
Title

Snap7

Reference manual

Davide Nardella

Rev.8 – December 3, 2016

P a g . | 2

Snap7 1.4.2 - Reference manual

P a g . 2 |

Snap7 1.4.2 - Reference manual

Summary
Title ... 1

Summary ... 2

Overview .. 9

Licensing .. 10

Disclaimer of Warranty ... 10

Acnowledgments ... 11

About this manual ... 12

Convention ... 12

Snap7 Compatibility ... 13

OS ... 13

Wrappers .. 14

Siemens communications overview .. 17

S7 Protocol ... 17

The Siemens theatre .. 19

Siemens data format .. 22

Helper classes ... 22

The Snap7 theatre ... 24

Snap7Client .. 25

PDU independence ... 26

SmartConnect ... 26

Asynchronous data transfer .. 28

Target Compatibility ... 33

S7 1200/1500 Notes .. 34

Snap7MicroClient ... 36

PLC connection .. 37

Snap7Server ... 39

Introduction .. 39

Specifications .. 43

Control flow .. 45

Data consistency ... 50

Resourceless servers .. 51

Multiple servers ... 52

Troubleshooting ... 53

Step 7 Project ... 54

Server Applications .. 58

Snap7Partner .. 59

P a g . | 3

Snap7 1.4.2 - Reference manual

P a g . 3 |

Snap7 1.4.2 - Reference manual

The Siemens model.. 59

The Snap7 model ... 63

Partner use ... 65

Partner Applications ... 74

News from 1.1.0 .. 76

LOGO! 0BA7/0BA8 ... 76

S7 200 (via CP243) .. 83

Snap7 Library API .. 85

API conventions... 85

Wrappers .. 85

LabVIEW .. 88

Accessing internal parameters ... 89

Client API Reference .. 91

Administrative functions ... 92

Cli_Create ... 93

Cli_Destroy ... 94

Cli_SetConnectionType ... 95

Cli_ConnectTo ... 96

Cli_SetConnectionParams ... 98

Cli_Connect .. 99

Cli_Disconnect .. 100

Cli_GetParam ... 101

Cli_SetParam ... 102

Data I/O functions .. 103

Cli_ReadArea ... 104

Cli_WriteArea ... 106

Cli_DBRead .. 107

Cli_DBWrite ... 108

Cli_ABRead .. 109

Cli_ABWrite .. 110

Cli_EBRead .. 111

Cli_EBWrite .. 112

Cli_MBRead .. 113

Cli_MBWrite ... 114

Cli_TMRead .. 115

Cli_TMWrite ... 116

Cli_CTRead .. 117

P a g . | 4

Snap7 1.4.2 - Reference manual

P a g . 4 |

Snap7 1.4.2 - Reference manual

Cli_CTWrite .. 118

Cli_ReadMultiVars ... 119

Cli_WriteMultiVars .. 121

Directory functions ... 122

Cli_ListBlocks ... 123

Cli_ListBlocksOfType ... 124

Cli_GetAgBlockInfo ... 126

Cli_GetPgBlockInfo ... 128

Block oriented functions .. 129

Cli_FullUpload .. 130

Cli_Upload ... 132

Cli_Download ... 133

Cli_Delete .. 134

Cli_DBGet .. 135

Cli_DBFill ... 136

Date/Time functions .. 137

Cli_GetPlcDateTime ... 138

Cli_SetPlcDateTime ... 139

Cli_SetPlcSystemDateTime .. 140

System info functions .. 141

Cli_ReadSZL .. 142

Cli_ReadSZLList .. 144

Cli_GetOrderCode ... 146

Cli_GetCpuInfo ... 147

Cli_GetCpInfo ... 148

PLC control functions .. 149

Cli_PlcHotStart ... 150

Cli_PlcColdStart .. 151

Cli_PlcStop .. 152

Cli_CopyRamToRom .. 153

Cli_Compress ... 154

Cli_GetPlcStatus ... 155

Security functions ... 156

Cli_SetSessionPassword .. 157

Cli_ClearSessionPassword .. 158

Cli_GetProtection .. 159

Low level functions ... 160

P a g . | 5

Snap7 1.4.2 - Reference manual

P a g . 5 |

Snap7 1.4.2 - Reference manual

Cli_IsoExchangeBuffer ... 161

Miscellaneous functions ... 162

Cli_GetExecTime ... 163

Cli_GetLastError ... 164

Cli_GetPduLength ... 165

Cli_ErrorText .. 166

Cli_GetConnected ... 167

Asynchronous functions ... 168

Cli_SetAsCallback ... 169

Cli_CheckAsCompletion ... 173

Cli_WaitAsCompletion ... 174

Cli_AsReadArea .. 175

Cli_AsWriteArea .. 176

Cli_AsDBRead .. 177

Cli_AsDBWrite .. 178

Cli_AsABRead ... 179

Cli_AsABWrite .. 180

Cli_AsEBRead ... 181

Cli_AsEBWrite .. 182

Cli_AsMBRead .. 183

Cli_AsMBWrite .. 184

Cli_AsTMRead .. 185

Cli_AsTMWrite .. 186

Cli_AsCTRead ... 187

Cli_AsCTWrite .. 188

Cli_AsListBlocksOfType .. 189

Cli_AsReadSZL ... 190

Cli_AsReadSZLList .. 191

Cli_AsFullUpload ... 192

Cli_AsUpload .. 193

Cli_AsDownload .. 194

Cli_AsDBGet .. 195

Cli_AsDBFill.. 196

Cli_AsCopyRamToRom .. 197

Cli_AsCompress .. 198

Server API Reference .. 199

Administrative functions .. 200

P a g . | 6

Snap7 1.4.2 - Reference manual

P a g . 6 |

Snap7 1.4.2 - Reference manual

Srv_Create .. 201

Srv_Destroy ... 202

Srv_GetParam .. 203

Srv_SetParam .. 204

Srv_StartTo ... 205

Srv_Start ... 206

Srv_Stop ... 207

Shared memory functions .. 208

Srv_RegisterArea .. 209

Srv_UnRegisterArea .. 210

Srv_LockArea ... 211

Srv_UnlockArea .. 212

Control flow functions ... 213

Srv_SetEventsCallback .. 214

Srv_SetRWAreaCallback .. 216

Srv_SetReadsEventsCallback ... 218

Srv_GetMask.. 219

Srv_SetMask .. 220

Srv_PickEvent .. 221

Srv_ClearEvents ... 222

Miscellaneous functions ... 223

Srv_GetStatus .. 224

Srv_SetCpuStatus .. 225

Srv_ErrorText .. 226

Srv_EventText.. 227

Partner API Reference ... 228

Administrative functions .. 229

Par_Create... 230

Par_Destroy ... 231

Par_GetParam .. 232

Par_SetParam .. 233

Par_StartTo ... 234

Par_Start ... 235

Par_Stop ... 236

Par_SetSendCallback .. 237

Par_SetRecvCallback ... 238

Data Transfer functions ... 239

P a g . | 7

Snap7 1.4.2 - Reference manual

P a g . 7 |

Snap7 1.4.2 - Reference manual

Par_BSend ... 240

Par_AsBSend ... 241

Par_CheckAsBSendCompletion ... 242

Par_WaitAsBSendCompletion ... 243

Par_BRecv ... 244

Par_CheckAsBRecvCompletion .. 245

Miscellaneous functions ... 246

Par_GetTimes ... 247

Par_GetStats .. 248

Par_GetLastError .. 249

Par_GetStatus .. 250

Par_ErrorText ... 251

API Error codes .. 252

ISO TCP Error table .. 252

Client Errors Table .. 253

Server Errors Table ... 254

Partner Errors Table .. 254

Snap7 package... 255

[build] ... 255

[doc]... 255

[examples] .. 256

[release] ... 256

[rich-demos] .. 256

[src] ... 257

[LabVIEW] ... 257

LabVIEW ... 258

DLL Calling .. 259

Generic buffers ... 259

Conventions ... 262

Graphic ... 262

Naming ... 262

Release ... 263

Final remarks ... 264

.NET Environment ... 265

Key concepts ... 265

1.4.0 ... 266

C# .. 266

P a g . | 8

Snap7 1.4.2 - Reference manual

P a g . 8 |

Snap7 1.4.2 - Reference manual

VB .. 267

Remarks .. 269

Data access example .. 270

Testing Snap7 .. 272

Snap7 source code ... 275

Embedding Snap7MicroClient ... 276

Rebuild Snap7 .. 277

Windows.. 277

MinGW 32bit 4.7.2 .. 278

MinGW 64 bit 4.7.1 ... 279

Microsoft Visual Studio .. 280

Embarcadero C++ builder .. 281

Unix .. 282

Linux x86/x64 .. 283

Linux Arm boards ... 284

Linux Mips boards ... 285

BSD .. 286

Oracle Solaris 10/11 ... 287

Apple OSX ... 288

P a g . | 9

Snap7 1.4.2 - Reference manual

P a g . 9 |

Snap7 1.4.2 - Reference manual

Overview

Snap7 is an open source multi-platform Ethernet communication suite for interfacing

natively with Siemens S7 PLCs. The new CPUs 1200/1500, SINAMICS Drives, old

S7200 and small LOGO 0BA7/0BA8 are also partially supported.

Although it has been designed to overcome the limitations of OPC servers when

transferring large amounts of high speed data in industrial facilities, it scales well

down to small Linux based arm or mips boards such as Raspberry PI (1 and 2),

BeagleBone Black, pcDuino, CubieBoard, UDOO and ARDUINO YUN.

Three specialized components, Client, Server and Partner, allow you to definitively

integrate your PC based systems into a PLC automation chain.

Main features

 Native multi-architecture design (32/64 bit).

 Platform independent, currently are supported Windows (from NT 4.0 up to

Windows 8), Linux, BSD, Oracle Solaris 11 and Mac OSX.

 Multi CPU support : Intel and AMD i386/x86_64, ARM, Sun Sparc, Mips.

 Fully scalable, starting from blade servers down to Raspberry PI board.

 No dependence on any third-party libraries, no installation needed, zero

configuration.

 Three different native thread models for performance optimization:

Win32 threads/ Posix threads / Solaris 11 threads.

 Two data transfer models: classic synchronous and asynchronous.

 Two data flow models: polling and unsolicited (PLC transfers data when it wants

to).

 Two specialized ports : Settimino and Moka7 allow you to communicate with S7

PLC with Arduino or Android phones.

Additional benefits

 Very easy to use, a full working server example is not bigger than the “Hello

world”.

 Hi level object oriented wrappers are provided, currently C/C++, .NET/Mono,

Pascal, LabVIEW, Phyton, Node.js with many source code examples.

 Multi-platform rich demos are provided.

 Many projects/makefiles are ready to run to easily rebuild Snap7 in any platform

without the need of be a C++ guru.

P a g . | 10

Snap7 1.4.2 - Reference manual

P a g . 10 |

Snap7 1.4.2 - Reference manual

Licensing

Snap7 is distributed as a binary shared library with full source code under GNU

Library or Lesser General Public License version 3.0 (LGPLv3).

Basically this means that you can distribute your commercial software linked with

Snap7 without the requirement to distribute the source code of your application and

without the requirement that your application be itself distributed under LGPL. A small

mention is however appreciated if you include it in your applications.

Disclaimer of Warranty

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF

THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU

ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IF ANYONE BELIEVES THAT, WITH SNAP7 PROJECT HAVE BEEN VIOLATED SOME

COPYRIGHTS, PLEASE EMAIL US, AND ALL THE NECESSARY CHANGES WILL BE MADE.

http://sourceforge.net/directory/license:lgpl/
http://sourceforge.net/directory/license:lgpl/

P a g . | 11

Snap7 1.4.2 - Reference manual

P a g . 11 |

Snap7 1.4.2 - Reference manual

Acnowledgments

A special thanks to Thomas W, without his S7comm wireshark plugin, this project

would never have been born.

Thanks to Stephan Preeker and Gijs Molenaar for their Python wrapper a wonderful

work.

Thanks to Mathias Küsel for its Node.js wrapper, anothew wonderful work.

Thanks to Rolf Stalder for its help on Solaris systems.

http://s7commwireshark.sourceforge.net/
https://pypi.python.org/pypi/python-snap7/
https://github.com/mathiask88/node-snap7

P a g . | 12

Snap7 1.4.2 - Reference manual

P a g . 12 |

Snap7 1.4.2 - Reference manual

About this manual

This manual describes the package Snap7, what it consists of and how to use it.

It’s written in Internet English, a kind of English with many syntax errors and a very

questionable style.

The hope is that the message, though with much “syntax noise”, it is understandable

to all.

And, if the Internet English was not enough, I’m neither a writer nor a publishing

expert, so, please, do not expect to read an award winner book.

You are warmly encouraged to send comments/corrections.

Rarely I read a manual from the beginning to the end, and I think that many other

people do the same, so, many key concepts (such as PDU) are repeated throughout

the entire manual to allow a “spot” consultation without the loss of information.

Convention

 Every concept or code snippet applies both for 32 and 64 bit architecture.

 Unless otherwise specified, Unix stands for Linux or BSD or Solaris.

 Unless otherwise specified, every concept or code snippet applies both for Unix

and Windows regardless of the source code (C/C++/C#/Pascal).

 There is no special chapter about small ARM Linux boards (like Raspberry)

because Snap7 offers the same functionality for these boards.

P a g . | 13

Snap7 1.4.2 - Reference manual

P a g . 13 |

Snap7 1.4.2 - Reference manual

Snap7 Compatibility

Through the entire manual, you will find detailed info about the software

implementation and about the hardware compatibility.

This is an only brief list to quickly know if Snap7 meets your working environment.

As you can see, it was successfully tested into 60 OS/Distributions.

As general rule any 16 bit OS/Compiler is definitely not supported.

OS

Microsoft Windows (x86-amd64)

 32 64

Windows NT Workstation 4.0 SP6 O

Windows 2000 Professional O -

Windows 2003 Small Business Server O -

Windows 2003 Server R2 O -

Windows 2008 Small Business Server O -

Windows 2008 Server RC2 O O

Windows XP Professional SP3 O O

Windows Vista O O

Windows 7 Home Premium O O

Windows 7 Professional O O

Windows 7 Ultimate O O

Windows 8 Professional O O

Windows 10 Technical preview O O

Windows 95 X

Windows Me X

GNU-Linux (i386/i686-amd64)

 32 64

CentOS 6.4 O O

Debian 6.0.6 O -

Debian 7.0.0 O O

Fedora 18 O -

Fedora 19 O -

Knoppix 7 O -

LinuxMint 14 O O

LinuxMint 15 O O

LinuxMint 16 O O

OpenSuse 12.3 O -

Red Hat 4.4.7-3 O O

Semplice 4.0 O O

Ubuntu 12.10 O O

Ubuntu 13.04 O O

Ubuntu 13.10 O O

Ubuntu 14.04 LTS O O

Ubuntu 14.10 O O

Ubuntu 15.04 O O

VectorLinux 7.0 O -

P a g . | 14

Snap7 1.4.2 - Reference manual

P a g . 14 |

Snap7 1.4.2 - Reference manual

GNU-Linux (arm v6/v7 boards)
 32 64

Raspberry PI 1,2 - Raspbian “wheezy” (ARMHF) O

BeagleBone Black – Angstrom 2013.6 (ARMHF) O

pcDuino - Ubuntu 12.04 (ARMHF) O

CubieBoard 2 – Debian “wheezy” (ARMHF) O

UDOO – Ubuntu 12.04 LTS (ARMHF) O

BSD (i386-amd64)

 32 64

FreeBSD 9.1 O O

OSX (i386-x86_64)

 32 64

Apple OSX 10.9.1 Mavericks O O

Oracle Solaris (i386-amd64/Sparc)

 32 64

Solaris 11 O -

OpenIndiana 151a7 (binary compatible with Solaris 11) O -

O Built and tested

 - Compatible but not tested

X Does not work

 Does not exists

missing OS releases / distributions / Platforms are to consider untested.

Wrappers

(Source code interface files and examples – see Snap7 Library API)

Pascal (snap7.pas)

Borland (or Inprise/CodeGear/Embarcadero) - Windows
 32 64

Delphi 2 O

Delphi 3 O

Delphi 4 O

Delphi 5 O

Delphi 6 O

Delphi 7 O

Delphi 8 O

Delphi 2005 O

Delphi 2006 (BDS 2006 / TurboDelphi) O

Delphi 2007 O

Delphi 2008 O

Delphi 2008 .NET -

Delphi 2009 O

Delphi 2010 O

Delphi XE O

Delphi XE2 O O

Delphi XE3 O O

Delphi XE4 O O

Delphi XE5 O O

missing releases are to consider untested

P a g . | 15

Snap7 1.4.2 - Reference manual

P a g . 15 |

Snap7 1.4.2 - Reference manual

Borland - Linux
 32 64

Kylix (1.0/1.5) -

FreePascal - with Lazarus (when available)

 Windows Linux BSD Sol 11 Linux Arm

FPC 2.4.0 32 32 - - -

FPC 2.6.0 32/64 32/64 32/64 - 32

FPC 2.6.2 32/64 32/64 32/64 - -

FPC 2.6.4 32/64 32/64 32/64 - -

CLR (snap7.net.cs)

Snap7 interface namespace is written in C#, the resulting compiled assembly

snap7.net.dll can be used by all .net languages.

C# compiler Windows Linux BSD Sol 11 Linux Arm

Visual Studio 2008 (1)(2) 32/64

Visual Studio 2010 (1)(2) 32/64

Visual Studio 2012 (1)(3) 32/64

Visual Studio 2013 (1)(3) 32/64

Mono 2.10 32 32/64 - -

missing releases are to consider untested

(1) snap7.net.cs was compiled with the C# compiler supplied with Visual Studio, but the same compiler is

part of the related .NET SDK

(2) Using .NET Framework 3.5 SP1

(3) Using .NET Framework 4.5

C++ (snap7.cpp/snap7.h)

C++ compiler Windows Linux BSD Sol 11 Linux Arm OSX

Visual Studio 2008 (1) 32/64

Visual Studio 2010 (1) 32/64

Visual Studio 2012 32/64

MinGW 32 4.7.2 32

MinGW 64 4.7.1 (2) 64

C++ Builder XE2 (3) 32

C++ Builder XE3 (3) 32

C++ Builder XE4 (3) 32/64

C++ Builder XE5 (3) 32/64

GNU g++ 4.6 32/64 32/64 - 32

GNU g++ 4.7 32/64 32/64 32 32

GNU g++ 4.9 32/64 32/64 32 32

Solaris studio Compiler 32 (4)

Apple XCode 5.0 64

missing releases are to consider untested

P a g . | 16

Snap7 1.4.2 - Reference manual

P a g . 16 |

Snap7 1.4.2 - Reference manual

C (snap7.h)

C compiler Windows Linux BSD Sol 11 Linux Arm OSX

Visual Studio 2008 (1) 32/64

Visual Studio 2010 (1) 32/64

Visual Studio 2012 32/64

Visual Studio 2013 32/64

MinGW 32 4.7.2 32

MinGW 64 4.7.1 (2) 64

C++ Builder XE2 (3) 32

C++ Builder XE3 (3) 32

Pelles C X

LCC-Win32 X

LCC-Win64 X

GNU GCC 4.6 32/64 32/64 - 32

GNU GCC 4.7 32/64 32/64 32 32

GNU GCC 4.9 32/64 32/64 32 32

Solaris studio Compiler 32 (4)

Apple XCode 5.0 64

missing releases are to consider untested

(1) Express release needs Windows Software Development Kit (SDK) to compile 64 bit applications.

