
February 9, 2015 David Simmons-Duffin

SDPB 1.0

Contents

1 Introduction 1

1.1 Installation and Requirements . 2

2 Polynomial Matrix Programs 2

3 Input to SDPB 2

3.1 Input Format . 3

3.2 Mathematica Interface . 4

3.3 An Example . 6

4 Internal SDP 7

5 Output of SDPB 9

5.1 Terminal Output . 9

5.2 Termination . 10

5.3 Output File . 11

5.4 Checkpoints . 12

6 Attribution 13

7 Acknowledgements 13

1 Introduction

SDPB is an arbitrary-precision semidefinite program solver, specialized for “polynomial ma-
trix programs” (defined below). This document describes SDPB’s usage and input/output.
Much more detail about its design is given in [1]. The reader is encouraged to look there
for a better understanding of SDPB’s parameters and internal operation.

1

1.1 Installation and Requirements

SDPB requires

• The Boost C++ Libraries (tested with Boost 1.54).

• The GNU Multiprecision Library.

To install, you must first edit the Makefile to define the variables GMPINCLUDEDIR,
BOOSTINCLUDEDIR, and LIBDIR. Then type make to build the sdpb executable.

2 Polynomial Matrix Programs

SDPB solves the following type of problem, which we call a polynomial matrix program (PMP).
Consider a collection of symmetric polynomial matrices

Mn
j (x) =

 P n
j,11(x) . . . P n

j,1mj
(x)

...
. . .

...
P n
j,mj1

(x) . . . P n
j,mjmj

(x)

 (2.1)

labeled by 0 ≤ n ≤ N and 1 ≤ j ≤ J , where each element P n
j,rs(x) is a polynomial in x.

Given b ∈ RN , we would like to

maximize b0 + b · y over y ∈ RN ,

such that M0
j (x) +

∑N
n=1 ynM

n
j (x) � 0 for all x ≥ 0 and 1 ≤ j ≤ J.

(2.2)

The notation M � 0 means “M is positive semidefinite.”

3 Input to SDPB

SDPB takes the following input:

• for each j = 1, . . . , J :

– polynomial matrices M0
j (x), . . . ,MN

j (x) of maximum degree dj,

– bilinear bases q
(j)
m (x) (m = 0, . . . , bdj/2c),

– sample points x
(j)
k (k = 0, . . . , dj),

– sample scalings s
(j)
k (k = 0, . . . , dj),

• an objective function b0 ∈ R and b ∈ RN .

2

http://www.boost.org/
https://gmplib.org/

A bilinear basis is a collection of polynomials q
(j)
m (x) such that deg q

(j)
m = m, for example

monomials q
(j)
m (x) = xm. (A better choice for numerical stability is usually orthogonal

polynomials on the positive real line.) The sample points and sample scalings determine
how the PMP is represented internally as an SDP. In principle, they do not affect the
solution of the PMP, but in practice they can affect numerical stability. The constant b0 is
completely irrelevant to the solution algorithm, but is included for convenience. See [1] for
details.

3.1 Input Format

SDPB reads the data above in the following XML format.

Listing 1: XML input format for SDPB

input to SDPB ≡
<sdp>

〈xml for objective〉
〈xml for polynomial vector matrices〉

</sdp>

xml for objective ≡
<objective>

<elt>b0</elt>
...

<elt>bN</elt>
</objective>

xml for polynomial vector matrices ≡
<polynomialVectorMatrices>

〈xml for polynomial vector matrix Mn
1 (x)〉

...

〈xml for polynomial vector matrix Mn
J (x)〉

</polynomialVectorMatrices>

xml for polynomial vector matrix Mn
j (x) ≡

<polynomialVectorMatrix>

<rows>mj</rows>

<cols>mj</cols>

<elements>

〈xml for polynomial vector Pn
j,11(x)〉

...

〈xml for polynomial vector Pn
j,mj1

(x)〉
...

〈xml for polynomial vector Pn
j,1mj

(x)〉
...

〈xml for polynomial vector Pn
j,mjmj

(x)〉
</elements>

3

<samplePoints>

<elt>x
(j)
0 </elt>

...

<elt>x
(j)
dj
</elt>

</samplePoints>

<sampleScalings>

<elt>s
(j)
0 </elt>

...

<elt>s
(j)
dj
</elt>

</sampleScalings>

<bilinearBasis>

〈xml for polynomial q
(j)
0 (x)〉

...

