputed 
Growth-Curve Analysis 

VARIABLE EST. SE df % MlSSfNG 

Intercept -2.572 0.084 19 71 

Sex (0 = female, 1 = male) 0.370 0.046 324 17 

Grade (1 = 5th, . . . , 6 = 10th) 0.386 0.011 35 53 

Sex x grade -0.105 0.013 88 33 

POSCON 0.549 0.023 17 76 

NEGCON -0.090 0.023 15 80 

Note. POSCON = positive consequences; NEGCON = negative consequences. 
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missing values are missing by design. Certain assumptions of the imputation 
model, however-in particular, the assumed linear growth for NEGCON and 
constancy of the residual covariances across time-are not really testable from 
the observed data, so results from this analysis should be interpreted with 
caution. 

Despite these caveats, the estimates in Table 12.3 provide some intriguing 
and plausible interpretations about the behavior of this cohort. The positive 
coefficient for sex indicates that boys reported higher average rates of alcohol 
use than girls in the initial years of the study. The negative effect of sex X 

grade, however, shows that girls exhibit higher rates of increase than boys, so 
that the girls’ average overtakes the boys’ by Grade 8. The large positive effect 
of POSCON indicates that increasing perceptions about the positive conse- 
quences of alcohol use are highly associated with increasing levels of reported 
use. The negative coefficient for NEGCON suggests that increasing beliefs about 
negative consequences do tend to reduce level of use, but the effect is much 
smaller than that of POSCON. These results are consistent with those of pre- 
vious studies (e.g., MacKinnon et al., 1991) that demonstrate that perceived 
positive consequences may be influential determinants of substance use behav- 
ior, but beliefs about negative consequences have little or no discernible effect. 

Discussion 

The multivariate mixed model (Equation 12.3) used by PAN is a natural exten- 
sion of univariate growth models, which are popular in the analysis of longi- 
tudinal data. The imputation procedures described here are appropriate for 
longitudinal analyses with partially missing covariates. These methods are also 
appropriate for multivariate cross-sectional studies in which units are nested 
within naturally occurring groups (e.g., children within schools). The algorithm 
and software described in this chapter provide a principled solution to missing- 
data problems for this important and frequently occurring class of analyses. 

The imputation model and Gibbs sampler can be extended in a number of 
important ways. One extension pertains to models with additional random ef- 
fects due to higher levels of clustering; this would arise, for example, in mul- 
tivariate studies in which individuals are grouped into larger units and multiple 
observations on individuals are taken over time. Another useful extension per- 
tains to columns of y, that are necessarily constant across the rows 1, . . . , n,. 
In longitudinal studies, these columns would represent covariates that do not 
vary over time; in clustered applications, they would represent characteristics 
of the clusters rather than the units nested with them. If these covariates have 
no missing values, they can be handled under the current model by simply 
moving them to the matrix X,. When missing values are present, however, they 
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must be explicitly modeled for purposes of imputation. If one imposes a simple 
parametric distribution on these covariates (e.g., multivariate normal), then it 

is straightforward to extend the Gibbs sampling procedure to impute these as 
well. 

Another useful extension involves interactions among the columns of y,. 
The multivariate normal model allows only simple linear associations among 
the variables Y l ,  . . . , Y,, but in many studies one would like to preserve and 
detect certain nonlinear associations and interactions. In the AAPT example, it 
may have been useful to see whether the strong effect of POSCON on drinking 
may have been increasing or decreasing over time; the imputation model, how- 
ever, imputed the missing values under an assumption of a constant POSCON 
X drinking association. Extensions of the multivariate model to allow more 
elaborate fixed associations, such as POSCON X drinking X grade, or random 
associations, such as POSCON X drinking X participant, are an important topic 
for future research. 

In the current PAN model, the rows of y L  are assumed to be conditionally 
independent given b, with common covariance matrix C. This assumption has 
been relaxed by Jennrich and Schluchter (1986), Lindstrom and Bates (1988), 
and others in the univariate case to allow a residual covariance matrix of the 
form a’v,, where V, has a simple (e.g., autoregressive or banded) pattern de- 
pendent on one or more unknown parameters. Extensions of these patterned 
covariance structures to a multivariate setting tend to produce models and al- 
gorithms that are complex even apart from missing data. For example, the 
obvious extension of vec(E,) - “0, (C @ 01 to vec(E,) - “0, (2 @ VJl 
seems too restrictive for many longitudinal data sets, because the response var- 
iables y,, . . . , Y,  are then required to have identical autocorrelations. Account- 
ing for autocorrelated residuals in a sensible manner may prove to be a daunting 
task in the multivariate case. In practice, nonzero correlations among the rows 
of E, may arise because of a misspecified model for the mean structure over 
time. The problem may sometimes be reduced or eliminated by including ad- 
ditional (e.g., higher order polynomial) terms for time in the covariate matrices 
X, or 2,. 
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