(2) This compiler (TDM 64-3) is able to produce also 32 bit binaries.

(3) snap7.lib must be converted with coff2omf.exe in order to be used with this compiler.

(4) Snap7 Library cannot be built with this compiler (see Rebuild Snap 7 chapter), but having a working

libsnap7.so compiled with the GNU toolchain, the wrapper snap7.cpp works well in user programs with

Oracle Solaris Studio Compiler.

LabVIEW (lv_snap7.dll / snap7.lvlib)

C compiler Windows Linux BSD Sol 11

LabVIEW 2010 32 - - -

LabVIEW 2013 32/64 - - -

missing releases are to consider untested

Python

Please refer to Python project

Node.js

Please refer to Node.js project

Java

Please refer to Moka7 section.

ARDUINO

Please refer to Settimino project

O Tested - OK

32 32 Bit release

64 64 Bit release

- Not tested

X Does not work

 Does not exists

https://pypi.python.org/pypi/python-snap7/
https://github.com/mathiask88/node-snap7
https://github.com/gijzelaerr/python-snap7
http://settimino.sourceforge.net/

P a g . | 17

Snap7 1.4.2 - Reference manual

P a g . 17 |

Snap7 1.4.2 - Reference manual

Siemens communications overview

Snap7, by design, only handles Ethernet S7 Protocol communications.

Why only Ethernet ?

Having said that we are not talking about the fieldbus, but we are focusing on PC-PLC

communications, Ethernet has several advantages against Profibus/Mpi :

 It’s faster, CP 1543-1 (for the newborn S71500) has a bandwidth of 1000 Mbps.

 It's more simply to troubleshoot, in 50% of cases a "ping" is good enough to solve

your problems.

 It’s cheaper, you don’t need a special adapter to communicate (which, moreover,

cannot not be used with any hardware and any virtual infrastructure as Snap7

does).

 If you use Snap7Server, many more non-Siemens panels/scada can be connected

with your software.

Siemens PLCs, through their communication processors (CP) can communicate in

Ethernet via two protocols:

Open TCP/IP and S7 Protocol.

The first is a standard implementation of the TCP/IP protocol, it's provided mainly to

connect PLCs with non-Siemens hardware.

TCP/IP is a generic protocol, it only states how the packets must be transferred, and it

doesn't know anything about their content.

Finally, TCP/IP is stream oriented (though Siemens FC/FB needs to packetize the data

stream into blocks).

As said, it is a standard, so you don’t need of Snap7 to use it, your preferred socket

libraries are perfectly suitable.

S7 Protocol

S7 Protocol, is the backbone of the Siemens communications, its Ethernet

implementation relies on ISO TCP (RFC1006) which, by design, is block oriented.

Each block is named PDU (Protocol Data Unit), its maximum length depends on the

CP and is negotiated during the connection.

S7 Protocol is Function oriented or Command oriented, i.e. each transmission

contains a command or a reply to it.

If the size of a command doesn't fit in a PDU, then it’s split across more subsequent

PDU.

Each command consists of

 A header.

 A set of parameters.

 A parameters data.

 A data block.

P a g . | 18

Snap7 1.4.2 - Reference manual

P a g . 18 |

Snap7 1.4.2 - Reference manual

The first two elements are always present, the other are optional.

To understand:

Write this data into DB 10 starting from the offset 4.

Is a command.

Write, DB, 10, 4 and data are the components of the command and are formatted in a

message in accord to the protocol specifications.

S7 Protocol, ISO TCP and TCP/IP follow the well-known encapsulation rule : every

telegram is the "payload" part of the underlying protocol.

Header Params Pardata Data

TPKT COTP S7 PDU

Header ISO TCP Telegram

S7 Telegram

ISO on TCP

TCP/IP

Protocols Encapsulation

S7 Commands are divided into categories:

 Data Read/Write

 Cyclic Data Read/Write

 Directory info

 System Info

 Blocks move

 PLC Control

 Date and Time

 Security

 Programming

For a detailed description of their behavior, look at the functions list of Snap7Client

that are arranged in the same way (Except for Cyclic Data I/O and Programming

which are not implemented).

Siemens provides a lot of FB/FC (PLC side), Simatic NET software (PC side) and a

huge excellent documentation about their use, but no internal protocol specifications.

P a g . | 19

Snap7 1.4.2 - Reference manual

P a g . 19 |

Snap7 1.4.2 - Reference manual

The Siemens theatre

In the Siemens communication theatre there are three actors:

1. The Client

2. The Server

3. The Partner (a.k.a. the peer in the classic computer dictionary).

And as in all good theater companies, they follow their script:

o The client can only query.

o The server can only reply.

o The partners can speak both on their own initiative.

ReadBytes

Bytes read

Write var

Ack

 LibNoDave

 Simatic NET

 OPC Server

 Snap7 Client

PLC as Server

HMI

Block Download

Ack

PG Ethernet

All three components on the left are Clients, they connect to the internal server of the

Communication Processor (CP), and make an S7 Request.

The server replies with a S7 answer telegram.

P a g . | 20

Snap7 1.4.2 - Reference manual

P a g . 20 |

Snap7 1.4.2 - Reference manual

No configuration is needed server side. The server service is automatically handled by the

firmware of the CP.

The CP can be external such as CP343/CP443 or internal in 3XX-PN or 4XX-PN CPUs, they,

however, work in the same way.

CP

CPU

MEMORY

Request

Reply

Client

PLC

Control

Data

Also a PLC can work as Client, in this case the data read/write requests are made via

FB14/FB15 (Get/Put), and a S7 connection, created with NetPRO, is needed.

(FB14) GET DB15

DB15 content

(FB15) PUT DB3

ACK

PLC as Server

PLC as Client

PLC as Client

P a g . | 21

Snap7 1.4.2 - Reference manual

P a g . 21 |

Snap7 1.4.2 - Reference manual

The Partners can exchange unsolicited data, i.e. once the connection is established,

both can send data to the other partner.

This kind of communication often is named Client-Client by Siemens in their manuals.

The peer that requests the connection is named Active Partner, the peer that

accepts the connection is named Passive partner.

The communication is performed via FB12/FB13 (S7300) or SFB12/SFB13 (S7400),

their symbolic names are BSend/BRecv (Block Send / Block Recv).

An important remark is that : when PLC A calls BSend, BRecv must being call in PLC B

in the same time, to complete the transaction.

Connection request

Connection Ack

Passive PartnerActive Partner
BSend

BSend

Data sent by the

passive Partner

BRecv

Ack

BRecv

Ack

For both partners an S7 Connection must be created with NetPro.

The Active partner must have the “Establish an active connection” option checked in the

connection properties (You can find further details into the Snap7Partner description).

This kind of communication model is provided mainly to connect PLCs each other,

Snap7Partner however, allows your software to act as active or passive partner in a PLCs

network.

P a g . | 22

Snap7 1.4.2 - Reference manual

P a g . 22 |

Snap7 1.4.2 - Reference manual

Siemens data format

This chapter should be inserted into "Siemens communications", but due to many

emails received about “strange behaviors” about data exchanging, I decided to

highlight it.

The PLC internal data format is BIG-Endian, i.e. the complex variables (which size is

greater than 1 byte) are stored in memory starting from the most significant byte up

to least significant one.

The PC internal data format, except for some architectures such as Sparc, Mips and

Motorola 68000 systems based, is LITTLE-Endian.

This is how the DWORD 0x4C21112F is stored into the PLC.

0x4C 0x21 0x11 0x2F

And this is how the same DWORD is stored into the PC.

0x2F 0x11 0x21 0x4C

This is how the WORD 0x113F is stored into the PLC.

0x11 0x3F

And this is how the same WORD is stored into the PC.

0x3F 0x11

This means that every variable must be rotated before inserting it into the PLC and,

using the same criteria, must be rotated after it is read from the PLC.

Helper classes

Starting from version 1.3.0 you do not need to worry about the endian convention.

You will find a class and/or a set of functions that allow you to insert/extract a

complex variable from a bytebuffer adjusting its format as well.

These classes are not built into the binary library but you will find them into the

wrapper of your programming language.

The class name is S7 for .NET/Pascal/Moka7, for C++ language you will find a set of

functions instead.

S7 is a static class, i.e. you don’t need to create it.

The idea behind this class is that you can read a byte buffer from a PLC using a single

Read then extract the vars from it.

P a g . | 23

Snap7 1.4.2 - Reference manual

P a g . 23 |

Snap7 1.4.2 - Reference manual

Please refer to the source code of the class to see its methods. With them you can

insert/extract:

 BITS

 WORD (unsigned 16 bit integer)

 INT (signed 16 bit integer)

 DWORD (unsigned 32 bit integer)

 DINT (signed 32 bit integer)

 REAL (32 bit floating point number)

 S7 Strings

 S7 Array of char

As benefit, the class is able also to read/write a S7 DATE_AND_TIME variable mapping

it into the native language format and vice-versa:

 S7 DT <-> .NET DateTime

 S7 DT <-> Pascal TDateTime

 S7 DT <-> C++ tm struct

With this C# code snippet, the REAL DB25.DD4 is extracted from the buffer.

byte[] mybuffer = new byte[256];

Client.DBRead(25, 0, 256, mybuffer);

Single MyFloat = S7.GetRealAt(mybuffer, 4);

See also the example into the chapter NET Environment

P a g . | 24

Snap7 1.4.2 - Reference manual

P a g . 24 |

Snap7 1.4.2 - Reference manual

The Snap7 theatre

The purpose of Snap7 is to fully integrate your PC station into a PLC network, without

anybody sees the difference.

To allow this, the Snap7 theater must be the same as the Siemens and contain the

same actors.

Snap7 library contains three objects: the Client, the Server and the Partner.

 The three objects can be used simultaneously in the same application.

 Many objects of the same type can be instanced simultaneously.

 Many applications can use Snap7 simultaneously.

Client

Server

Partner

Snap7

Your Application

HMI / Scada

S7 Partner

PLC as Server

Read/Write Data, Run/Stop, Up/Download ...

BSend / BRecv

P a g . | 25

Snap7 1.4.2 - Reference manual

P a g . 25 |

Snap7 1.4.2 - Reference manual

Snap7Client

A PLC client is the most well-known object, almost all PLC communication drivers on

the market are clients.

Into S7 world, LibNoDave, Prodave, SAPI-S7 (Simatic Net mn library) are clients.

The same OPC Server, despite to its name, is a client against the PLC.

Finally, Snap7Client is a Client.

It fulfills almost completely the S7 protocol, you can read/write the whole PLC memory

(In/Out/DB/Merkers/Timers/Counters), perform block operations (upload/download),

control the PLC (Run/Stop/Compress..), meet the security level (Set Password/Clear

Password) and almost all functions that Simatic Manager or Tia Portal allows.

You certainly have a clear idea about its use, its functions and their use are explained

in detail into the Client API reference.

What I think is important to highlight, is its advanced characteristics.

Snap7 library is designed keeping in mind large industrial time-critical data transfers

involving networks with dozen of PLCs.

To meet this, Snap7Client exposes three interesting features : PDU independence,

SmartConnect and Asynchronous data transfer.

P a g . | 26

Snap7 1.4.2 - Reference manual

P a g . 26 |

Snap7 1.4.2 - Reference manual

PDU independence

As said, every data packet exchanged with a PLC must fit in a PDU, whose size is fixed

and varies from 240 up to 960 bytes.

All Snap7 functions completely hide this concept, the data that you can

transfer in a single call depends only on the size of the available data.

If this data size exceeds the PDU size, the packet is automatically split across more

subsequent transfers.

SmartConnect

When we try to connect to a generic server, basically two requirements must be met.

1. The hardware must be powered on.

2. A Server software listening for our connection must be running.

If the server is PC based, the first condition not always implies the second.

But for specialist hardware firmware-based such as the PLC, the things are different,

few seconds after the power on all the services are running.

Said that, if we "can ping" a PLC we are almost sure that it can accept our

connections.

The SmartConnect feature relies on this principle to avoid the TCP connection

timeout when a PLC is off or the network cable is unwired.

Unlike the TCP connection timeout, The ping time is fixed and we can decide how

much it should be.

When we call Cli_ConnectTo(), or when an active Snap7Partner needs to connect,

first the PLC is “pinged”, then, if the ping result was ok, the TCP connection is

performed.

Snap7 uses two different ways to do this, depending on the platform:

Windows

The system library iphlpapi.dll is used, but it’s is loaded dynamically because it’s

not officially supported by Microsoft (even if it is present in all platforms and now

it’s fully documented by MSDN).

If its load fails (very rare case), an ICMP socket is created to perform the ping. We

use it as B-plan since we need administrative privileges to do this in Vista/Windows

7/Windows 8.

Unix (Linux/BSD/Solaris)

There is no system library that can help us, so the ICMP socket is created.

Unluckily, to do this, our program needs root rights or the SUID flag set.

From 1.3.0 an Async (with timeout) TCP connection is used so root rights are no

more needed.

P a g . | 27

Snap7 1.4.2 - Reference manual

P a g . 27 |

Snap7 1.4.2 - Reference manual

During the initialization, the library checks if the ping can be performed trying the

above methods.

If all they fail, SmartConnect is disabled and all the clients (or Active partners) created

will try to connect directly.

Now let's see how to take full advantage of this feature.

Let's suppose that we have a Client that cyclically exchanges data into a thread and

we want a fast recovery in case of network problems or PLC power.

In the thread body we could write something like this:

C++

while (!TerminateCondition())

{

 if (Client->Connected())

 {

 PerformDataExchange();

 sleep(TimeRate); // exchange time interval

 }

 else

 if (Client->Connect()!=0)

 sleep(10); // small wait recovery time

}

//Supposing that TerminateCondition()is a bool function that

//returns true when the thread needs to be terminated.

//In Unix you have to use nanosleep() instead of sleep() or copy

//SysSleep() from snap_sysutils.cpp.

Pascal

while not TerminateCondition do

begin

 if Client.Connected then

 begin

 PerformDataExchange;

 Sleep(TimeRate); // exchange time interval

 end

 else

 if Client.Connect<>0 then

 Sleep(10); // small wait recovery time

end;

//Supposing that TerminateCondition()is a boolean function that

//returns true when the thread needs to be terminated.

In the examples are used the C++ and Pascal classes that you find into the wrappers.

P a g . | 28

Snap7 1.4.2 - Reference manual

P a g . 28 |

Snap7 1.4.2 - Reference manual

Asynchronous data transfer

A synchronous function, is executed in the same thread of the caller, i.e. it exits only

when its job is complete. Synchronous functions are often called blocking functions

because they block the execution of the caller program.

An asynchronous function as opposite, consists of two parts, the first, executed in

the same thread of the caller, which prepares the data (if any), triggers the second

part and exits immediately.

The second one is executed in a separate thread and performs the body of the job

requested, simultaneously to the execution of the caller program.

This function is also called nonblocking.

The choice of using one or the other model, essentially depends on two factors:

1. How much the parallel job is granular than the activity of the CPU.

2. How much, the job execution time, is greater than the overhead introduced by

the synchronization.

A S7 protocol job consists of:

 Data preparation.

 Data transmission.

 Waiting for the response.

 Decoding of the reply telegram.

Each block transmitted is called PDU (protocol data unit) which is the greatest block

that can be handled per transmission.

The “max pdu size” concept belongs to the IsoTCP protocol and it’s negotiated during

the S7 connection.

So, if our data size (plus headers size) is greater than the max pdu size, we need to

split our packets and repeat the tasks of transmission and waiting.

“Waiting for the response” is the worst of them since it’s the longest and the CPU is

unused in the meantime.

So, a S7 Job is definitely granular and could benefit from asynchronous execution.

“It could” because the advantage is zeroed by the synchronization overhead if the job

consists of a single pdu.

The Snap7 Client supports both data flow models via two different set of

functions that can be mixed in the same session:

Cli_<function name> and Cli_As<function name>.

The example in figure shows a call of Cli_DBRead that extends for more PDUs; during

its execution the caller is blocked.

P a g . | 29

Snap7 1.4.2 - Reference manual

P a g . 29 |

Snap7 1.4.2 - Reference manual

Send request 1

Wait reply 1

Copy data

Send request N

Wait reply N

Prepare read

 Cli_DBRead

Use data

User program Snap 7

End of Job Completion

The asynchronous model in computer communications, however, has a great Achilles

heel : the completion.

To understand:

The function is called, the job thread is triggered, the function exits and the caller

work simultaneously to the thread.

At the end, we need to join the two execution flows, and to do this we need of a sort

of synchronization.

An inappropriate completion model can completely nullify the advantage of

asynchronous execution.

Basically there are three completion models:

 Polling

 Idle wait

 Callback

P a g . | 30

Snap7 1.4.2 - Reference manual

P a g . 30 |

Snap7 1.4.2 - Reference manual

There is no better than the others, it depends on the context.

Snap7 Client supports all three models, or a combination of them, if wanted.

The polling is the simplest : after starting the process, we check the Client until the

job is finished.

To do this we use the function Cli_CheckAsCompletion(); when called it quits

immediately and returns the status of the job : finished or in progress.

We can use it to avoid that our program becomes unresponsive during large data

transfer.

Start Job

Prepare read

 Cli_AsDBRead

Use data

User program Snap 7 interface

Send request 1

Wait reply 1

Copy data

Send request N

Wait reply N

Do Something

IDLE WAIT

Snap 7 thread

Set Job complete

Set event

Callback (if != NULL)

Cli_CheckAsCompletion

Job in progress

Job complete

P a g . | 31

Snap7 1.4.2 - Reference manual

P a g . 31 |

Snap7 1.4.2 - Reference manual

The idle wait completion waits until the job is completed or a Timeout expired.

During this time our program is blocked but the CPU is free to perform other tasks.

To accomplish this are used specific OS primitives (events, semaphores..).