〈xml for polynomial q
(j)
bdj/2c(x)〉

</bilinearBasis>

</polynomialVectorMatrix>

xml for polynomial vector Pn
j,rs(x) ≡

<polynomialVector>

〈xml for polynomial P 0
j,rs(x)〉

...

〈xml for polynomial PN
j,rs(x)〉

</polynomialVector>

xml for polynomial a0 + a1x + . . . adx
d ≡

<polynomial>

<coeff>a0</coeff>
...

<coeff>ad</coeff>
</polynomial>

Several aspects of this format are inefficient. Because the matrices are symmetric, rows
and cols are redundant, and most elements are listed twice. Also, XML is extremely
verbose. The current choices are in the interest of simplicity and could obviously be changed
in a future version.

The options to SDPB are described in detail in the help text, obtained by running “sdpb
--help.”

3.2 Mathematica Interface

A Mathematica notebook SDPB.m, included in the source distribution, generates files of the
form in listing 1 starting from Mathematica data. It automatically makes sensible choices
for the bilinear bases q

(j)
m (x), the sample points x

(j)
k and the sample scalings s

(j)
k .

4

The Mathematica definition of a PMP is slightly different but trivially equivalent to
(2.2). It is:

maximize a · z over z ∈ RN+1,

such that
∑N

n=0 znW
n
j (x) � 0 for all x ≥ 0 and 1 ≤ j ≤ J,

n · z = 1.

(3.1)

where W n
j (x) are matrix polynomials. The normalization condition n · z = 1 can be used

to solve for one of the components of z in terms of the others. Calling the remaining
components y ∈ RN , we arrive at (2.2), where Mn

j (x) are linear combinations of W n
j (x) and

b0, bn are linear combinations of the an. This difference in convention is for convenient use
in the conformal bootstrap.

SDPB.m defines a function WriteBootstrapSDP[file, sdp], where file is the XML file
to be written to, and sdp has the following form, where the polynomials Qn

j,rs(x) are the
elements of W n

j (x).

Listing 2: Usage of WriteBootstrapSDP in SDPB.m

function call ≡ WriteBootstrapSDP[file, 〈sdp〉]

sdp ≡ SDP[〈objective〉, 〈normalization〉, 〈positive matrices with prefactors〉]

objective ≡ {a0, ..., aN}

normalization ≡ {n0, ..., nN}

positive matrices with prefactors ≡ {

〈positive matrix with prefactor 1 〉,
...

〈positive matrix with prefactor J〉,
}

positive matrix with prefactor j ≡
PositiveMatrixWithPrefactor[〈prefactor〉,
{

{

{Q0
j,11(x), ..., QN

j,11(x)}, ..., {Q0
j,mj1

(x), ..., QN
j,mj1

(x)}

},

...

{

{Q0
j,1mj

(x), ..., QN
j,1mj

(x)}, ..., {Q0
j,mjmj

(x), ..., QN
j,mjmj

(x)}

},

}

]

prefactor ≡
DampedRational[c, {p1, . . . , pk}, b, x]

or

5

const

The prefactor in PositiveMatrixWithPrefactor is used for constructing bilinear bases
and sample scalings. Specifically, if the prefactor is χ(x), the bilinear basis is a set of
orthogonal polynomials with respect to measure χ(x)dx on the positive real line, and sample
scalings are χ(xk), where the xk are sample points. The notebook SDPB.m only deals with
damped-rational prefactors because these are relevant to the conformal bootstrap. These
stand for

DampedRational[c, {p1, . . . , pk}, b, x] → c
bx∏k

i=1(x− pi)
. (3.2)

We do not use an exponential-times-rational Mathematica function directly because the
DampedRational data structure makes it easier to extract information needed to construct
a bilinear basis. The notebook SDPB.m makes a choice of sample points that are reasonable
for conformal bootstrap applications.

As an example bootstrap application, the included notebook Bootstrap2dExample.m

computes a single-correlator dimension bound for 2d CFTs with a Z2 symmetry, as in [2].

3.3 An Example

Let’s look at an example. Consider the following problem: maximize −y such that

1 + x4 + y

(
x4

12
+ x2

)
≥ 0 for all x ≥ 0 (3.3)

This is an PMP with 1× 1 positive-semidefiniteness constraints. We will arbitrarily choose
a prefactor of e−x = DampedRational[1,{}, 1/E,x], so that the bilinear basis consists of
Laguerre polynomials. The Mathematica code for this example is

Listing 3: Mathematica input for the example (3.3)

Module[

{

pols = {

PositiveMatrixWithPrefactor[

DampedRational[1,{}, 1/E,x],

{{{1 + x^4, x^4/12 + x^2}}}

]

},

norm = {1, 0},

obj = {0, -1}

},

WriteBootstrapSDP["test.xml", SDP[obj, norm, pols]];

];

It produces the following XML file

6

Listing 4: XML file test.xml produced by listing 3. Decimals are truncated at 12 digits.

<sdp>

<objective><elt>0</elt><elt>-1</elt></objective>

<polynomialVectorMatrices>

<polynomialVectorMatrix>

<rows>1</rows>

<cols>1</cols>

<elements>

<polynomialVector>

<polynomial>

<coeff>1</coeff><coeff>0</coeff><coeff>0</coeff>

<coeff>0</coeff><coeff>1</coeff>

</polynomial>

<polynomial>

<coeff>0</coeff><coeff>0</coeff><coeff>1</coeff>

<coeff>0</coeff><coeff>0.0833333333333</coeff>

</polynomial>

</polynomialVector>

</elements>

<samplePoints>

<elt>0.017496844815</elt><elt>0.157471603340</elt><elt>0.857345395967</elt>

<elt>2.117118222694</elt><elt>3.936790083523</elt>

</samplePoints>

<sampleScalings>

<elt>0.982655336118</elt><elt>0.854301072560</elt><elt>0.424286902403</elt>

<elt>0.120378031823</elt><elt>0.019510742190</elt>

</sampleScalings>

<bilinearBasis>

<polynomial><coeff>1</coeff></polynomial>

<polynomial><coeff>-1</coeff><coeff>1</coeff></polynomial>

<polynomial><coeff>1</coeff><coeff>-2</coeff><coeff>0.5</coeff></polynomial>

</bilinearBasis>

</polynomialVectorMatrix>

</polynomialVectorMatrices>

</sdp>

4 Internal SDP

To understand the output of SDPB, we need a rough understanding of its internal represen-
tation of the above PMP as a semidefinite program (SDP). Much more detail is given in [1].
The PMP (2.2) is translated into a dual pair of SDPs of the following form:

D : maximize Tr(CY) + b0 + b · y over y ∈ RN , Y ∈ SK ,
such that Tr(A∗Y) +By = c, and
Y � 0.

(4.1)

7

P : minimize b0 + c · x over x ∈ RP , X ∈ SK ,

such that X =
∑P

p=1Apxp − C,
BTx = b,
X � 0,

(4.2)

where “� 0” means “is positive-semidefinite” and

c ∈ RP ,

B ∈ RP×N ,

A1, . . . , AP , C ∈ SK . (4.3)

Here, SK is the space of K ×K symmetric real matrices, and Tr(A∗Y) denotes the vector
(Tr(A1Y), . . . ,Tr(APY)) ∈ RP . An optimal solution to (4.1) and (4.2) is characterized by
XY = 0 and also equality of the primal and dual objective functions Tr(CY) + b0 + b · y =
b0 + c · x.

The residues

P ≡
∑
i

Aixi −X − C,

p ≡ b−BTx,

d ≡ c− Tr(A∗Y)−By, (4.4)

measure the failure of x,X, y, Y to satisfy their constraints. We say a point q = (x,X, y, Y)
is “primal feasible” or “dual feasible” if the residues are sufficiently small,

primal feasible: primalError ≡ maxi,j{|pi|, |Pij|} < primalErrorThreshold;
dual feasible: dualError ≡ maxi{|di|} < dualErrorThreshold,

where primalErrorThreshold � 1 and dualErrorThreshold � 1 are parameters chosen
by the user.

An optimal point should be both primal and dual feasible, and have (nearly) equal
primal and dual objective values. Specifically, let us define dualityGap as the normalized
difference between the primal and dual objective functions

dualityGap ≡ |primalObjective− dualObjective|
max{1, |primalObjective + dualObjective|}

,

primalObjective ≡ b0 + c · x,
dualObjective ≡ Tr(CY) + b0 + b · y. (4.5)

A point is considered “optimal” if

dualityGap < dualityGapThreshold, (4.6)

where dualityGapThreshold� 1 is chosen by the user.