The function delegated to this is Cli_WaitAsCompletion()

Start Job

Prepare read

 Cli_AsDBRead

Use data

User program Snap 7 interface

Send request 1

Wait reply 1

Copy data

Send request N

Wait reply N

Do Something

Do Something else

IDLE WAIT

IDLE WAIT

Cli_WaitAsCompletion

Snap 7 thread

Set Job complete

Set event

Callback (if != NULL)

P a g . | 32

Snap7 1.4.2 - Reference manual

P a g . 32 |

Snap7 1.4.2 - Reference manual

The Callback method is the more complex one:

When the job is terminated a user function (the so named callback) is invoked.

To use it, we must instruct the client about the callback (using Cli_SetAsCallback())

and we need to write the synchronization code inside it.

If it is used properly, this method can solve problems that cannot be solved with other

libraries (as we will see speaking about the Snap7Partner).

In the picture we have several PLC and we need to make a "type changeover" in a

production line.

And to do this we need to transfer a new large set of working parameters to each PLC.

Cli_AsDBWrite(Client_1..

Cli_AsDBWrite(Client_2..

Cli_AsDBWrite(Client_3..

Counter

Set Counter=3

InterlockedDecrement
Counter

Thread
Client_3

Thread
Client_2

Thread
Client_1

Counter = 0

Do_Something()

NO

Start 3 massive data
transfer

Wait for all jobs
complete

Show a progress bar or
other stuffs

Callback

Though the callback resides into the user’s program, it’s called into the Client thread,

so be aware that calling another Client function inside the callback could lead to stack

overflow.

Note

InterlockedDecrement is a synchronization primitive present in Windows/Unix that performs

an atomic decrement by one on a variable.

P a g . | 33

Snap7 1.4.2 - Reference manual

P a g . 33 |

Snap7 1.4.2 - Reference manual

Target Compatibility

As said, the S7 Protocol, is the backbone of the Siemens communications.

Many hardware components equipped with an Ethernet port can communicate via the S7

protocol, obviously not the whole protocol is fulfilled by them (would seem strange to

download an FC into a CP343).

S7 300/400/WinAC CPU

They fully support the S7 Protocol.

S7 1200/1500 CPU

They use a modified S7 protocol with an extended telegram, 1500 series has

advanced security functions (such as encrypted telegrams), however they can work in

300/400 compatibility mode and some functions can be executed, see also

S7 1200/1500 Notes.

S7 200 / LOGO OBA7

These PLC have a different approach. See S7200 and LOGO chapters for a detailed

description about their use with Snap7.

SINAMICS Drives

It’ possible to communicate with the internal CPU, for some models (G120 for

example) is also possible to change drive parameters.

A way to know what is possible to do with a given model, is to search what is possible

to do with an HMI panel/Scada, since Snap7 can do the same things.

CP (Communication processor)

It’s possible to communicate with them, and see their internal SDBs, although it's not

such a useful thing, or you can use SZL information for debug purpose.

S7 Protocol partial compatibility list (See also LOGO / S7200)
 CPU CP DRIVE

 300 400 WinAC Snap7S 1200 1500 343/443/IE SINAMICS

DB Read/Write O O O O O O(3) - O

EB Read/Write O O O O O O - O

AB Read/Write O O O O O O - O

MK Read/Write O O O O O O - -

TM Read/Write O O O O - - - -

CT Read/Write O O O O - - - -

Read SZL O O O O O O O O

Multi Read/Write O O O O O O - O

Directory O O O O - - O (2)

Date and Time O O O O - - - O

Control Run/Stop O O O O - - (1) O

Security O O O O - - - -

Block Upload/Down/Delete O O O - - - O O

Snap7S = Snap7Server

(1) After the “Stop” command, the connection is lost, Stop/Run CPU sequence is needed.

(2) Tough DB are present and accessible, directory shows only SDBs.

(3) See S71500 Notes

P a g . | 34

Snap7 1.4.2 - Reference manual

P a g . 34 |

Snap7 1.4.2 - Reference manual

S7 1200/1500 Notes

An external equipment can access to S71200/1500 CPU using the S7 “base” protocol,

only working as an HMI, i.e. only basic data transfer are allowed.

All other PG operations (control/directory/etc..) must follow the extended protocol.

Particularly to access a DB in S71500 some additional setting plc-side are needed.

1. Only global DBs can be accessed.

2. The optimized block access must be turned off.

3. The access level must be “full” and the “connection mechanism” must allow

GET/PUT.

Let’s see these settings in TIA Portal V12

DB property

Select the DB in the left pane under “Program blocks” and press Alt-Enter (or in the

contextual menu select “Properties…”)

Uncheck Optimized block access, by default it’s checked.

P a g . | 35

Snap7 1.4.2 - Reference manual

P a g . 35 |

Snap7 1.4.2 - Reference manual

Protection

Select the CPU project in the left pane and press Alt-Enter (or in the contextual menu

select “Properties…”)

In the item Protection, select “Full access” and Check “Permit access with PUT/GET ….”

as in figure.

P a g . | 36

Snap7 1.4.2 - Reference manual

P a g . 36 |

Snap7 1.4.2 - Reference manual

Snap7MicroClient

In the Snap7 project, TSnap7MicroClient is the ancestor of TSnap7Client class.

It’s not exported, i.e. you cannot reference it from outside the library, and the only

way to use it is to embed it in your C++ source code.

TSnap7MicroClient implements the body of all S7 Client jobs and the synchronous

interface functions.

The exported TSnap7Client, only adds the remaining asynchronous functions but does

not introduce any new S7 behavior.

Why we are speaking about an internal object ?

The micro client is thread independent and only relies on the sockets layer, i.e. you

would embed it in your source code if:

 Your application will run in a micro-OS that has no threads layer.

 Your application will run in a realtime-OS (such as QNX) or in an OS that has

not a standard threads layer (neither Windows nor posix). In this case you

may create a native thread and use the micro client inside of it.

Micro client “extrapolation” is provided by design, there is a well-defined group of

independent files to use.

See the chapter Embedding Snap7MicroClient for further information.

P a g . | 37

Snap7 1.4.2 - Reference manual

P a g . 37 |

Snap7 1.4.2 - Reference manual

PLC connection

To connect a PLC, a client or an Active Partner must specificate three params : IP,

Local TSAP, Remote TSAP.

The communication literature says:

“A Transport Services Access Point (TSAP) is an end-point for communication between

the Transport layer (layer 4) and the Session layer in the OSI (Open Systems

Interconnection) reference model. Each TSAP is an address that uniquely identifies a

pecific instantiation of a service. TSAPs are created by concatenating the node's

Network Service Access Point (NSAP) with a transport identifier, and sometimes a

packet and/or protocol type.”

We, field-mans, only need to know that the TSAP mechanism is used as a further

addressing level in the S7 PLC network and contains informations about the resources

involved as well.

In accord to the specifications, the TSAP is a generic indicator and could be also a

string, in the S7 connection it’s a 16 bit word.

Starting from the 1.1.0 release, Snap7 allows to specificate the TSAPs also in a Client

connection, this to allow to connect with LOGO and S7200 that need particular TSAP

values, just like a Snap7Partner.

To connect a PLC now there are 4 functions client-side, not to be used all in the same

time of course, but grouped.

Let’s see how do it dividing by two the PLC families:

S7 300/400/1200/1500/WinAC/Sinamics/Snap7Sever

Use Cli_ConnectTo() specifying IP_Address, Rack, Slot for the first connection,

this functions set the internal parameters and connects to the PLC. if a TCP error

occurred and a disconnection was needed, for reconnecting you can simply use

Cli_Connect() which doesn't requires any parameters. Look at the reference of

CLi_ConnectTo for a detailed explanation of Rack and Slot.

It’s possible but it’s not mandatory (Snap7 1.1.0) to specify the connection type via

the function Cli_SetConnectionType() which must be called before Cli_ConnectTo().

By default the client connects as a PG (the programming console), with this function is

possible change the connection resource type to OP (the Siemens HMI panel) or S7

Basic (a generic data transfer connection).

In the hardware configuration (Simatic Manager) of the CPU, under “Communication”

tab, you can change, PLC-side, the connection's distribution, if you need.

PG, OP and S7 Basic communications are client-server connections, i.e. they don’t

require that the PLC have a connection designed by NetPro.

Note : This is an optimization function, if the client doesn’t connect, the problem is

elsewhere.

P a g . | 38

Snap7 1.4.2 - Reference manual

P a g . 38 |

Snap7 1.4.2 - Reference manual

LOGO! 0BA7 /S7 200 via CP243

To connect to these PLC you need to call Cli_SetConnectionParams() and then

Cli_Connect().

Cli_SetConnectionParams() needs of PLC IP Address, Local TSAP and Remote TSAP.

There are two chapter dedicated to these PLC, for now let’s say that TSAPs must

follow what we wrote in the connection editors.

Remember that the TSAPs are crossed : Local TSAP PC-side is the Remote TSAP PLC-

Side and vice-versa.

This function only sets the internal parameters, the real connection is made by

Cli_Connect().

Note : when you use these functions don’t call Cli_SetConnectionType(), it modifies

the HI byte of the Remote TSAP !!!.

It’s possible, but uncomfortable, to connect to a S7300 PLC using these functions as

well.

To do this, use 0x0100 as Local TSAP and follow the next formula for the Remote

TSAP.

RemoteTSAP=(ConnectionType<<8)+(Rack*0x20)+Slot; // C/C++/C#

RemoteTSAP:=(ConnectionType SHL 8)+(Rack*$20)+Slot; // Pascal

Where:

Connection Type Value

PG 0x01

OP 0x02

S7 Basic 0x03..0x10

Remark

Snap7Server and Snap7Partner(in passive mode) accept any value for Local and

Remote TSAP.

The internal connection mechanism is not really changed : all new functions are only

for data-preparation.

P a g . | 39

Snap7 1.4.2 - Reference manual

P a g . 39 |

Snap7 1.4.2 - Reference manual

Snap7Server

Introduction

In spite of the fact that the Snap7Server is the easier object to use, initially it is

probably the most complicated to digest.

Let's start to saying that Snap7Server neither is a kind of OPC Server nor is a program

that gathers data from PLC and presents the results.

Snap7Server, just like a communication processor (CP), accepts S7

connections by external clients, and replies to their requests.

S7Server

Snap7

Your Application

HMI / Scada

DB1 DB2

DB3 DB4

Application memory

- LibNoDave

- Simatic NET

- OPC Server

- Snap7 Client

Read/Write Data, Run/Stop, Get/Set Time

Internal memory access

Up to 1024 Connections

Just like the CPU that shares its resources with its CP, Your application must should

share its resources (memory blocks) with the server.

Starting from 1.4.0 Snap7Server can be work in resourceless mode (see).

The mechanism is very simple:

 Your program allocates a memory block and says to the server “this is your

DB35”. Every time a client requests to read/write some byte from/to DB35,

the server uses that block.

 If a client requests the access to an inexistent block (i.e. a block that you didn’t

shared) the server replies with an error of resource not found, just like a real

PLC would do.

P a g . | 40

Snap7 1.4.2 - Reference manual

P a g . 40 |

Snap7 1.4.2 - Reference manual

The client does not see any difference from a real PLC.

The simulation level is quite depth: S7 Manager (or TIA Portal) itself, sees your

application as a CPU 315-2PN/DP.

Online Project

Module information

P a g . | 41

Snap7 1.4.2 - Reference manual

P a g . 41 |

Snap7 1.4.2 - Reference manual

Communication Info

Not being able to test Snap7Server with hundreds systems on the market, the key

concept is:

 If Siemens Simatic manager sees the server as a real PLC, more so every

client (Scada, hmi panel, PLC driver) will see the server as a real PLC.

P a g . | 42

Snap7 1.4.2 - Reference manual

P a g . 42 |

Snap7 1.4.2 - Reference manual

You can obtain the preceding result with the simple following program :

Please refer to API reference for functions syntax.

You can find the C# and Pascal version into examples folders.

Notice that we shared also the merkers area.

#include <stdio.h>

#include <stdlib.h>

#include <cstring>

#include "snap7.h"

 TS7Server *Server;

 unsigned char DB1[512]; // Our DB1

 unsigned char DB2[128]; // Our DB2

 unsigned char DB3[1024]; // Our DB3

 unsigned char MB[2048]; // 2048 = CPU 315 Merkers amount

int main(int argc, char* argv[])

{

 int Error;

 Server = new TS7Server;

 Server->RegisterArea(srvAreaDB, // We are registering a DB

 1, // Its number is 1 (DB1)

 &DB1, // Its address

 sizeof(DB1)); // Its size

 // Do the same for DB2 and DB3

 Server->RegisterArea(srvAreaDB, 2, &DB2, sizeof(DB2));

 Server->RegisterArea(srvAreaDB, 3, &DB3, sizeof(DB3));

 // Let’s share all Merkers from M0.0 to M2047.7

 Server->RegisterArea(srvAreaMK, 0, &MB, sizeof(MB));

 // Start the server onto the default adapter “0.0.0.0”

 Error=Server->Start();

 if (Error==0)

 {

 // Now the server is running ... wait a key to terminate

 getchar();

 }

 else

 printf("%s\n",SrvErrorText(Error).c_str());

 Server->Stop(); // not strictly needed

 delete Server;

}

P a g . | 43

Snap7 1.4.2 - Reference manual

P a g . 43 |

Snap7 1.4.2 - Reference manual

Specifications

The Snap7Server is a multi-client multi-threaded server.

Once a connection is accepted, a new S7 worker thread is created which, from this

moment will serve that client.

When the clients disconnects, the S7 worker is destroyed.

Up to 1024 (*) connection can be accepted, this value however can be changed via

Srv_SetParam().

At the moment there is no Blacklist/Whitelist mechanism for filtering the connections,

in a future release however it could be implemented (depending on the project

audience).

The compatibility with Simatic Manager, of course, is not complete.

The server, as said, is a CP simulator not a SoftPLC, i.e. there isn’t a MC7 program,

compatible with Simatic Manager, to be edited, uploaded or downloaded : The

business logic, if any, is your application program.

S7 functions implemented (in the current release)

 Data I/O (also via multivariable read/write)

Read/Write DB, Mk, IPI, IPQ, Timers, and Counters.

 Directory

List Blocks, List Blocks of Type, Block info.

 Control (1)

Run/Stop, Compress and Copy Ram to Rom.

 Date and Time (2)

Get/Set PLC Date and Time.

 System Info

Read SZL

 Security

Get/Set session password (3).

Some functions exist only to simulate a PLC presence, particularly :

(1) Run command is accepted and subsequent get status command will show

the CPU as running, Stop command is accepted and subsequent get status

command will show the CPU as stopped. But they have no practical effect on

the server.

Compress and Copy Ram to Rom are accepted but (obviously) they do

nothing.

(2) Get Date and time returns the Host (PC in which the server is running) date

and time. Set date and time is accepted but the host date and time is not

modified.

(3) Whatever password is accepted.

(*) The maximum number of open TCP connections depends also on the Host OS.

P a g . | 44

Snap7 1.4.2 - Reference manual

P a g . 44 |

Snap7 1.4.2 - Reference manual

S7 functions not implemented (in the current release)

 Block Upload/Download

Is accepted but the server replies that the operation cannot be accomplished

because the security level is not met : we cannot download a block, a block

must be created by the host application then shared with the server.

 Programming functions

The server does not replies at all.

 Cyclic data I/O

The server does not replies at all.

Due to limit the memory footprint (the server must work fine into a Raspberry

PI too), SDBs are not present; there is no scada, AFIK, that needs to access

them.

P a g . | 45

Snap7 1.4.2 - Reference manual

P a g . 45 |

Snap7 1.4.2 - Reference manual

Control flow

If you look at the previous small program, you see how to share resources between

your application and the server.

We understood that the server replies automatically to the client requests, but :

There is a way to know what a client is requesting? Can we synchronize with

it?

Is implemented a kind of log/debug mechanism?

Every time something happens in the server : when it is started, when it is stopped,

when a client connects/disconnects or makes a request, an “event” is created.

The event is simply a struct defined as follow:

EvtTime is the timestamp of the event, i.e. the date and time of its creation.

EvtSender is the IP of the Client involved in this event. The format is 32 bit integer to

save memory, and can be converted into string, such as “192.168.0.34”, using the

socket function inet_ntoa() (Every OS socket layer has it).

If the event sender is the server itself (event generated on its startup for example),

this value is 0.

EvtCode is the Event code, i.e. its identifier (see the list below).

EvtRetCode is the Event Result, it coincides with the result of the underlying S7

function if any, otherwise is 0.

EvtParam1..EvtParam4 are parameters whose meaning depends on the context.

In snap_tcpsrv.h and s7_types.h you will find all constants used.

typedef struct{

 time_t EvtTime; // Timestamp

 int EvtSender; // Sender

 longword EvtCode; // Event code

 word EvtRetCode; // Event result

 word EvtParam1; // Param 1 (if available)

 word EvtParam2; // Param 2 (if available)

 word EvtParam3; // Param 3 (if available)

 word EvtParam4; // Param 4 (if available)

}TSrvEvent

P a g . | 46

Snap7 1.4.2 - Reference manual

P a g . 46 |

Snap7 1.4.2 - Reference manual

EvtCode List

The event generated follows 2 ways : the events queue and the callbacks

The Events queue is a FIFO list protected with a critical section to ensure events

consistency and it’s thread-safe.

Each S7 Worker inserts its events into the queue, your application extracts them using

Srv_PickEvent().

If the queue is full, i.e. you don’t call Srv_PickEvent or call it too slowly, the event is

not inserted and it’s simply discarded.

On calling Srv_ClearEvents() the queue is flushed.

The Event queue is designed for log purpose.

The next code snippet is extracted from ServerDemo (Pascal rich-demo).

- LogTimer is a cyclic timer procedure.

- Log is a Text Memo object.

const longword evcServerStarted = 0x00000001;

const longword evcServerStopped = 0x00000002;

const longword evcListenerCannotStart = 0x00000004;

const longword evcClientAdded = 0x00000008;

const longword evcClientRejected = 0x00000010;

const longword evcClientNoRoom = 0x00000020;

const longword evcClientException = 0x00000040;

const longword evcClientDisconnected = 0x00000080;

const longword evcClientTerminated = 0x00000100;

const longword evcClientsDropped = 0x00000200;

const longword evcReserved_00000400 = 0x00000400;

const longword evcReserved_00000800 = 0x00000800;

const longword evcReserved_00001000 = 0x00001000;

const longword evcReserved_00002000 = 0x00002000;

const longword evcReserved_00004000 = 0x00004000;

const longword evcReserved_00008000 = 0x00008000;

const longword evcPDUincoming = 0x00010000;

const longword evcDataRead = 0x00020000;

const longword evcDataWrite = 0x00040000;

const longword evcNegotiatePDU = 0x00080000;

const longword evcReadSZL = 0x00100000;

const longword evcClock = 0x00200000;

const longword evcUpload = 0x00400000;

const longword evcDownload = 0x00800000;

const longword evcDirectory = 0x01000000;

const longword evcSecurity = 0x02000000;

const longword evcControl = 0x04000000;

const longword evcReserved_08000000 = 0x08000000;

const longword evcReserved_10000000 = 0x10000000;

const longword evcReserved_20000000 = 0x20000000;

const longword evcReserved_40000000 = 0x40000000;

const longword evcReserved_80000000 = 0x80000000;

P a g . | 47

Snap7 1.4.2 - Reference manual

P a g . 47 |

Snap7 1.4.2 - Reference manual

Finally, SrvEventText() returns the textual string of the event.

This is a sample output of this function:

2013-06-25 15:39:11 Server started

2013-06-25 15:39:24 [192.168.0.70] Client added

2013-06-25 15:39:24 [192.168.0.70] The client requires a PDU size of 480 bytes

2013-06-25 15:39:24 [192.168.0.70] Read SZL request, ID:0x0132 INDEX:0x0004 --> OK

2013-06-25 15:39:25 [192.168.0.70] Read SZL request, ID:0x0000 INDEX:0x0000 --> OK

2013-06-25 15:39:25 [192.168.0.70] Read SZL request, ID:0x0111 INDEX:0x0001 --> OK

2013-06-25 15:39:25 [192.168.0.70] Read SZL request, ID:0x0424 INDEX:0x0000 --> OK

2013-06-25 15:39:25 [192.168.0.70] Read SZL request, ID:0x0f74 INDEX:0x0000 --> OK

2013-06-25 15:39:25 [192.168.0.70] Read SZL request, ID:0x0074 INDEX:0x0000 --> OK

Ok, but I do not want to be bored with messages about SZL or Date/Time,

can I filter them ?

Yes ,you can filter them checking the EvtCode parameter but, even better, the server

can make this for you.

If you look at the EvtCode List, you will notice that each event occupies one bit into a

32 bit word.

It’s possible to pass to the server a BitMask word, named LogMask, whose bits will

act as “and gate” for the events.

For example, this mask 0xFFFFFFFE has the first bit set to 0.

If you pass it to the server, every event except for “Server Started” will be stored.

Callbacks

While, as said, the Event queue is designed for log purpose, the callback mechanism is

designed for control purpose.

A user function named Callback is invoked by the S7 Worker when an event is

created.

procedure TFrmServer.LogTimer(Sender: TObject);

Var

 Event : TSrvEvent;

begin

 // Updates Log memo

 if Server.PickEvent(Event) then

 begin

 if Log.Lines.Count>1024 then // to limit the size

 Log.Lines.Clear;

 Log.Lines.Append(SrvEventText(Event));

 end;

 // Updates other Server Infos

 ServerStatus:=Server.ServerStatus;

 ClientsCount:=Server.ClientsCount;

end;

P a g . | 48

Snap7 1.4.2 - Reference manual

P a g . 48 |

Snap7 1.4.2 - Reference manual

Also the callback mechanism is filtered with its own bitmask and is protected with a

critical section.

There are two differents callbacks (from Snap7 1.1.0) the Read Callback and the

Common Callback.

Both callbacks are executed in the same thread of the S7 Worker. The first is invoked

on read request before performing the data transfer from Snap7Server to the Client,

the second after the handshake with the client to avoid Client timeout since the code

inside the callback locks the worker.

See Srv_SetReadEventsCallback() and Srv_SetEventsCallback() for further information

about the callback prototype.

Log Mask and Callback mask are different, by default are set both to 0xFFFFFFFF (all

enabled) on the server creation.

The purpose of the ReadEventCallback is for writing protocol converters or gateways.

Finally let’s see the complete sequence.

S7 Worker

4

Snap7Server Client

DB4

Shared mem

1
3

Evt Last

Evt 5

Evt 4

Evt 3

Evt 2

Evt First

Log Filter Callback Filter

5 6

User Callback

Event
Srv_PickEvent()

Fifo Queue

CallBack Mask

LogMask

User ReadCallback

Event

2

P a g . | 49

Snap7 1.4.2 - Reference manual

P a g . 49 |

Snap7 1.4.2 - Reference manual

1. The Client Requests to read some data from DB4.

The Worker:

2. Invokes the Read Callback (if assigned) passing it the read coordinates.

Into the Read Callback we are able to modify DB4 if we want.

3. Gets the Data from DB4.

4. Sends the Data and Job result to the client.

5. Checks the Log Filter and inserts the Event into the queue.

6. Checks the Callback filter and, if the callback is assigned, calls the user function

passing the event as parameter.

7. Becomes ready for further Client requests.

Remarks

The post-handshake event callback is called also on Data Read, so if you use the Read

Callback, you should disable the read event into the Event mask to avoid a double

notification for the same event.

Queue and callbacks mechanisms are not mandatory to be used in a program, if you

don’t pick the events from the queue or not assign a callback, nothing bad will

happen.

P a g . | 50

Snap7 1.4.2 - Reference manual

P a g . 50 |

Snap7 1.4.2 - Reference manual

Data consistency

Since the main application shares its resources with the server, a synchronization

method is needed to ensure the data consistency.

When a memory block is shared via Srv_RegisterArea(), the server creates a block

descriptor.

This descriptor contains

 Block number (it’s used only if the block is a DB).

 Block memory address.

 Block size.

 A CriticalSection Object reference.

Just that object ensures the data consistency.

The S7 worker “locks” the memory block every time it needs to access it, and unlocks

it at the end.

To improve the performances, a double-buffer method is used: the S7 worker first

receives the data into an internal buffer and then copies the content into the shared

block.

Or, it copies the needed data from the shared block into the internal buffer before

sending them.

Only the copy operation locks the block.

If you need data consistency, you must accomplish this rule.

For this purpose there are two functions : Srv_LockArea() and Srv_UnlockArea().

You should use the first one to lock a memory block and the second one to unlock it.

On long operations I suggest you to adopt the same double-buffer strategy : use an

internal buffer then transfer the data into the shared block.

Moreover, an exception raised when the block is locked will lead to a S7 worker

freeze.

Note

The granularity of the consistency is the PDU size.

P a g . | 51

Snap7 1.4.2 - Reference manual

P a g . 51 |

Snap7 1.4.2 - Reference manual

Resourceless servers

Starting from 1.4.0 Snap7Server can work in resourceless mode, i.e. you don’t need

to share resources (DB, E, A…) with it : On every read/write request a callback is

called passing it the TAG (Type of memory E,A,DB..,DB number if any, Start, Size,

WordLen), and a pointer to the internal server area to read/write your data “on

demand”

The resourceless mode is triggered automatically when you call

Srv_SetRWAreaCallBack() function passing it the address of your callback (and an

user pointer that can be useful to be casted onto an object)

The 1.4.0 wrappers were updated to reflect this new mode and I wrote some

examples on how to use this feature, that however is very simple.

Purpose:

1. Protocol converter.

Into the callback you can write a routine that accesses to other hardware (such

as Modbus).

2. HMI analyzer.

Into the callback you don’t write anything (i.e. the write requests will write

nothing and the read requests will return all zeroes to the client).

Into the Events Log you will see the list of variables referenced by the HMI.

3. Flow Splitter/Router.

Into the callback you can insert some function calls to S7Clients that access to

Physical PLCs.

To allow this now it’s possible to force the the PDU Length that the server has

to negotiate in order to match the various PDU sizes.

Remarks

1. When in resourceless mode, all other system requests (read SZL, Get/Set Time

and so on) are still handled by the Server.

2. When in resourceless mode, all the block info requests (DB Get Info, Directory

and so on) will return to the client the infos about the resources that you

shared (if any) even if they are not physically used.

P a g . | 52

Snap7 1.4.2 - Reference manual

P a g . 52 |

Snap7 1.4.2 - Reference manual

Multiple servers

In preparation to receive connections a socket must be bound to a 2-tuple value :

(IP Address, Listening Port).

These coordinates are unique.

You can have a Telnet Server, a HTTP Server and a NTP Server running in the same

machine because, though they have the same IP, they are listening on different ports.

You can have two HTTP Servers in the same machine that has two network adapters

(i.e. two different IP addresses).

Established this (Berkley Sockets) rule, you can create multiple Snap7Servers but

each of them must be “started” onto a different network adapter, because the

listening port (ISO TCP - 102) cannot be changed.

It could be useful run two servers to share data between two different network

segments.

192.168.0.10

192.168.0.20

192.168.0.30

192.168.1.10

192.168.1.20

192.168.1.30

192.168.0.1

192.168.1.1

Lan segment 1

Lan segment 2

Snap7

S7Server

S7Server

Shared memory

If you plan to use a physical server, 16 adapters is the maximum suggested.

If you need more, consider to use a virtual infrastructure.

P a g . | 53

Snap7 1.4.2 - Reference manual

P a g . 53 |

Snap7 1.4.2 - Reference manual

Troubleshooting

There are mainly three reasons for which a start error is generated:

The first, trivial, is that the bind address is wrong.

Windows

In the PC in which you are trying to start the server is installed the Step 7 / TIA Portal

environment.

Step 7 has a server listening onto the port 102 : s7oiehsx.

To overcome this problem you can temporary stop it, by running one of the batch

files:

stop_s7oiehsx_x86.bat (32 bit) or

stop_s7oiehsx_x64.bat (64 bit)

To re-run the Step 7 service use their counterpart start_s7oiehsx_xxx.bat.

You can find them in the examples folder.

Tanks to www.runmode.com

Unix

ISO TCP port is a well-known port, so in Unix you need root rights, or your application

must have the SUID flag set, to bind a socket to this port.

There is not a workaround for this.

If a client does not connect with the server, check your Firewall settings (especially

if the host OS is Windows 7 / Windows 8).

http://www.runmode.com/

P a g . | 54

Snap7 1.4.2 - Reference manual

P a g . 54 |

Snap7 1.4.2 - Reference manual

Step 7 Project

This is a sample PG Project of the Snap7Server, with this project you can:

 Connect the Step 7 Manager (or Tia Portal if you convert it) to the Snap7Server

and see it online.

 Insert it in a multi-cpu project.

 Integrate a WinCC flexible project into it.

You can find it in the folder examples/Step7/Server

To use it you only need to setup the network IP address (as you would do, in a real

project).

There are few steps to follow:

1) Load the project into Step 7 Simatic Manager.

2) Open the Hardware Configuration

3) Open the PN-IO Interface editor

P a g . | 55

Snap7 1.4.2 - Reference manual

P a g . 55 |

Snap7 1.4.2 - Reference manual

4) Open the Network properties editor

5) Set the IP Address of the PC in which the server will run (and confirm

pressing the OK Button).

P a g . | 56

Snap7 1.4.2 - Reference manual

P a g . 56 |

Snap7 1.4.2 - Reference manual

6) Close all previous windows, Save & Compile the Project, don’t download it.

7) You can close the Hardware Configuration Editor, that’s all.

In the host PC, run a Server program, any of the ones you find in the example folder

or the rich-demo ServerDemo if you want.

Now you can go ONLINE with Simatic Manager, remember to set TCP/IP Auto

interface.

You can modify the offline project adding DB, variables and so on, and link them to

WinCC variables.

Remember, obviously, to create the same DBs into your application and to share

them.

P a g . | 57

Snap7 1.4.2 - Reference manual

P a g . 57 |

Snap7 1.4.2 - Reference manual

Remarks

Snap7Server is not visible via the “Display accessible nodes” function of Simatic

manager, because to find the Ethernet nodes a Profinet packet (ServiceID=5,

Discover, All) is used.

However, even WinAC, is not visible with this method if it’s equipped only with IE

(Industrial Ethernet) standard adapter.

P a g . | 58

Snap7 1.4.2 - Reference manual

P a g . 58 |

Snap7 1.4.2 - Reference manual

Server Applications

The final 1.000.000 € (Eur. because I’m Italian) question is:

Why do I need this Object ?

Let’s see two real scenarios:

Using PLC-aware hardware with your software

You have PC-based automation but:

o You don’t want to create graphic screens.

o You don't want to “expose” the system with a standard keyboard.

With Snap7Server you can connect an HMI-Panel (Siemens/ESA/Pro-Face/Open source

Scada) to your application and use a standard HMI-Builder.

Tomorrow you can migrate your application to another OS without be bored by

graphic libraries porting.

Variant of the above:

You have a Raspberry-based (or other small Linux card) system and:

o You don’t want to use an HDMI monitor.

o And you don’t like a sad SSH interface.

o You like a small ISO-rail mounted box, wired using only two cables (network

and power).

Finally:

Snap7Server allows your embedded hardware to be connected by hundred standard

systems Siemens-Aware.

Integration in a PLC environment.

You build an analogic test bench to be inserted in an existing PLC-based production

line and sadly realize that:

o Your bench is PC-based.

o The line has a commercial scada as supervisor.

o You don’t want to buy a PLC as line interface layer.

The commercial scada can be smoothly interfaced with your application via a

Snap7Server (moreover this solution is faster).

P a g . | 59

Snap7 1.4.2 - Reference manual

P a g . 59 |

Snap7 1.4.2 - Reference manual

Snap7Partner

The Smart7Partner allows you to create a S7 peer to peer communication.

The Siemens model

Unlike the client-server model, where the client makes a request and the server

replies to it, the peer to peer model sees two components with same rights, each of

them can send data asynchronously.

The only difference between them is the one who is requesting the connection.

The partner that requests the connection is named active, the one that accept the

connection is named passive.

Once the connection is established they can send unsolicited data.

The S7 protocol, as said, is command oriented, and the commands usually are

executed by a server.

The partners communicate via the S7 Protocol, but using the untyped telegram

"segmented data send".

This is not strictly a command, it’s a data transfer that uses the S7 Protocol

acknowledge mechanism.

In fact, it is not recognized by the client-server pair.

The communication is not fully asynchronous, i.e. there is no interrupt mechanism

that says to the receiver that a packet is incoming : a partner to receive a packet ,

must be listening via a Block Recv function.

As said in The Siemens Theatre chapter, two PLC to communicate with this mechanism

must have a S7 connection created with NetPro.

If the two PLC systems reside in the same project, Simatic Manager can keep track of

the connections, otherwise both will have an unspecified partner as counterpart.

But, from the data transfer point of view there is no difference.

The partner addressing mechanism is not exactly easy to understand, however, let’s

try to simplify our life.

Two friends want to talk to each other, both they have a transceiver with antenna very

directional.

To communicate, each needs to know their own geographical coordinates and those of

the other : latitude, longitude and elevation, to properly orient the antenna.

Two PLC partners want to talk each other.

To communicate, each needs to know their own S7 Network coordinates and those of

the other : IP Address and TSAP.

P a g . | 60

Snap7 1.4.2 - Reference manual

P a g . 60 |

Snap7 1.4.2 - Reference manual

The TSAP concept belongs to the ISO/OSI Layer 4 but it’s not necessary to know it

deeply, (moreover the Siemens use, does not follow strictly the specification) let’s say

only that it is a number composed by HI Part and LO Part.

The main important thing is that all coordinates must be unique and crossed, just like

a RS232 cable.

192.168.0.10Address

10.02TSAP

Locale

192.168.0.20Address

20.02TSAP

Partner

Partner A

192.168.0.20 Address

20.02 TSAP

Locale

192.168.0.10 Address

10.02 TSAP

Partner

Partner B

Note:
The HI part of the TSAP is not related with the lowest byte of the address in the example, it's just a

coincidence.

Now, Understood the mechanism, let’s translate it into S7 NetPro.

For both projects, open NetPro, select the CPU and create a new connection

(menu Insert->New Connection) as follow.

P a g . | 61

Snap7 1.4.2 - Reference manual

P a g . 61 |

Snap7 1.4.2 - Reference manual

Then edit them; here we supposed that Partner A is the active one.

ACTIVE PASSIVE

Partner A Partner B

Partner A Partner B

You cannot edit the TSAP value, it’s obtained starting from Rack, Slot and Connection

Resource as follow:

TSAP-HI = Connection Resource

TSAP-LO = <Rack * 2><Slot>.

In the description of the function Cli_ConnectTo() you can find a detailed description

of what Rack and Slot are.

Local ID (in the picture is W#16#1) is the Connection ID that must be used into the

communication FB, leave unchanged what NetPro proposes.

Pick Connection Resource from the List, any not already-used value in both partners

is good enough.

P a g . | 62

Snap7 1.4.2 - Reference manual

P a g . 62 |

Snap7 1.4.2 - Reference manual

With this configuration, the two partners can communicate via FB12/FB13 (S7300) or

SFB12/SFB13 (S7400), BSend/BRecv.

The parameter R_ID allows a further level of routing, the pair BSEND/BRECV must

have the same value for it.

There is an important remark about it (to avoid a big headache).

If you use FB12 (S7300) you can change it at runtime, it is sampled on the rising edge

of the REQ parameter.

The S7400/WinAC SFB12, instead, samples it on the rising edge of the stop->run

sequence, you can change it across two transmissions, but this has no effect : the

telegram will always be sent with the original R_ID and there is no way to debug it,

since it’s an internal parameter.

P a g . | 63

Snap7 1.4.2 - Reference manual

P a g . 63 |

Snap7 1.4.2 - Reference manual

The Snap7 model

The Snap7 model for the partner, faithfully follows the Siemens one, with some

benefits:

1. No connection configuration is needed.

2. Two data send model :

a. Asynchronous with three completion models.

b. Synchronous - the caller is blocked until data are sent.

3. Two data receive models

a. Asynchronous - a callback is invoked when there is an incoming

packet

b. Synchronous - calling BRecv just like using FB13.

There is a detailed description of the asynchronous data flow model in the

Snap7Client, please refer to it for the theoretical part.

For the data exchange point of view the partners are equal as we will see, some

remarks need to be done about the connection process.

When we create a partner we need to specify its type : Active or Passive, their

behavior, as explained in the Siemens model, is different.

There is no way to change the partner type, once created.

Active Partner

It is quite simple to understand, it behaves like a client : requests a connection to the

passive partner and waits the connection ack.

It’s also easy to understand that we can create how many partners we want and

connect them to their passive counterpart.

Passive Partner

The passive partner behaves like a server : it waits for a connection request, listening

onto the IsoTCP port.

Said that, we could think that we can create only one partner per adapter since we

cannot bind two socket to the same 2-tuple (Address, Port).