8

5 Output of SDPB

5.1 Terminal Output

Listing 5: Output of SDPB for the input file in listing 4

$ sdpb -s test.xml --stepLengthReduction=0.9 --noFinalCheckpoint --dualityGapThreshold=1e-10

SDPB started at 2015-Jan-31 21:57:21

SDP file : "test.xml"

out file : "test.out"

checkpoint file : "test.ck"

Parameters:

maxIterations = 500

maxRuntime = 86400

checkpointInterval = 3600

noFinalCheckpoint = true

findPrimalFeasible = false

findDualFeasible = false

detectPrimalFeasibleJump = false

detectDualFeasibleJump = false

precision(actual) = 400(448)

maxThreads(using) = 4(4)

dualityGapThreshold = 1e-10

primalErrorThreshold = 1e-30

dualErrorThreshold = 1e-30

initialMatrixScalePrimal = 100000000000000000000

initialMatrixScaleDual = 100000000000000000000

feasibleCenteringParameter = 0.1

infeasibleCenteringParameter = 0.3

stepLengthReduction = 0.9

choleskyStabilizeThreshold = 1e-40

maxComplementarity = 1e+100

time mu P-obj D-obj gap P-err D-err P-step D-step beta dim/stabilized

--

1 00:00:00 1.0e+40 +0.00e+00 +0.00e+00 0.00e+00 +1.00e+20 +2.88e+20 0.811 0.832 0.3 1/1

2 00:00:00 2.7e+39 +1.22e+20 -2.11e+20 1.00e+00 +1.89e+19 +4.84e+19 0.786 0.807 0.3 1/1

3 00:00:00 8.4e+38 +1.27e+20 -3.52e+20 1.00e+00 +4.03e+18 +9.36e+18 0.777 0.794 0.3 1/1

...

82 00:00:00 2.4e-08 +1.84e+00 +1.84e+00 3.22e-08 +5.40e-136 +1.70e-134 1 1 0.1 1/1

83 00:00:00 2.4e-09 +1.84e+00 +1.84e+00 3.22e-09 +7.90e-136 +1.83e-134 1 1 0.1 1/1

84 00:00:00 2.4e-10 +1.84e+00 +1.84e+00 3.22e-10 +2.57e-136 +1.01e-133 1 1 0.1 1/1

-----found primal-dual optimal solution---

primalObjective = 1.84026576320318090039117617247

dualObjective = 1.84026576308462848033006313255

dualityGap = 3.22106791408699658310926876654e-11

primalError = 4.26325166997944952057867662787e-136

dualError = 1.42154001133123757956323785185e-133

Saving solution to : "test.out"

Last checkpoint : 0.161299s wall, 0.630000s user + 0.010000s system = 0.640000s CPU (396.8%)

Solver runtime : 0.161224s wall, 0.630000s user + 0.010000s system = 0.640000s CPU (397.0%)

The output from running SDPB on the example problem in section 3.3 is in listing 5. The
input, output, and checkpoint files are listed first, followed by various parameters. After
each iteration, SDPB prints the following:

time: The current solver runtime in hh:mm:ss.

9

mu: The value of the complementarity Tr(XY)/K.

P-obj: The primal objective value b0 + c · x.

D-obj: The dual objective value Tr(CY) + b0 + b · y.

gap: The value of dualityGap.

P-err: The primal error maxi,j{|pi|, |Pij|}.

D-err: The dual error maxi{|di|}.

P-step: The primal step length αP described in [1].

D-step: The dual step length αD described in [1].

beta: The corrector centering parameter βc described in [1].

dim/stabilized: N/N ′, where N is the dimension of the vector y, and N ′ is the dimension
of the matrix Q′ obtained after stabilizing the Schur complement matrix, described
in [1]. A large N ′ will generally cause a big slowdown, so it is best avoided. N ′

can be reduced by decreasing choleskyStabilizeThreshold, though this sometimes
requires increasing precision to avoid numerical instabilities.

If an optimal solution exists, the primal and dual error will decrease until the problem
becomes primal and dual feasible. Then the primal and dual objective functions start to
converge, and the complementarity µ decreases until the duality gap becomes smaller than
dualityGapThreshold.

The terminal output ends with the final values of the primal/dual objectives, primal/dual
errors and duality gap, together with the time since the last saved checkpoint and the total
solver runtime.