Luckily there is a programming trick, the Connection Server that works as follow:

We create as many passive partners we want.

Each of them, when started, says to the connection server :

“Boy, I’m waiting for a connection from a partner whose address is

192.168.10.30, call me if it passes here..”

Thus the connection server adds it into its passive partners list.

When an Active Partner requests for a connection, the connection server reads its

address and scans the list for someone that is waiting for it.

If there is such client, it accepts the connection and gives the connected socket to that

passive client : the TCP connection now is established and they can communicate.

P a g . | 64

Snap7 1.4.2 - Reference manual

P a g . 64 |

Snap7 1.4.2 - Reference manual

If no such partner is found in the list, the connection is refused.

The connection server behaves like a Snap7Server, the difference is that the

Snap7Server accepts any connection and creates its workers.

More then one connection servers can be created if passive partners have different

local addresses.

Active and passive partners can coexist in the same application, as follow :

Passive Partner 1

Passive Partner 2

Passive Partner 3

Active Partner 1

Active Partner 2

Active Partner 1

Active Partner 2

Active Partner 3

Passive Partner 1

Passive Partner 2

Connection server

Snap7

connect

data I/O

connect

data I/O

connect

data I/O

connect

data I/O

connect

data I/O

In order to optimize the host “bindable” addresses, the connection server is created on

the “start” of the first passive partner and is destroyed on the “stop” of the last

passive partner.

The use of active partners does not involve the server creation.

P a g . | 65

Snap7 1.4.2 - Reference manual

P a g . 65 |

Snap7 1.4.2 - Reference manual

Partner use

Let’s see now the functions that Snap7 provides for working with partners.

You can find their exact syntax in the Partner API chapter, now we focus on their behavior.

Creation

A Partner must be created via the function Par_Create(int Active), where Active can be

1 or 0.

In the wrapper objects this parameter is boolean, and is internally converted to

integer, this because is always preferable to avoid booleans parameters in multi-

architecture/multi-compilers/multi OS programs.

Their differences stop here, from now every function is used for both partners.

Connection

Let’s see how to proceed with an example.

We have two partners, the first one is a Snap7Partner, and the other is a PLC partner.

As seen, we need to create a network connection with NetPro for the real PLC.

We create this connection as follow :

 Leave unchanged Local Address and Local TSAP that NetPro offers us.

 As “Partner Address” we insert the PC IP Address.

 As “Partner TSAP” we insert whatever unused value.

 If we created the Snap7Partner as Active, we “uncheck” the flag “Establish an

active connection” and vice-versa.

The Snap7Partner doesn’t need of a connection configuration, to work, it must be

started with the “crossed” parameters.

The function is:

Where

- LocalAddress is the IP Address of the PC in which our partner is running.

- RemoteAddress is the IP Address of the PLC.

- LocTsap is the local TSAP, we copy it from the PLC network configuration.

- RemTsap is the PLC TSAP, also this is copied from NetPro.

Par_StartTo(S7Object Partner,

const char *LocalAddress,

const char *RemoteAddress,

 word LocTsap,

 word RemTsap);

P a g . | 66

Snap7 1.4.2 - Reference manual

P a g . 66 |

Snap7 1.4.2 - Reference manual

This example supposes that the Snap7Partner is the active one and has

“192.168.0.10” as IP Address.

PASSIVE

Partner B

Partner B

Par_StartTo(Partner_A,
"192.168.0.10",
"192.168.0.20",

0x1002,
0x2002)

Partner_A=Par_Create(1);
ACTIVE

Remark

The remote TSAP parameter in a passive Snap7Partner has no effect, any connection

request is accepted, and the only requirement is the IP Address.

P a g . | 67

Snap7 1.4.2 - Reference manual

P a g . 67 |

Snap7 1.4.2 - Reference manual

Partner thread

The sending and receiving data process are externally independent , however is

necessary, inside the partner, to synchronize them.

To best way to understand how this happens, is to examine their flowchart.

On start, the Snap7Partner creates a worker thread:

Check Connection

Execute Partner

Check KeepAlive

Connected

Try to connect
(if Active)

Partner Main Thread

It’s an endless loop, if the connection checks are satisfied it executes the main work of

the partner.

If a partner is connected (if active) or has an external connection (passive) has its

status set as Linked.

The send and receive jobs are execute in the same thread but are mutually exclusive,

this because a job involves many subsequent telegrams.

This is not a big penalty, since the communication channel of the PLC partner is

arbitrated in the same half-duplex way.

At the end of the send task the Send Event is triggered and the user callback (if

assigned) is invoked; the same happens at the end of the recv task.

To keep the synchronization, the send event is always cleared when a send job is

started; the recv event is cleared by the BRecv function.

P a g . | 68

Snap7 1.4.2 - Reference manual

P a g . 68 |

Snap7 1.4.2 - Reference manual

Set Snd Event

Something
to send ?

Send Buffer

Call Usr Sent Callback
(if any)

Something
to recv ?

Recv Buffer

Set Rcv Event

Call Usr Recv Callback
(if any)

yes

yes

ENTER

EXIT

Partner Execution

The Event/Callback mechanism, as we saw for the Snap7Client, allows a flexible way

to handle the data flow.

P a g . | 69

Snap7 1.4.2 - Reference manual

P a g . 69 |

Snap7 1.4.2 - Reference manual

Data Send

To send data to a remote partner we can use two functions : BSend and AsBSend.

The first is synchronous i.e. the caller execution is blocked until the job is finished.

To be pedantic, this is not a “pure” synchronous function, since its body is executed

inside the worker thread, but the result is the same.

BSend

Set Snd Event

Something
to send ?

Sends the Buffer

Call Usr Sent Callback
(if any)

Something
to recv ?

Recv the Buffer

Set Rcv Event

Call Usr Recv Callback
(if any)

yes

yes

ENTER

EXIT

TX BUFFER
Fills the Buffer and reset

Snd Event

Waits for Snd Event

Prepare Snd Data

BSend

User Program Snap7 Interface Partner Thread

The function terminates when the data are correctly received by the remote partner or

when the timeout expired.

P a g . | 70

Snap7 1.4.2 - Reference manual

P a g . 70 |

Snap7 1.4.2 - Reference manual

AsBSend is asynchronous, the data are copied in the TX Buffer and the function

terminates immediately.

To know when the job is complete we can use three methods :

1) The polling via CheckAsBSendCompletion function

Set Snd Event

Something
to send ?

Sends the Buffer

Call Usr Sent Callback
(if any)

Something
to recv ?

Recv the Buffer

Set Rcv Event

Call Usr Recv Callback
(if any)

yes

yes

ENTER

EXIT

TX BUFFER
Fills the Buffer and reset

Snd Event

Prepare Snd Data

AsBSend

User Program Snap7 Interface Partner Thread

Do something

CheckAsBSendCompletion

Job in progress

Job complete

CheckAsBSendCompletion terminates immediately returning the job state :

complete or in progress.

P a g . | 71

Snap7 1.4.2 - Reference manual

P a g . 71 |

Snap7 1.4.2 - Reference manual

2) Use the function WaitAsBSendCompletion

Set Snd Event

Something
to send ?

Sends the Buffer

Call Usr Sent Callback
(if any)

Something
to recv ?

Recv the Buffer

Set Rcv Event

Call Usr Recv Callback
(if any)

yes

yes

ENTER

EXIT

TX BUFFER
Fills the Buffer and reset

Snd Event

Waits for Snd Event

Prepare Snd Data

AsBSend

Event or Timeout

User Program Snap7 Interface Partner Thread

Do something

WaitAsBSendCompletion

This function terminates when the event is triggered or when the timeout expired.

Notice that BSend = AsBSend + WaitAsBSendCompletion.

3) Write a synchronization code into the callback.

P a g . | 72

Snap7 1.4.2 - Reference manual

P a g . 72 |

Snap7 1.4.2 - Reference manual

Data Recv

We can receive a data packet in three ways :

1. Using BRecv synchronously.

2. Polling

3. Writing user code into a callback.

BRecv

Set Snd Event

Something
to send ?

Sends the Buffer

Call Usr Sent Callback
(if any)

Something
to recv ?

Recv the Buffer

Set Rcv Event

Call Usr Recv Callback
(if any)

yes

yes

ENTER

EXIT

Waits for Rcv Event

Event or Timeout

User Program Snap7 Interface Partner Thread

Do something

BRecv
RX BUFFER

Get the Buffer
(if not timeout)

Obviously, we can use BRecv only if we know that the remote partner is sending

something, otherwise a timeout error is returned.

P a g . | 73

Snap7 1.4.2 - Reference manual

P a g . 73 |

Snap7 1.4.2 - Reference manual

Polling

Set Snd Event

Something
to send ?

Sends the Buffer

Call Usr Sent Callback
(if any)

Something
to recv ?

Recv the Buffer

Set Rcv Event

Call Usr Recv Callback
(if any)

yes

yes

ENTER

EXIT

User Program Snap7 Interface Partner Thread

Do something

RX BUFFER

CheckAsBRecvCompletion

Job complete

Job in progress

For info about the callback method see Partner Applications.

P a g . | 74

Snap7 1.4.2 - Reference manual

P a g . 74 |

Snap7 1.4.2 - Reference manual

Partner Applications

Surely you can insert your PC based automation in a PLCs context where they

communicate with BSend/BRecv, but this is only a beneficial side effect.

The main purpose of Snap7Partner is the massive data collecting in industrial facilities

using the robustness of the S7 Protocol.

Suppose to have a production line with the following characteristics:

 75 stations PLC based.

 Takt Time : 5.0 sec./pcs.

 Each station must record its own process data into a server.

 These data cannot be queued, each station needs the data of the preceding

one.

After excluding any polling mechanism, we need a “store on demand” model.

To realize this is very simple with Snap7Partner.

Let’s suppose to create a TStation class that contains a Snap7Partner linked to the

station PLC.

ParDataIncoming is the gateway callback that each partner will invoke when an

incoming data packet will be ready (1).

The station class initializes the partner callback passing it the ParDataIncoming

address and its reference “this” (or Self in Pascal) as usrPtr; so usrPtr is the

fingerprint of the station.

When a Partner receives a data packet, it invokes the callback supplying:

o usrPtr that received during the initialization.

o The operation result opResult that is not zero if an error was detected.

o The address of the buffer in which is stored the packet : pData.

o The packet Size in bytes (2).

o The parameter R_ID that was passed to FB12

The callback “casts” usrPtr to a station reference and calls its member StoreData

passing it the remaining parameters.

StoreData now can check opResult and record the data where it wants…

An important note is that Snap7Partner completes the handshake with the PLC before

calling the callback.

This means that the record process time can be extended up to the next packet

incoming without worrying of the S7 timeout.

Notes

(1) If you program in C# there is no “plain” gateway callback, the partner will invoke directly

a delegate method of the station class (see C# partner examples).

P a g . | 75

Snap7 1.4.2 - Reference manual

P a g . 75 |

Snap7 1.4.2 - Reference manual

(2) This means that we don’t need to know in advance the packet size, it can vary across the

transmissions.

C++

// Class definition

class TStation()

{

private:

 TS7Partner *Partner;

public:

 TStation();

 void StoreData(longword R_ID, void *pData, int Size);

};

// Class implementation

TStation::TStation()

{

 // Partner creation

 Partner = new TS7Partner(true); // or false

 // Callback set

 Partner->SetBRecvCallback(ParDataIncoming, this);

 // “this” parameter is the fingerprint of TStation instance.

}

void TStation::StoreData(longword R_ID, void *pData, int Size)

{

// Store the received data

}

// Callback shared between all partners

void S7API ParDataIncoming(void *usrPtr, int opResult,

 longword R_ID, void *pData, int Size,)

{

 // Cast usrPtr to TStation

 TStation *MyStation = (TStation *) usrPtr;

 // Call the member

 if (opResult==0)

 MyStation->StoreData(R_ID, pData, Size);

}

P a g . | 76

Snap7 1.4.2 - Reference manual

P a g . 76 |

Snap7 1.4.2 - Reference manual

News from 1.1.0

LOGO! 0BA7/0BA8

LOGO is a small Siemens PLC suited for implementing simple automation tasks in

industry and building management systems.

It’s very user friendly and the last model is equipped with an ethernet port for both

programming and data exchange.

The Snap7 focus is on to S7300/400 systems, but due to several requests, i decided

to manage this PLC as well.

Communication

Due to its architecture, the LOGO communication is different from its Siemens cousins.

It implements two Ethernet protocols, the first that we can call PG protocol, is used

by the software LOGO Comfort (the developing tool) to perform system tasks such as

program upload/download, run/stop and configuration.

The second, used for data exchange, is the well known (from the Snap7 point of view)

S7 Protocol.

They are very different, and the first is not covered by Snap7 because is a stand-alone

protocol that is not present, Is far I know, in different contexts.

Although LOGO uses the S7 Protocol, some small changes (new connection functions

added) were needed in Snap7 to manage it as PLC Server by a Snap7Client.

You can use LOGO as Client connecting it to a Snap7Server or you can

connect a Snap7Client to a LOGO set as Server.

Finally, to communicate with LOGO, the Ethernet connections must be designed with

LOGO Comfort in advance.

Of course I will show you how.

P a g . | 77

Snap7 1.4.2 - Reference manual

P a g . 77 |

Snap7 1.4.2 - Reference manual

For both type of communication (Client-Server or Server-Client) LOGO must be set as

MASTER (i.e. NORMAL mode as LOGO Comfort says).

I assume that your LOGO Comfort is already set and connected to the LOGO.

LOGO as Server

Configuring a server connection allows you to connect LOGO with Snap7Client for

reading and writeing the memory just like an HMI panel would do.

 In the Tools menu choose the Ethernet Connections item.

 Right click on ”Ethernet Connections” and click ”Add connections” to add a

connection

 Double-click the new connection created and edit its parameters selecting

Server Connection.

P a g . | 78

Snap7 1.4.2 - Reference manual

P a g . 78 |

Snap7 1.4.2 - Reference manual

Note:

1. “Connect with an operator panel” checkbox can be checked or unchecked.

2. If you uncheck “Accept all connections” you must specify the PC address (for

now I suggest you to do it checked).

You can chose for Remote TSAP the same value of the Local TSAP, in the example I

used two different vaules to remark (as you will see) the crossing parameters.

 Confirm the dialog, close the connection editor and download the

configuration into the LOGO.

 The LOGO is ready, to test it run the new ClientDemo, insert the LOGO IP

Address and select the TSAP Tab for the connection as in figure.

Notice that the Local TSAP of the Client corresponds to the Remote TSAP of the LOGO

and vice-versa. This is the key concept for the S7 connections.

The LOGO memory that we can Read/Write is the V area that is seen by all HMI (and

Snap7 too) as DB 1.

Into it are mapped all LOGO resources organized by bit, byte or word.

There are several tutorials in the Siemens site that show how to connect an HMI (via

WinCC flexible or TIA) to the LOGO and the detailed map.

Please refer to them for further informations.

Finally, to connect to the LOGO by program with the same parameters of above:

Client->SetConnectionParams(“192.168.0.73”, 0x0300, 0x0200); // C++

Client->Connect();

Client.SetConnectionParams(“192.168.0.73”, 0x0300, 0x0200); // C#

Client.Connect();

Client.SetConnectionParams(‘192.168.0.73’, $0300, $0200); // Pascal

Client.Connect;

P a g . | 79

Snap7 1.4.2 - Reference manual

P a g . 79 |

Snap7 1.4.2 - Reference manual

LOGO as Client

LOGO can work as Client in two way :

1. Explicit - using a client connection.

2. Implicit - via Network I/O blocks.

In both cases you can connect LOGO to a Snap7Server that acts like a slave.

Client connection

 In the Tools menu choose the Ethernet Connections item.

 Right click on ”Ethernet Connections” and click ”Add connections” to add a

connection

 Double-click the new connection created and edit its parameters selecting

Client Connection.

P a g . | 80

Snap7 1.4.2 - Reference manual

P a g . 80 |

Snap7 1.4.2 - Reference manual

 Insert the Server IP Address, as TSAP you can use whatever you want, since

Snap7Server doesn’t care of it.

 In the second area you can specify the data exchange area.

 As usual, confirm everything and download the configuration into the LOGO.

At this point you can run the Server Demo, and with the above configuration you

should see something similar to this :

P a g . | 81

Snap7 1.4.2 - Reference manual

P a g . 81 |

Snap7 1.4.2 - Reference manual

Four bytes of read request and one byte of write request, as we expected.

P a g . | 82

Snap7 1.4.2 - Reference manual

P a g . 82 |

Snap7 1.4.2 - Reference manual

Network I/O Blocks

Open a Diagram and, as example, create a “loopback” between a network input and a

network output.

Each network node requests a parametrization as in figure.

Here our LOGO sees Snap7Server as a LOGO Slave.

And this is what Snap7Server should show us:

Two bytes of read request and two byte of write request, as we expected.

P a g . | 83

Snap7 1.4.2 - Reference manual

P a g . 83 |

Snap7 1.4.2 - Reference manual

S7 200 (via CP243)

S7200 was out of the scope for Snap7 because beginning November 2013 the S7-200

product family will enter into the Phase Out stage of its product life cycle, but after

working with LOGO also this PLC can be accessed since it uses the same connection

mechanism.

Consider experimental the support for this PLC

As said, the connection is very similar to that of LOGO, you need to design a

connection using the Ethernet wizard of MicroWin as in figure.

or

P a g . | 84

Snap7 1.4.2 - Reference manual

P a g . 84 |

Snap7 1.4.2 - Reference manual

In the first case the PLC expects to be connected to an OP and you must supply

LocalTSAP = 0x1000 and RemoteTSAP = 0x0200 to the SetConnectionParams

function.

If you make a S7200 HMI project, the runtime of WinCC itself uses these parameters.

In the second case you should use LocalTSAP = 0x1000 and RemoteTSAP = 0x1000.

Server side

To connect S7200 to a Snap7Server you need a Client connection PLC-side :

then, clicking “Data Transfers” button you can set the Exchange Data areas.

Don’t care about TSAPs, Snap7Server accepts any values.

P a g . | 85

Snap7 1.4.2 - Reference manual

P a g . 85 |

Snap7 1.4.2 - Reference manual

Snap7 Library API

API conventions

Snap7 exposes a simple and unified way to access to its objects.

Each object is created via the function xxx_Create() where xxx stands for Cli, Srv or

Par.

This function returns a Handle that you must store and not modify.

Once the object is created, to use it you must call its working functions, passing them

its handle.

MyServer=Srv_Create();

ReturnValue=Srv_<working function>(MyServer, <other params>);

The handle is an internal pointer (not a 24 bit descriptor), thus its size is either 32 or

64 bit, depending on the platform.