5.2 Termination

The possible termination reasons for SDPB are as follows

found primal-dual optimal solution

Found a solution for x,X, y, Y that is simultaneously primal feasible, dual feasible,
and optimal.

found primal feasible solution

Found a solution for x,X that is primal feasible. SDPB will only terminate with this
result if the option --findPrimalFeasible is specified.

found dual feasible solution

Found a solution for y, Y that is dual feasible. SDPB will only terminate with this
result if the option --findDualFeasible is specified.

10

primal feasible jump detected

A Newton step with primal step length αP just occurred, without resulting in a primal
feasible solution. (Usually this means one should increase precision and resume from
the latest checkpoint.)

dual feasible jump detected

A Newton step with dual step length αD just occurred, without resulting in a dual
feasible solution. (Usually this means one should increase precision and resume from
the latest checkpoint.)

maxIterations exceeded

SDPB has run for more iterations than specified by the option --maxIterations.

maxRuntime exceeded

SDPB has run for longer than specified by the option --maxRuntime.

maxComplementarity exceeded

µ = Tr(XY)/ dim(X) exceeded the value specified by --maxComplementarity. This
might indicate that the problem is unbounded and no optimal solution will be found.

When using SDPB to determine primal or dual feasibility, one can specify the options
--findPrimalFeasible or --findDualFeasible. This will cause the solver to terminate
immediately once the primal or dual errors are sufficiently small. This often occurs immedi-
ately after the primal or dual step lengths become equal to 1. A step length of 1 means that
the solver has found a Newton step that exactly solves the primal or dual constraints, while
preserving positive-semidefiniteness of X, Y . Sometimes a step length of 1 does not result
in sufficiently small primal/dual errors. This is indicative of numerical instabilities and
usually means precision should be increased. The options --detectPrimalFeasibleJump
and --detectPrimalFeasibleJump cause SDPB to terminate if a step length of 1 occurs
without resulting in primal/dual feasibility. If desired, one can then restart the solver from
the most recent checkpoint, with a higher value of precision.

5.3 Output File

Listing 6: Contents of the output file test.out corresponding to listing 4. Decimal
expansions have been truncated for brevity. Mathematica uses *^ instead of the character e for
scientific notation. Thus, the output format is not quite suitable for import into Mathematica

without modification. This could be changed in future versions.

terminateReason = "found primal-dual optimal solution";

primalObjective = 1.840265763203;

dualObjective = 1.840265763084;

dualityGap = 3.221067914086e-11;

primalError = 4.263251669979e-136;

dualError = 1.421540011331e-133;

runtime = 0.16122411191463470458984375;

y = {-1.840265763084};

x = {0.4523538794795, -0.803480855768, 2.460542537885, 0.361240154722, -0.094037214700};

11

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

Figure 1: A plot of 1 + x4 + y
(
x4

12 + x2
)

with y = −1.840265763084 equal to its optimal

value. The zero near x = 1 shows that −y cannot be further increased without violating the
positivity constraint.

The output file test.out corresponding to listing 4 is shown in listing 6. It includes
the reason for termination, the final primal/dual objective values, the final duality gap, the
final primal/dual errors, the total runtime, and the vectors y and x.1

The value of y gives the solution to our optimization problem. The function

1 + x4 + (−1.840265763084)

(
x4

12
+ x2

)
(5.1)

is plotted in figure 1. The zero near x = 1 shows that y is optimal.

5.4 Checkpoints

Every checkpointInterval, SDPB saves a new checkpoint file with a .ck extension and
backs up the old checkpoint file to a .ck.bk extension. SDPB also saves a checkpoint after
termination, provided the option --noFinalCheckpoint is not specified.

A checkpoint file encodes the values of x,X, y, Y . If SDPB detects an existing checkpoint
file on startup, it will use those values of x,X, y, Y as initial conditions in the solver. Thus,
SDPB can be stopped and started at will without losing progress.

A typical workflow for long-running computations on shared machines is to specify a
moderate checkpointInterval (e.g. one hour) and a somewhat larger maxRuntime (e.g.
12 hours). SDPB will terminate after 12 hours and can then be restarted without losing

1To include the matrices X,Y as well, uncomment the lines “// ofs << "Y = " << Y << ";\n";” and
“// ofs << "X = " << X << ";\n";” in the source file SDPSolverIO.cpp, and recompile SDPB.

12

progress. If SDPB is killed prematurely, then at most 1 hour of progress will be lost. This
pattern of restarting gives other users chances to run their processes. It can be sustained
indefinitely, allowing extremely long computations.

6 Attribution

If you use SDPB in work that results in publication, please cite [1]. Depending on how SDPB

is used, the following sources might also be relevant:

• The first use of semidefinite programming in the bootstrap [3].

• The generalization of semidefinite programming methods to arbitrary spacetime di-
mension [4].

• The generalization of semidefinite programming methods to arbitrary systems of cor-
relation functions [5].

7 Acknowledgements

SDPB Makes extensive use of MPACK [9], the multiple precision linear algebra library written
by Maho Nakata. Several source files from MPACK are included in the SDPB source tree
(see the license at the top of those files). SDPB uses the Boost C++ libraries [10] and Lee
Thomason’s tinyxml2 library [11] for parsing. SDPB was partially based on the solvers SDPA
and SDPA-GMP [6–8], which were essential sources of inspiration and examples.

Thanks to Filip Kos, David Poland, and Alessandro Vichi for collaboration in developing
semidefinite programming methods for the conformal bootstrap and assistance testing SDPB.
Thanks to Amir Ali Ahmadi, Hande Benson, Pablo Parrilo, and Robert Vanderbei for advice
and discussions about semidefinite programming.

I am supported by DOE grant number DE-SC0009988 and a William D. Loughlin
Membership at the Institute for Advanced Study.

References

[1] David Simmons-Duffin, “A Semidefinite Program Solver for the Conformal Bootstrap,”
arXiv:1502.02033 [hep-th].

[2] V. S. Rychkov and A. Vichi, “Universal Constraints on Conformal Operator Dimen-
sions,” Phys. Rev. D 80, 045006 (2009) arXiv:0905.2211 [hep-th].

[3] D. Poland, D. Simmons-Duffin and A. Vichi, “Carving Out the Space of 4D CFTs,”
JHEP 1205, 110 (2012) arXiv:1109.5176 [hep-th].

13

http://arxiv.org/abs/1502.02033
http://arxiv.org/abs/0905.2211
http://arXiv.org/abs/1109.5176

[4] F. Kos, D. Poland and D. Simmons-Duffin, “Bootstrapping the O(N) vector models,”
JHEP 1406, 091 (2014) arXiv:1307.6856 [hep-th].

[5] F. Kos, D. Poland and D. Simmons-Duffin, “Bootstrapping Mixed Correlators in the 3D
Ising Model,” JHEP 1411, 109 (2014) arXiv:1406.4858 [hep-th].

[6] M. Yamashita, K. Fujisawa, M. Fukuda, K. Nakata, and M. Nakata, “A high-
performance software package for semidefinite programs: SDPA 7,” Research Report
B-463, Dept. of Mathematical and Computing Science, Tokyo Institute of Technology,
Tokyo, Japan (2010).

[7] M. Yamashita, K. Fujisawa, and M. Kojima, “Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0),” Optimization Methods and Software”
18 491-505 (2003).

[8] M. Nakata, “A numerical evaluation of highly accurate multiple-precision arithmetic
version of semidefinite programming solver: SDPA-GMP, -QD and -DD.,” 2010 IEEE
International Symposium on Computer-Aided Control System Design (CACSD), 29-34
Sept 2010.

[9] M. Nakata, “The MPACK (MBLAS/MLAPACK); a multiple precision arithmetic
version of BLAS and LAPACK,” 2010 http://mplapack.sourceforge.net/.

[10] C++ Standards Committee Library Working Group and other contributors, “BOOST
C++ Libraries,” http://www.boost.org.

[11] L. Thomason, TinyXML2, http://www.grinninglizard.com/tinyxml2docs/index.html

14

http://arXiv.org/abs/1307.6856
http://arXiv.org/abs/1406.4858
http://mplapack.sourceforge.net/
http://www.boost.org
http://www.grinninglizard.com/tinyxml2docs/index.html

	Introduction
	Installation and Requirements

	Polynomial Matrix Programs
	Input to SDPB
	Input Format
	Mathematica Interface
	An Example

	Internal SDP
	Output of SDPB
	Terminal Output
	Termination
	Output File
	Checkpoints

	Attribution
	Acknowledgements