Provided wrappers define the type S7Object as native integer and handle it internally,

I suggest to use them, or if you don’t plan to use wrappers, copy its definition or use

an untyped pointer.

At the end, we must destroy the object via the xxx_Destroy() function, passing the

handle by reference.

Srv_Destroy(&MyServer).

xxx_Destroy() first checks that the handle value is not NULL, destroys the object, then

sets to zero the handle. So, erroneous multiple call to xxx_destroy will not lead to

access violation.

For each function, into the API Reference, C and Pascal prototype are present.

For C# and object-oriented functions please refer to wrappers interface files.

Wrappers

A shared library or shared object is a file that is intended to be shared

by executable files and further shared objects files. Modules used by a program are

loaded from individual shared objects into memory at load time or run time, rather

than being copied by a linker when it creates a single monolithic executable file for the

program.

A shared library has a well-defined interface by which the functions are invoked, which

consists of the function name and the calling convention (stdcall, cdecl, etc..).

Beside the benefits of the shared libraries that make them a pillar of computing there

are some drawbacks:

 The library approach is fully procedural. Full object-oriented languages

(such as Java or C#) need a special interface code to interface them.

P a g . | 86

Snap7 1.4.2 - Reference manual

P a g . 86 |

Snap7 1.4.2 - Reference manual

 Must be very careful about the parameters type and calling convention,

especially if the library is meant to be used in a multi-architecture / multi-

platform environment (32/64 bit – Windows/Unix).

In the libraries context, a wrapper is a piece of source code that works as glue

between the user’s source code and the binary library. And it should be considered

part of the library (unmodifiable).

Wrappers supplied with Snap7 are object-oriented, they not only translate the

syntax but give you a more comfortable way to work.

Example:

We want to read 16 byte from DB32 of an S7300 PLC whose address is

“192.168.10.100”.

We need to:

1. Create a Snap7Client.

2. Connect it to the PLC.

3. Read the DB.

4. Destroy the Client (the disconnection is automatic on destroy).

To do this, we simply include the wrapper in our source code and use the Client class

as follow:

Pascal

Uses Snap7;

Var

 MyDB32 : packed array[0..255] of byte; // generic buffer

 MyClient : TS7Client;

Procedure SymplyGet;

Begin

 MyClient:=TS7Client.Create;

 MyClient.ConnectTo(‘192.168.10.100’,0,2);

 MyClient.DBRead(32, // DB Number

 0, // Start from

 16, // How many

 @MyDB32); // Target address

 MyClient.Free;

End;

P a g . | 87

Snap7 1.4.2 - Reference manual

P a g . 87 |

Snap7 1.4.2 - Reference manual

C#

C++

These are only a code snippets, functions return values should be checked…

If your preferred language is plain C you don't have objects, but the job is still very

simply.

Here MyClient is not a class reference but it’s a handle passed to the function.

In the folder examples you will find many examples ready to run.

Using Snap7;

 byte[] MyDB32 = new byte[256];

 static S7Client MyClient;

static void SymplyGet()

{

 MyClient = new S7Client();

 MyClient.ConnectTo(“192.168.10.100”,0,2);

 MyClient.DBRead(32, 0, 16, MyDB32);

 MyClient = null;

}

#include “snap7.h”;

 byte MyDB32[256]; // byte is a portable type of snap7.h

 TS7Client *Client;

void SymplyGet()

{

 MyClient = new TS7Client();

 MyClient->ConnectTo(“192.168.10.100”,0,2);

 MyClient->DBRead(32, 0, 16, &MyDB32);

 delete MyClient;

}

#include “snap7.h”;

 byte MyDB32[256];

 S7Object Client; // It’s a native integer

void SymplyGet()

{

 MyClient = Cli_Create();

 Cli_ConnectTo(MyClient, “192.168.10.100”,0,2);

 Cli_DBRead(MyClient, 32, 0, 16, &MyDB32);

 Cli_Destroy(&MyClient); // passed by ref

}

P a g . | 88

Snap7 1.4.2 - Reference manual

P a g . 88 |

Snap7 1.4.2 - Reference manual

LabVIEW

LabVIEW is a special case, there is a specific chapter dedicated to it since many

structural considerations must be done.

However this minimalist (but working) vi reads 16 bytes from a DB.

P a g . | 89

Snap7 1.4.2 - Reference manual

P a g . 89 |

Snap7 1.4.2 - Reference manual

Accessing internal parameters

To allow a fine tuning of the behavior of Snap7 objects, is provided an expandable

method to access their internal parameters.

xxx_GetParam() and xxx_SetParam() (where xxx is Cli, Srv or Par).

The first function allows you to read a parameter and the second to write it.

The declaration is:

int xxx_GetParam(S7Object TheObject, int ParamNumber, void *pValue);

int xxx_SetParam(S7Object TheObject, int ParamNumber, void *pValue);

The first parameter, as usual, is the object handle.

ParamNumber is an integer that identifies unequivocally a parameter (see the table

below).

pValue is a pointer to the variable that contains (SetParam) or will receive

(GetParam) the parameter value.

ParamNumbers are already defined in the wrappers provided for all languages.

 Value CLI SRV PAR
p_u16_LocalPort 1 O Socket local Port.
p_u16_RemotePort 2 O O Socket remote Port.
p_i32_PingTimeout 3 O O Client Ping timeout. (2)
p_i32_SendTimeout 4 O O Socket Send timeout.
p_i32_RecvTimeout 5 O O Socket Recv timeout.
p_i32_WorkInterval 6 O O Socket worker interval.
p_u16_SrcRef 7 O O ISOTcp Source reference.
p_u16_DstRef 8 O O ISOTcp Destination reference.
p_u16_SrcTSap 9 O O ISOTcp Source TSAP.
p_i32_PDURequest 10 O O(1) O Initial PDU length request.
p_i32_MaxClients 11 O Max Clients allowed.
p_i32_BSendTimeout 12 O BSend completion sequence timeout.
p_i32_BRecvTimeout 13 O BRecv completion sequence timeout.
p_u32_RecoveryTime 14 O Disconnection recovery time.
p_u32_KeepAliveTime 15 O Time for (PLC) partner alive.

(1) From 1.4.0

(2) From 1.4.1 passing 0 the ping (smart-connect feature) will be disabled.

For further help, the parameter name contains info about the parameter type:

u16 pValue points to an unsigned 16 bit integer
i16 pValue points to a signed 16 bit integer
u32 pValue points to an unsigned 32 bit integer
i32 pValue points to a signed 32 bit integer
u64 pValue points to an unsigned 64 bit integer
i64 pValue points to a signed 64 bit integer

P a g . | 90

Snap7 1.4.2 - Reference manual

P a g . 90 |

Snap7 1.4.2 - Reference manual

Let’s see some examples:

C++
…

// Sets the MyClient Ping time to 500 ms

int32_t PingTime=500;

Cli_SetParam(MyClient, p_i32_PingTimeout, &PingTime);

// Sets the MyServer max number of Clients to 128

int32_t MaxClients=128;

Srv_SetParam(MyServer, p_i32_MaxClients, &MaxClients);

// Gets the current MyPartner BRecv Timeout (ms)

int32_t BRecvTimeout;

Par_GetParam(MyPartner, p_i32_BRecvTimeout, &BRecvTimeout);

//<- Here BRecvTimeout contains the value

…

Pascal
…

// Sets the MyClient Ping time to 500 ms

Var

 PingTime : integer;

PingTime:=500;

Cli_SetParam(MyClient, p_i32_PingTimeout, @PingTime);

// Sets the MyServer max number of Clients to 128

Var

 MaxClients : integer;

MaxClients:=128;

Srv_SetParam(MyServer, p_i32_MaxClients, @MaxClients);

// Gets the current MyPartner BRecv Timeout (ms)

Var

 BRecvTimeout : integer;

Par_GetParam(MyPartner, p_i32_BRecvTimeout, @BRecvTimeout);

//<- Here BRecvTimeout contains the value

…

Some notes:

C# has no generic pointers, so to avoid the use of unsafe code, overloaded methods

are used into the interface class.

Not all parameters have meaning for all the three objects, p_i32_MaxClients, for

example, are server specific and are not recognized by a Client or a Partner.

Default values of these parameters are already fine-tuned.

These functions are meant for an advanced/experimental use, don’t use them

if “something seems to working bad” and in any case, look at the library

source code to see how they operate.

P a g . | 91

Snap7 1.4.2 - Reference manual

P a g . 91 |

Snap7 1.4.2 - Reference manual

Client API Reference

P a g . | 92

Snap7 1.4.2 - Reference manual

P a g . 92 |

Snap7 1.4.2 - Reference manual

Administrative functions

These functions allow controlling the behavior a Client Object.

Function Purpose

Cli_Create Creates a Client Object.

Cli_Destroy Destroys a Client Object.

Cli_ConnectTo Connects a Client Object to a PLC.

Cli_SetConnectionType Sets the connection type (PG/OP/S7Basic)

Cli_ConnectionParamst Sets Address, Local and Remote TSAP for the connection.

Cli_Connect Connects a Client Object to a PLC with implicit parameters.

Cli_Disconnect Disconnects a Client.

Cli_GetParam Reads an internal Client parameter.

Cli_SetParam Writes an internal Client Parameter.

P a g . | 93

Snap7 1.4.2 - Reference manual

P a g . 93 |

Snap7 1.4.2 - Reference manual

Cli_Create

Description

Creates a Client and returns its handle, which is the reference that you have to use

every time you refer to that client.

The maximum number of clients that you can create depends only on the system

memory amount

Declaration

S7Object Cli_Create();

function Cli_Create : S7Object;

Parameters

No parameters

Example

S7Object Client; // Declaration

Client=Cli_Create(); // Creation

// Do something

Cli_Destroy(Client); // Destruction

Remarks

The handle is a memory pointer, so its size varies depending on the platform (32 or 64

bit). If you use the wrappers provided it is already declared as native integer,

otherwise you can store it into a “pointer type” var.

Simply store it, it should not be changed ever.

P a g . | 94

Snap7 1.4.2 - Reference manual

P a g . 94 |

Snap7 1.4.2 - Reference manual

Cli_Destroy

Description

Destroy a Client of given handle.

Before destruction the client is automatically disconnected if it was.

Declaration

void Cli_Destroy(S7Object *Client);

procedure Cli_Destroy(var Client : S7Object);

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by reference.

Example

S7Object Client; // Declaration

Client=Cli_Create(); // Creation

// Do something

Cli_Destroy(Client); // Destruction

Remarks

The handle is passed by reference and it is set to NULL by the function. This allows

you to call Cli_Destroy() more than once without worrying about memory exceptions.

P a g . | 95

Snap7 1.4.2 - Reference manual

P a g . 95 |

Snap7 1.4.2 - Reference manual

Cli_SetConnectionType

Description

Sets the connection resource type, i.e the way in which the Clients connects to a PLC.

Declaration

int Cli_SetConnectionType(S7Object Client, word ConnectionType);

function Cli_SetConnectionType(Client : S7Object;

 ConnectionType : word) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

ConnectionType Unsigned 16 bit integer. In See the table

Connection type table

Connection Type Value

PG 0x01

OP 0x02

S7 Basic 0x03..0x10

Return value

 0 : The Parameters was successfully written.

 errLibInvalidObject : The Client parameter was invalid.

P a g . | 96

Snap7 1.4.2 - Reference manual

P a g . 96 |

Snap7 1.4.2 - Reference manual

Cli_ConnectTo

Description

Connects the client to the hardware at (IP, Rack, Slot) Coordinates.

Declaration

int Cli_ConnectTo(S7Object Client, const char *Address,

 int Rack, int Slot);

function Cli_ConnectTo(Client : S7Object; Address : PAnsiChar;

 Rack, Slot : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Address Pointer to Ansi String In
PLC/Equipment IPV4 Address
ex. “192.168.1.12”

Rack Integer In PLC Rack number (see below)

Slot Integer In PLC Slot number (see below)

Return value

 0 : The Client is successfully connected (or was already connected).

 Other values : see the Errors Code List.

Rack and Slot

In addition to the IP Address, that we all understand, there are two other parameters

that index the unit : Rack (0..7) and Slot (1..31) that you find into the hardware

configuration of your project, for a physical component, or into the Station

Configuration manager for WinAC.

There is however some special cases for which those values are fixed or can work with

a default as you can see in the next table.

 Rack Slot

S7 300 CPU 0 2 Always

S7 400 CPU Not fixed Follow the hardware configuration.

WinAC CPU Not fixed Follow the hardware configuration.

S7 1200 CPU 0 0 Or 0, 1

S7 1500 CPU 0 0 Or 0, 1

CP 343 0 0 Or follow Hardware configuration.

CP 443 Not fixed Follow the hardware configuration.

WinAC IE 0 0 Or follow Hardware configuration.

In the worst case, if you know the IP address, run ClientDemo, set 0 as Rack and try

to connect with different values of Slot (1..31).

P a g . | 97

Snap7 1.4.2 - Reference manual

P a g . 97 |

Snap7 1.4.2 - Reference manual

Let’s see some examples of hardware configuration:

S7 400 Rack

The same concept for WinAC CPU which index can vary inside the PC Station Rack.

S7300 Rack

 Rack Slot

CPU 1 0 4

CPU 2 0 11

CP 443-1 0 3

 Rack Slot

CPU 0 2

CP 343-1 0 4

P a g . | 98

Snap7 1.4.2 - Reference manual

P a g . 98 |

Snap7 1.4.2 - Reference manual

Cli_SetConnectionParams

Description

Sets internally (IP, LocalTSAP, RemoteTSAP) Coordinates.

Declaration

int Cli_SetConnectionParams(S7Object Client, const char *Address,

 word LocalTSAP, word RemoteTSAP);

function Cli_SetConnectionParams(Client : S7Object; Address : PAnsiChar;

 LocalTSAP, RemoteTSAP : word) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Address Pointer to Ansi String In
PLC/Equipment IPV4 Address
ex. “192.168.1.12”

LocalTSAP 16 bit unsigned Integer In Local TSAP (PC TSAP)

RemoteTSAP 16 bit unsigned Integer In Remote TSAP (PLC TSAP)

Return value

 0 : The Parameters were successfully written.

 errLibInvalidObject : The Client parameter was invalid.

Remarks

This function must be called just before Cli_Connect().

P a g . | 99

Snap7 1.4.2 - Reference manual

P a g . 99 |

Snap7 1.4.2 - Reference manual

Cli_Connect

Description

Connects the client to the PLC with the parameters specified in the previous call of

Cli_ConnectTo() or Cli_SetConnectionParams().

Declaration

int Cli_Connect(S7Object Client);

function Cli_Connect(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The Client is successfully connected (or was already connected).

 Other values : see the Errors Code List.

Remarks

This function can be called only after a previous of Cli_ConnectTo()or

Cli_SetConnectionParams() which internally sets Address and TSAPs.

P a g . | 100

Snap7 1.4.2 - Reference manual

P a g . 100 |

Snap7 1.4.2 - Reference manual

Cli_Disconnect

Description

Disconnects “gracefully” the Client from the PLC.

Declaration

int Cli_Disconnect(S7Object Client);

function Cli_Disconnect(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The Client is successfully disconnected (or was already disconnected).

 Other values : see the Errors Code List.

Remarks

If Client parameter is a valid handle, this function returns always 0, it can be called

safely multiple times.

This function is called internally by Cli_Destroy() too.

P a g . | 101

Snap7 1.4.2 - Reference manual

P a g . 101 |

Snap7 1.4.2 - Reference manual

Cli_GetParam

Description

Reads an internal Client object parameter.

Declaration

int Cli_GetParam(S7Object Client, int ParamNumber, void *pValue);

function Cli_GetParam(Client : S7Object; ParamNumber : integer;

 pValue : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

ParamNumber Integer In Parameter number.

pValue Pointer In
Pointer to the variable that will receive
the parameter value.

Return value

 0 : The parameter was successfully read.

 Other values : see the Errors Code List.

Since the couple GetParam/SetParam is present in all three Snap7 objects, there is a

detailed description of them (Internal parameters).

P a g . | 102

Snap7 1.4.2 - Reference manual

P a g . 102 |

Snap7 1.4.2 - Reference manual

Cli_SetParam

Description

Sets an internal Client object parameter.

Declaration

int Cli_SetParam(S7Object Client, int ParamNumber, void *pValue);

function Cli_SetParam(Client : S7Object; ParamNumber : integer;

 pValue : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

ParamNumber Integer In Parameter number.

pValue Pointer In
Pointer to the variable that contains the
parameter value.

Return value

 0 : The parameter was successfully set.

 Other values : see the Errors Code List.

Since the couple GetParam/SetParam is present in all three Snap7 objects, there is a

detailed description of them (Internal parameters).

P a g . | 103

Snap7 1.4.2 - Reference manual

P a g . 103 |

Snap7 1.4.2 - Reference manual

Data I/O functions

These functions allow the Client to exchange data with a PLC.

Function Purpose

Cli_ReadArea Reads a data area from a PLC.

Cli_WriteArea Writes a data area into a PLC.

Cli_DBRead Reads a part of a DB from a PLC.

Cli_DBWrite Writes a part of a DB into a PLC.

Cli_ABRead Reads a part of IPU area from a PLC.

Cli_ABWrite Writes a part of IPU area into a PLC.

Cli_EBRead Reads a part of IPI area from a PLC.

Cli_EBWrite Writes a part of IPI area into a PLC.

Cli_MBRead Reads a part of Merkers area from a PLC.

Cli_MBWrite Writes a part of Merkers area into a PLC.

Cli_TMRead Reads timers from a PLC.

Cli_TMWrite Write timers into a PLC.

Cli_CTRead Reads counters from a PLC.

Cli_CTWrite Write counters into a PLC.

Cli_ReadMultiVars Reads different kind of variables from a PLC simultaneously.

Cli_WriteMultiVars Writes different kind of variables into a PLC simultaneously.

P a g . | 104

Snap7 1.4.2 - Reference manual

P a g . 104 |

Snap7 1.4.2 - Reference manual

Cli_ReadArea

Description

This is the main function to read data from a PLC.

With it you can read DB, Inputs, Outputs, Merkers, Timers and Counters.

Declaration

int Cli_ReadArea(S7Object Client, int Area, int DBNumber, int Start,

 int Amount, int WordLen, void *pUsrData);

function Cli_ReadArea(Client : S7Object; Area, DBNumber, Start,

 Amount, WordLen : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir. Mean

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Area integer In Area identifier.

DBNumber integer In
DB Number if Area = S7AreaDB,
otherwise is ignored.

Start integer In Offset to start

Amount integer In Amount of words to read (1)

Wordlen integer In Word size (2)

pUsrData Pointer to memory area In Address of user buffer.

(1) Note the use of the parameter name “amount”, it means quantity of words, not byte size.

Area table

 Value Mean

S7AreaPE 0x81 Process Inputs.

S7AreaPA 0x82 Process Outputs.

S7AreaMK 0x83 Merkers.

S7AreaDB 0x84 DB

S7AreaCT 0x1C Counters.

S7AreaTM 0x1D Timers

WordLen table

 Value Mean

S7WLBit 0x01 Bit (inside a word)

S7WLByte 0x02 Byte (8 bit)

S7WLWord 0x04 Word (16 bit)

S7WLDWord 0x06 Double Word (32 bit)

S7WLReal 0x08 Real (32 bit float)

S7WLCounter 0x1C Counter (16 bit)

S7WLTimer 0x1D Timer (16 bit)

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 105

Snap7 1.4.2 - Reference manual

P a g . 105 |

Snap7 1.4.2 - Reference manual

Remarks

As said, every data packet exchanged with a PLC must fit in a PDU, whose size is fixed

and varies from 240 up to 960 bytes.

This function completely hides this concept, the data that you can transfer in

a single call depends only on the size available of the data area (i.e. obviously,

you cannot read 1024 bytes from a DB whose size is 300 bytes).

If this data size exceeds the PDU size, the packet is automatically split across more

subsequent transfers.

If either S7AreaCT or S7AreaTM is selected, WordLen must be either S7WLCounter

or S7WLTimer (However no error is raised and the values are internally fixed).

Your buffer should be large enough to receive the data.

Particularly:

Buffer size (byte) = Word size * Amount

Where:

 Word size

S7WLBit 1

S7WLByte 1

S7WLWord 2

S7WLDWord 4

S7WLReal 4

S7WLCounter 2

S7WLTimer 2

Notes

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsReadArea.

(2) When WordLen=S7WLBit the Offset (Start) must be expressed in bits.

Ex. The Start for DB4.DBX 10.3 is (10*8)+3 = 83.

P a g . | 106

Snap7 1.4.2 - Reference manual

P a g . 106 |

Snap7 1.4.2 - Reference manual

Cli_WriteArea

Description

This is the main function to write data into a PLC. It’s the complementary function of

Cli_ReadArea(), the parameters and their meanings are the same.

The only difference is that the data is transferred from the buffer pointed by pUsrData

into PLC.

Declaration

int Cli_WriteArea(S7Object Client, int Area, int DBNumber, int Start,

 int Amount, int WordLen, void *pUsrData);

function Cli_WriteArea(Client : S7Object; Area, DBNumber, Start,

 Amount, WordLen : integer; pUsrData : pointer) : integer;

See Cli_ReadArea() for parameters and remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsWriteArea.

P a g . | 107

Snap7 1.4.2 - Reference manual

P a g . 107 |

Snap7 1.4.2 - Reference manual

Cli_DBRead

Description

This is a lean function of Cli_ReadArea() to read PLC DB.

It simply internally calls Cli_ReadArea() with

 Area = S7AreaDB.

 WordLen = S7WLBytes.

Declaration

int Cli_DBRead(S7Object Client, int DBNumber, int Start, int Size,

 void *pUsrData);

function Cli_DBRead(Client : S7Object; DBNumber, Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

DBNumber integer In DB Index (0..0xFFFF).

Start integer In Offset to start

Size integer In Size to read (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_ReadArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsDBRead.

P a g . | 108

Snap7 1.4.2 - Reference manual

P a g . 108 |

Snap7 1.4.2 - Reference manual

Cli_DBWrite

Description

This is a lean function of Cli_WriteArea() to Write PLC DB.

It simply internally calls Cli_WriteArea() with

 Area = S7AreaDB.

 WordLen = S7WLBytes.

Declaration

int Cli_DBWrite(S7Object Client, int DBNumber, int Start, int Size,

 void *pUsrData);

function Cli_DBWrite(Client : S7Object; DBNumber, Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

DBNumber integer In DB Index (0..0xFFFF).

Start integer In Offset to start

Size integer In Size to Write (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_WriteArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsDBWrite.

P a g . | 109

Snap7 1.4.2 - Reference manual

P a g . 109 |

Snap7 1.4.2 - Reference manual

Cli_ABRead

Description

This is a lean function of Cli_ReadArea() to read PLC process outputs .

It simply internally calls Cli_ReadArea() with

 Area = S7AreaPA.

 WordLen = S7WLBytes.

Declaration

int Cli_ABRead(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_ABRead(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Size integer In Size to read (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_ReadArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsABRead.

P a g . | 110

Snap7 1.4.2 - Reference manual

P a g . 110 |

Snap7 1.4.2 - Reference manual

Cli_ABWrite

Description

This is a lean function of Cli_WriteArea() to Write PLC process outputs.

It simply internally calls Cli_WriteArea() with

 Area = S7AreaPA.

 WordLen = S7WLBytes.

Declaration

int Cli_ABWrite(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_ABWrite(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Size integer In Size to Write (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_WriteArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsABWrite.

P a g . | 111

Snap7 1.4.2 - Reference manual

P a g . 111 |

Snap7 1.4.2 - Reference manual

Cli_EBRead

Description

This is a lean function of Cli_ReadArea() to read PLC process inputs .

It simply internally calls Cli_ReadArea() with

 Area = S7AreaPE.

 WordLen = S7WLBytes.

Declaration

int Cli_EBRead(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_EBRead(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Size integer In Size to read (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_ReadArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsEBRead.

P a g . | 112

Snap7 1.4.2 - Reference manual

P a g . 112 |

Snap7 1.4.2 - Reference manual

Cli_EBWrite

Description

This is a lean function of Cli_WriteArea() to Write PLC process inputs .

It simply internally calls Cli_WriteArea() with

 Area = S7AreaPE.

 WordLen = S7WLBytes.

Declaration

int Cli_EBWrite(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_EBWrite(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Size integer In Size to Write (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_WriteArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsEBWrite.

P a g . | 113

Snap7 1.4.2 - Reference manual

P a g . 113 |

Snap7 1.4.2 - Reference manual

Cli_MBRead

Description

This is a lean function of Cli_ReadArea() to read PLC Merkers .

It simply internally calls Cli_ReadArea() with

 Area = S7AreaMK.

 WordLen = S7WLBytes.

Declaration

int Cli_MBRead(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_MBRead(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Size integer In Size to read (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_ReadArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsMBRead.

P a g . | 114

Snap7 1.4.2 - Reference manual

P a g . 114 |

Snap7 1.4.2 - Reference manual

Cli_MBWrite

Description

This is a lean function of Cli_WriteArea() to Write PLC Merkers.

It simply internally calls Cli_WriteArea() with

 Area = S7AreaMK.

 WordLen = S7WLBytes.

Declaration

int Cli_MBWrite(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_MBWrite(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Size integer In Size to Write (bytes)

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_WriteArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsMBWrite.

P a g . | 115

Snap7 1.4.2 - Reference manual

P a g . 115 |

Snap7 1.4.2 - Reference manual

Cli_TMRead

Description

This is a lean function of Cli_ReadArea() to read PLC Timers .

It simply internally calls Cli_ReadArea() with

 Area = S7AreaTM.

 WordLen = S7WLTimer.

Declaration

int Cli_TMRead(S7Object Client, int Start, int Amount, void *pUsrData);

function Cli_TMRead(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Amount integer In Number of timers.

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_ReadArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsTMRead.

Buffer size (bytes) needed is Amount * 2.

P a g . | 116

Snap7 1.4.2 - Reference manual

P a g . 116 |

Snap7 1.4.2 - Reference manual

Cli_TMWrite

Description

This is a lean function of Cli_WriteArea() to Write PLC Timers .

It simply internally calls Cli_WriteArea() with

 Area = S7AreaTM.

 WordLen = S7WLTimer.

Declaration

int Cli_TMWrite(S7Object Client, int Start, int Amount, void *pUsrData);

function Cli_TMWrite(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Amount integer In Number of timers.

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_WriteArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsTMWrite.

Buffer size (bytes) needed is Amount * 2.

P a g . | 117

Snap7 1.4.2 - Reference manual

P a g . 117 |

Snap7 1.4.2 - Reference manual

Cli_CTRead

Description

This is a lean function of Cli_ReadArea() to read PLC Counters.

It simply internally calls Cli_ReadArea() with

 Area = S7AreaCT.

 WordLen = S7WLCounter.

Declaration

int Cli_CTRead(S7Object Client, int Start, int Amount, void *pUsrData);

function Cli_CTRead(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Amount integer In Number of counters.

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_ReadArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsCTRead.

Buffer size (bytes) needed is Amount * 2.

P a g . | 118

Snap7 1.4.2 - Reference manual

P a g . 118 |

Snap7 1.4.2 - Reference manual

Cli_CTWrite

Description

This is a lean function of Cli_WriteArea() to Write PLC Counters.

It simply internally calls Cli_WriteArea() with

 Area = S7AreaCT.

 WordLen = S7WLCounter.

Declaration

int Cli_CTWrite(S7Object Client, int Start, int Amount, void *pUsrData);

function Cli_CTWrite(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Start integer In Offset to start

Amount integer In Number of counters.

pUsrData Pointer to memory area In Pointer user buffer.

See Cli_WriteArea() for remarks.

Remarks

If you need a large data transfer you may consider to use the asynchronous

counterpart Cli_AsCTWrite.

Buffer size (bytes) needed is Amount * 2.

P a g . | 119

Snap7 1.4.2 - Reference manual

P a g . 119 |

Snap7 1.4.2 - Reference manual

Cli_ReadMultiVars

Description

This is function allows to read different kind of variables from a PLC in a single call.

With it you can read DB, Inputs, Outputs, Merkers, Timers and Counters.

Declaration

int Cli_ReadMultiVars(S7Object Client, PS7DataItem Item, int ItemsCount);

function Cli_ReadMultiVars(Client : S7Object;

 Items : PS7DataItems; ItemsCount : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Item Pointer to struct. In
Pointer to the first element of a
TS7DataItem array.

ItemsCount integer In Number of Items to read.

TS7DataItem struct

 Type Dir.

Area integer 32 In Area identifier.

Wordlen integer 32 In Word size

Result integer 32 Out Item operation result (2)

DBNumber integer 32 In
DB Number if Area = S7AreaDB,
otherwise is ignored.

Start integer 32 In Offset to start

Amount integer 32 In Amount of words to read (1)

pData Pointer to memory area In Address of user buffer.

(1) Note the use of the parameter name “amount”, it means quantity of words, not byte size.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

(2) Since could happen that some variables are read, some other not because maybe

they don't exist in PLC. Is important to check the single item Result.

Remarks

Due the different kind of variables involved , there is no split feature available for this

function, so the maximum data size must not exceed the PDU size. Thus there

isn't an asynchronous counterpart of this function.

The advantage of this function becomes big when you have many small noncontiguous

variables to be read.

Example

P a g . | 120

Snap7 1.4.2 - Reference manual

P a g . 120 |

Snap7 1.4.2 - Reference manual

C++

void MultiRead()

{

 // Buffers

 byte MB[16]; // 16 Merker bytes

 byte EB[16]; // 16 Digital Input bytes

 byte AB[16]; // 16 Digital Output bytes

 word TM[8]; // 8 timers

 word CT[8]; // 8 counters

 // Prepare struct

 TS7DataItem Items[5];

 // Merkers

 Items[0].Area =S7AreaMK;

 Items[0].WordLen =S7WLByte;

 Items[0].DBNumber =0; // Don't need DB

 Items[0].Start =0; // Starting from 0

 Items[0].Amount =16; // 16 Items (bytes)

 Items[0].pdata =&MB; // Address of buffer

 // Digital Input bytes

 Items[1].Area =S7AreaPE;

 Items[1].WordLen =S7WLByte;

 Items[1].DBNumber =0; // Don't need DB

 Items[1].Start =0; // Starting from 0

 Items[1].Amount =16; // 16 Items (bytes)

 Items[1].pdata =&EB; // Address of buffer

 // Digital Output bytes

 Items[2].Area =S7AreaPA;

 Items[2].WordLen =S7WLByte;

 Items[2].DBNumber =0; // Don't need DB

 Items[2].Start =0; // Starting from 0

 Items[2].Amount =16; // 16 Items (bytes)

 Items[2].pdata =&AB; // Address of buffer

 // Timers

 Items[3].Area =S7AreaTM;

 Items[3].WordLen =S7WLTimer;

 Items[3].DBNumber =0; // Don't need DB

 Items[3].Start =0; // Starting from 0

 Items[3].Amount =8; // 8 Timers (16 bytes)

 Items[3].pdata =&TM; // Address of buffer

 // Counters

 Items[4].Area =S7AreaCT;

 Items[4].WordLen =S7WLCounter;

 Items[4].DBNumber =0; // Don't need DB

 Items[4].Start =0; // Starting from 0

 Items[4].Amount =8; // 8 Counters (16 bytes)

 Items[4].pdata =&CT; // Address of buffer

 Client->ReadMultiVars(&Items[0],5);

}

P a g . | 121

Snap7 1.4.2 - Reference manual

P a g . 121 |

Snap7 1.4.2 - Reference manual

Cli_WriteMultiVars

Description

This is function allows to write different kind of variables into a PLC in a single call.

With it you can write DB, Inputs, Outputs, Merkers, Timers and Counters.

It’s the complementary function of Cli_ReadMultiVars(), the parameters and their

meanings are the same.

Declaration

int Cli_WriteMultiVars(S7Object Client, PS7DataItem Item, int

ItemsCount);

function Cli_WriteMultiVars(Client : S7Object;

 Items : PS7DataItems; ItemsCount : integer) : integer;

See Cli_ReadMultiVars () for parameters and remarks.

P a g . | 122

Snap7 1.4.2 - Reference manual

P a g . 122 |

Snap7 1.4.2 - Reference manual

Directory functions

These functions give you detailed information about the blocks present in a PLC.

Function Purpose

Cli_ListBlocks Returns the AG blocks amount divided by type.

Cli_ListBlocksOfType Returns the AG blocks list of a given type.

Cli_GetAgBlockInfo Returns detailed information about a block present in AG.

Cli_GetPgBlockInfo Returns detailed information about a block loaded in memory.

P a g . | 123

Snap7 1.4.2 - Reference manual

P a g . 123 |

Snap7 1.4.2 - Reference manual

Cli_ListBlocks

Description

This function returns the AG blocks amount divided by type.

Declaration

int Cli_ListBlocks(S7Object Client, TS7BlocksList *pUsrData);

function Cli_ListBlocks(Client : S7Object;

 pUsrData : PS7BlocksList) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of Cli_Create(),
passed by value.

pUsrData Pointer to struct. In Pointer to TS7BlocksList struct.

TS7BlocksList struct

 Type Dir.

OBCount integer 32 Out OB amount in AG

FBCount integer 32 Out FB amount in AG

FCCount integer 32 Out FC amount in AG

SFBCount integer 32 Out SFB amount in AG

SFCCount integer 32 Out SFC amount in AG

DBCount integer 32 Out DB amount in AG

SDBCount integer 32 Out SDB amount in AG

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Example

See ListBlockOfTpe() Example

P a g . | 124

Snap7 1.4.2 - Reference manual

P a g . 124 |

Snap7 1.4.2 - Reference manual

Cli_ListBlocksOfType

Description

This function returns the AG list of a specified block type.

Declaration

int Cli_ListBlocksofType (S7Object Client, int BlockType,

 TS7BlocksOfType *pUsrData, int *ItemsCount);

function Cli_ListBlocksOfType(Client : S7Object;

 BlockType : integer; pUsrData : PS7BlocksOfType;

 var ItemsCount : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

BlockType integer 32 In Type of Block that we need

BlockNum integer 32 In Number of Block

pUsrData Pointer in Address of the user buffer

ItemsCount Pointer to integer 32 In Buffer capacity

 Out Number of items found

BlockType values

 Value Type

Block_OB 0x38 OB

Block_DB 0x41 DB

Block_SDB 0x42 SDB

Block_FC 0x43 FC

Block_SFC 0x44 SFC

Block_FB 0x45 FB

Block_SFB 0x46 SFB

TS7BlocksOfType, by default, is defined as a packed array of 8192 16-bit word.

typedef word TS7BlocksOfType[0x2000];

8192 is the maximum number of blocks that a CPU S7417-4 can hold.

ItemsCount

In input indicates the user buffer capacity, in output how many items were found.

The function reads the list into the internal buffer, if ItemsCount is smaller than the

data uploaded, only ItemsCount elements are copied into the user buffer and

errCliPartialDataRead is returned.

The minimum expected value for ItemsCount is 1, otherwise

errCliInvalidBlockSize error is returned.

P a g . | 125

Snap7 1.4.2 - Reference manual

P a g . 125 |

Snap7 1.4.2 - Reference manual

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

Each item of the user array will contain a block number.

Example extracted from client.cs, look at it for the missing functions Check().

C#

static void ListBlocks()

{

 S7Client.S7BlocksList List = new S7Client.S7BlocksList();

 ushort[] DBList = new ushort[0x1000];

 int ItemsCount = DBList.Length;

 int res = Client.ListBlocks(ref List);

 if (Check(res, "List Blocks in AG"))

 {

 Console.WriteLine(" OBCount : " + List.OBCount.ToString());

 Console.WriteLine(" FBCount : " + List.FBCount.ToString());

 Console.WriteLine(" FCCount : " + List.FCCount.ToString());

 Console.WriteLine(" SFBCount : " + List.SFBCount.ToString());

 Console.WriteLine(" SFCCount : " + List.SFCCount.ToString());

 Console.WriteLine(" DBCount : " + List.DBCount.ToString());

 Console.WriteLine(" SDBCount : " + List.SDBCount.ToString());

 }

 else

 return;

 // List Blocks of Type (DB)

 res = Client.ListBlocksOfType(S7Client.Block_DB, DBList, ref ItemsCount);

 if (Check(res, "DB List in AG"))

 {

 if (ItemsCount > 0)

 {

 for (int i = 0; i < ItemsCount; i++)

 Console.WriteLine(" DB " + DBList[i].ToString());

 }

 else

 Console.WriteLine("NO DB found");

 }

}

P a g . | 126

Snap7 1.4.2 - Reference manual

P a g . 126 |

Snap7 1.4.2 - Reference manual

Cli_GetAgBlockInfo

Description

Returns detailed information about an AG given block.

This function is very useful if you need to read or write data in a DB which you do not

know the size in advance (see MC7Size field)

This function is used internally by Cli_DBGet().

Declaration

int Cli_GetAgBlockInfo(S7Object Client, int BlockType, int BlockNum,

 TS7BlockInfo *pUsrData);

function Cli_GetAgBlockInfo(Client : S7Object; BlockType, BlockNum :

integer;

 pUsrData : PS7BlockInfo) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

BlockType integer 32 In Type of Block that we need

BlockNum integer 32 In Number of Block

pUsrData Pointer to struct. in Pointer to TS7BlockInfo struct.

BlockType values

 Value Type

Block_OB 0x38 OB

Block_DB 0x41 DB

Block_SDB 0x42 SDB

Block_FC 0x43 FC

Block_SFC 0x44 SFC

Block_FB 0x45 FB

Block_SFB 0x46 SFB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 127

Snap7 1.4.2 - Reference manual

P a g . 127 |

Snap7 1.4.2 - Reference manual

TS7BlockInfo struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

This struct is filled by the function, some fields require additional info:

SubBlockType table

 Value Type

SubBlk_OB 0x08 OB

SubBlk_DB 0x0A DB

SubBlk_SDB 0x0B SDB

SubBlk_FC 0x0C FC

SubBlk_SFC 0x0D SFC

SubBlk_FB 0x0E FB

SubBlk_SFB 0x0F SFB

LangType table

 Value Block Language

BlockLangAWL 0x01 AWL

BlockLangKOP 0x02 KOP

BlockLangFUP 0x03 FUP

BlockLangSCL 0x04 SCL

BlockLangDB 0x05 DB

BlockLangGRAPH 0x06 GRAPH

For an exhaustive example see ClientDemo (rich demos package).

typedef struct {

int BlkType; // Block Type (see SubBlkType table)

int BlkNumber; // Block number

int BlkLang; // Block Language (see LangType Table)

int BlkFlags; // Block flags (bitmapped)

int MC7Size; // The real size in bytes

int LoadSize; // Load memory size

int LocalData; // Local data

int SBBLength; // SBB Length

int CheckSum; // Checksum

int Version; // Version (BCD 00<HI><LO>)

char CodeDate[11]; // Code date

char IntfDate[11]; // Interface date

char Author[9]; // Author

char Family[9]; // Family

char Header[9]; // Header

} TS7BlockInfo, *PS7BlockInfo ;

P a g . | 128

Snap7 1.4.2 - Reference manual

P a g . 128 |

Snap7 1.4.2 - Reference manual

Cli_GetPgBlockInfo

Description

Returns detailed information about a block present in a user buffer.

This function is usually used in conjunction with Cli_FullUpload().

An uploaded a block saved to disk, could be loaded in a user buffer and checked with

this function.

Declaration

int Cli_GetPgBlockInfo(S7Object Client, void *pBlock,

 TS7BlockInfo *pUsrData, int size);

function Cli_GetPgBlockInfo(Client : S7Object; pBlock : pointer;

 pUsrData : PS7BlockInfo; size integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pBlock Pointer In
Address of the user buffer that
contains the block.

pUsrData Pointer to struct. in Pointer to TS7BlockInfo struct.

size integer 32 in Size (bytes) of user buffer.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

For a detailed description of TS7BlockInfo see Cli_GetAgBlockInfo

With this function in conjunction with block oriented functions it’s possible to create a

“backup manager”.

The rich demo ClientDemo shows how to upload/download/delete and get detailed

block information.

P a g . | 129

Snap7 1.4.2 - Reference manual

P a g . 129 |

Snap7 1.4.2 - Reference manual

Block oriented functions

These functions allow you to move blocks from/to the PLC and delete them.

AG Block Structure

A block (OB, FB, DB , etc.) in AG consists of:

 A Header containing main block info such as MC7Size, date and time etc.

 A Body containing the data.

 A Footer containing info about data struct such as number and type of

elements of a DB. Additional block info such as author, family etc...

Block Header

Main info

Cli_FullUpload Block Body Cli_Upload

Block Footer

Struct Info

With these functions we can upload a block from AG in two ways : fully or data only

depending on our needed, using Cli_FullUpload() or Cli_Upload(). (1)

For the blocks downloading, however, there are some limitations:

1. Only full blocks can be downloaded into AG via Cli_Download().

2. A modified block, i.e. a block to which we have made changes to the body area,

could be refused by the CPU.

Upload, download and deletion are subject to the security level set.

See Security functions for more info.

(1) S7 Protocol itself, only provides full upload, Snap7Client internally extracts the data body into
Cli_Upload.

Function Purpose

Cli_FullUpload Uploads a block from AG with Header and Footer infos.

Cli_Upload Uploads a block from AG.

Cli_Download Download a block into AG.

Cli_Delete Delete a block into AG.

Cli_DBGet Uploads a DB from AG using DBRead.

Cli_DBFill Fills a DB in AG with a given byte.

P a g . | 130

Snap7 1.4.2 - Reference manual

P a g . 130 |

Snap7 1.4.2 - Reference manual

Cli_FullUpload

Description

Uploads a block from AG.

The whole block (including header and footer) is copied into the user buffer.

Declaration

int Cli_FullUpload(S7Object Client, int BlockType, int BlockNum,

 void *pUsrData, int *Size);

function Cli_FullUpload(Client : S7Object; BlockType, BlockNum : integer;

 pUsrData : pointer; var Size : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

BlockType integer 32 In Type of Block that we need

BlockNum integer 32 In Number of Block

pUsrData Pointer in Address of the user buffer

size Pointer to integer 32 In Buffer size available

 Out Bytes uploaded

BlockType values

 Value Type

Block_OB 0x38 OB

Block_DB 0x41 DB

Block_SDB 0x42 SDB

Block_FC 0x43 FC

Block_SFC 0x44 SFC

Block_FB 0x45 FB

Block_SFB 0x46 SFB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The function is performed into the internal buffer, if size is smaller than the data

uploaded, only size bytes are copied and errCliPartialDataRead is returned.

P a g . | 131

Snap7 1.4.2 - Reference manual

P a g . 131 |

Snap7 1.4.2 - Reference manual

Example extracted from client.cpp (see)

void UploadSDB0()

{

 byte Buffer[4096]; // 4 K buffer

 int Size = sizeof(Buffer);

 int res=Client->Upload(Block_SDB, 0, &Buffer, &Size);

 if (Check(res,"Block Upload (SDB 0)"))

 {

 printf("Dump (%d bytes) :\n",Size);

 hexdump(&Buffer,Size);

 }

}

P a g . | 132

Snap7 1.4.2 - Reference manual

P a g . 132 |

Snap7 1.4.2 - Reference manual

Cli_Upload

Description

Uploads a block body from AG.

Only the block body (but header and footer) is copied into the user buffer.

Declaration

int Cli_Upload(S7Object Client, int BlockType, int BlockNum,

 void *pUsrData, int *Size);

function Cli_Upload(Client : S7Object; BlockType, BlockNum : integer;

 pUsrData : pointer; var Size : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

BlockType integer 32 In Type of Block that we need

BlockNum integer 32 In Number of Block

pUsrData Pointer in Address of the user buffer

size Pointer to integer 32 In Buffer size available

 Out Bytes uploaded

BlockType values

 Value Type

Block_OB 0x38 OB

Block_DB 0x41 DB

Block_SDB 0x42 SDB

Block_FC 0x43 FC

Block_SFC 0x44 SFC

Block_FB 0x45 FB

Block_SFB 0x46 SFB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The function reads the block data into the internal buffer, if size is smaller than the

data uploaded, only size bytes are copied into the user buffer and

errCliPartialDataRead is returned.

See Cli_FullUpload Example.

P a g . | 133

Snap7 1.4.2 - Reference manual

P a g . 133 |

Snap7 1.4.2 - Reference manual

Cli_Download

Description

Downloads a block into AG.

A whole block (including header and footer) must be available into the user buffer.

Declaration

int Cli_Download(S7Object Client, int BlockNum, void *pUsrData, int *Size);

function Cli_Download(Client : S7Object; BlockNum : integer;

 pUsrData : pointer; var Size : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

BlockNum integer 32 In New Block number (or -1)

pUsrData Pointer in Address of the user buffer

size Integer 32 In Buffer size

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

A block ready to be downloaded already contains info about block type and block

number.

If the parameter BlockNum is -1, the block number is not changed used else the block

is downloaded with a different number (just like a “Download As…”).

P a g . | 134

Snap7 1.4.2 - Reference manual

P a g . 134 |

Snap7 1.4.2 - Reference manual

Cli_Delete

Description

Deletes a block into AG.

Warning

There is no undo function available.

Declaration

int Cli_Delete(S7Object Client, int BlockType, int BlockNum);

function Cli_Delete(Client : S7Object; BlockType,

 BlockNum : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

BlockType integer 32 In Type of Block to delete

BlockNum integer 32 In Number of Block to delete

BlockType values

 Value Type

Block_OB 0x38 OB

Block_DB 0x41 DB

Block_SDB 0x42 SDB

Block_FC 0x43 FC

Block_SFC 0x44 SFC

Block_FB 0x45 FB

Block_SFB 0x46 SFB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 135

Snap7 1.4.2 - Reference manual

P a g . 135 |

Snap7 1.4.2 - Reference manual

Cli_DBGet

Description

Uploads a DB from AG.

This function is equivalent to Cli_Upload() with BlockType = Block_DB but it uses a

different approach so it’s not subject to the security level set.

Only data is uploaded.

Declaration

int Cli_DBGet(S7Object Client, int DBNumber, void *pUsrData, int *Size);

function Cli_DBGet(Client : S7Object; DBNumber : integer;

 pUsrData : pointer; var Size : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

DBNumber integer 32 In DB Number

pUsrData Pointer in Address of the user buffer

size Pointer to integer 32 In Buffer size available

 Out Bytes uploaded

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This function first gathers the DB size via Cli_GetAgBlockInfo then calls Cli_DBRead.

P a g . | 136

Snap7 1.4.2 - Reference manual

P a g . 136 |

Snap7 1.4.2 - Reference manual

Cli_DBFill

Description

Fills a DB in AG with a given byte without the need of specifying its size.

Declaration

int Cli_DBFill(S7Object Client, int DBNumber, int FillChar);

function Cli_DBFill(Client : S7Object; DBNumber : integer;

 FillChar : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

DBNumber integer 32 In DB Number

FillChar Integer 32 in Byte pattern

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

Fillchar is an integer for efficiency reasons, only the lowest byte is used.

P a g . | 137

Snap7 1.4.2 - Reference manual

P a g . 137 |

Snap7 1.4.2 - Reference manual

Date/Time functions

These functions allow to read/modify the date and time of a PLC.

Imagine a production line in which each PLC saves the data with date/time field inside,

it is very important that the date be up to date.

Both CP X43 and internal PN allow to synchronize date and time but you need an NTP

server, and in some cases (old hardware or CP343-1 Lean or old firmware release)

this doesn’t work properly.

Snap7 Client, using the same method of S7 Manager, always works.

Function Purpose

Cli_GetPlcDateTime Returns the PLC date/time.

Cli_SetPlcDateTime Sets the PLC date/time with a given value.

Cli_SetPlcSystemDateTime Sets the PLC date/time with the host (PC) date/time.

P a g . | 138

Snap7 1.4.2 - Reference manual

P a g . 138 |

Snap7 1.4.2 - Reference manual

Cli_GetPlcDateTime

Description

Reads PLC date and time.

Declaration

int Cli_GetPlcDateTime(S7Object Client, tm *DateTime);

function Cli_GetPlcDateTime(Client : S7Object;

 var DateTime : TCPP_tm) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

DateTime Pointer to struct In Address of C++ tm struct.

Struct tm is C++ specific, if you use the wrappers provided, you don’t need to care

about it, since tm is internally converted to the native date/time format.

Pascal

function TS7Client.GetPlcDateTime(Var DateTime : TDateTime) : integer;

C#

public int GetPlcDateTime(ref DateTime DT);

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 139

Snap7 1.4.2 - Reference manual

P a g . 139 |

Snap7 1.4.2 - Reference manual

Cli_SetPlcDateTime

Description

Sets the PLC date and time.

Declaration

int Cli_SetPlcDateTime(S7Object Client, tm *DateTime);

function Cli_SetPlcDateTime(Client : S7Object;

 var DateTime : TCPP_tm) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

DateTime Pointer to struct In Address of C++ tm struct.

Struct tm is C++ specific, if you use the wrappers provided, you don’t need to care

about it, since tm is internally converted to the native date/time format.

Pascal

function TS7Client.SetPlcDateTime(Var DateTime : TDateTime) : integer;

C#

public int SetPlcDateTime(ref DateTime DT);

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 140

Snap7 1.4.2 - Reference manual

P a g . 140 |

Snap7 1.4.2 - Reference manual

Cli_SetPlcSystemDateTime

Description

Sets the PLC date and time in accord to the PC system Date/Time.

Declaration

int Cli_SetPlcSystemDateTime(S7Object Client);

function Cli_SetPlcSystemDateTime(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 141

Snap7 1.4.2 - Reference manual

P a g . 141 |

Snap7 1.4.2 - Reference manual

System info functions

these functions access to SZL (or SSL - System Status List) to give you all the same

information that you can get from S7 Manager.

System Status List

The system status list (SSL) describes the current status of a programmable logic

controller.

The contents of the SSL can only be read using information functions but cannot be

modified. The partial lists are virtual lists, in other words, they are only created by the

operating system of the CPUs when specifically requested.

You can access to system status list using SFC 51 too "RDSYSST."

To read a partial list you must specify its ID and Index.

For a detailed description of SZL see:

§33 of "System Software for S7-300/400 System and Standard Functions".

Function Purpose

Cli_ReadSZL Reads a partial list of given ID and Index.

Cli_ReadSZLList Reads the list of partial lists available in the CPU.

Cli_GetOrderCode Returns the CPU order code.

Cli_GetCpuInfo Returns some information about the AG.

Cli_GetCpInfo Returns some information about the CP (communication processor).

P a g . | 142

Snap7 1.4.2 - Reference manual

P a g . 142 |

Snap7 1.4.2 - Reference manual

Cli_ReadSZL

Description

Reads a partial list of given ID and INDEX.

Declaration

int Cli_ReadSZL(S7Object Client, int ID, int Index,

 TS7SZL *pUsrData, int *Size);

function Cli_ReadSZL(Client : S7Object; ID, Index : integer;

 pUsrData : PS7SZL; var Size : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

ID integer 32 In List ID

Index integer 32 In List Index

pUsrData Pointer to struct in Address of the user buffer

size Pointer to integer 32 In Buffer size available

 Out Bytes read

TS7SZL struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

 Type Dir. Mean

LENTHDR unsigned Integer 16 Out
Length of a data record of the
partial list in bytes

N_DR unsigned Integer 16 Out
Number of data records contained
in the partial list.

// See §33.1 of "System Software for S7-300/400 System and

// Standard Functions"

// and see SFC51 description too

typedef struct {

 word LENTHDR;

 word N_DR;

} SZL_HEADER, *PSZL_HEADER;

typedef struct {

 SZL_HEADER Header;

 byte Data[0x4000-4];

} TS7SZL, *PS7SZL;

P a g . | 143

Snap7 1.4.2 - Reference manual

P a g . 143 |

Snap7 1.4.2 - Reference manual

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The function is performed into the internal buffer, if size is smaller than the data

uploaded, only size bytes are copied and errCliPartialDataRead is returned.

Remarks

LENTHDR and N_DR are HI-LOW order swapped, the data buffer is unchanged.

P a g . | 144

Snap7 1.4.2 - Reference manual

P a g . 144 |

Snap7 1.4.2 - Reference manual

Cli_ReadSZLList

Description

Reads the directory of the partial lists.

Declaration

int Cli_ReadSZLList(S7Object Client, TS7SZLList *pUsrData,

 int *ItemsCount);

function Cli_ReadSZLList(Client : S7Object; pUsrData : PS7SZLList;

 var ItemsCount : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pUsrData Pointer to struct in Address of the user buffer list

ItemsCount Pointer to integer 32 In Buffer capacity

 Out Number of items found

TS7SZLList struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

 Type Dir.

LENTHDR unsigned Integer 16 Out
Length of a data record of the partial
list in bytes

N_DR unsigned Integer 16 Out
Number of data records contained in
the partial list.

// See §33.1 of "System Software for S7-300/400 System and

// Standard Functions"

// and see SFC51 description too

typedef struct {

 word LENTHDR;

 word N_DR;

} SZL_HEADER, *PSZL_HEADER;

typedef struct {

 SZL_HEADER Header;

 word List[0x2000-2]; // HI-LO Swapped

} TS7SZLList, *PS7SZLList;

P a g . | 145

Snap7 1.4.2 - Reference manual

P a g . 145 |

Snap7 1.4.2 - Reference manual

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

Not all ID address a valid partial list, use this function to know what are.

ItemsCount

In input indicates the user buffer capacity, in output how many items were found.

The function reads the list into the internal buffer, if ItemsCount is smaller than the

data uploaded, only ItemsCount elements are copied into the user buffer and

errCliPartialDataRead is returned.

LENTHDR, N_DR and List HI-LOW order swapped.

P a g . | 146

Snap7 1.4.2 - Reference manual

P a g . 146 |

Snap7 1.4.2 - Reference manual

Cli_GetOrderCode

Description

Gets CPU order code and version info.

Declaration

int Cli_GetOrderCode(S7Object Client, TS7OrderCode *pUsrData);

function Cli_GetOrderCode(Client : S7Object;

 pUsrData : PS7OrderCode) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pUsrData Pointer to struct in Address of the user Order code buffer

TS7OrderCode struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Example extracted from client.cpp (see)

typedef struct {

 char Code[21]; // Order Code

 byte V1; // Version V1.V2.V3

 byte V2;

 byte V3;

} TS7OrderCode, *PS7OrderCode;

void OrderCode()

{

 TS7OrderCode Info;

 int res=Client->GetOrderCode(&Info);

 if (Check(res,"Catalog"))

 {

 printf(" Order Code : %s\n",Info.Code);

 printf(" Version : %d.%d.%d\n",

 Info.V1,Info.V2,Info.V3);

 };

}

P a g . | 147

Snap7 1.4.2 - Reference manual

P a g . 147 |

Snap7 1.4.2 - Reference manual

Cli_GetCpuInfo

Description

Gets CPU module name, serial number and other info.

Declaration

int Cli_GetCpuInfo(S7Object Client, TS7CpuInfo *pUsrData);

function Cli_GetCpuInfo(Client : S7Object;

 pUsrData : PS7CpuInfo) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pUsrData Pointer to struct in Address of the user CPU info buffer

TS7CpuInfo struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Example extracted from client.cpp (see)

typedef struct {

 char ModuleTypeName[33];

 char SerialNumber[25];

 char ASName[25];

 char Copyright[27];

 char ModuleName[25];

} TS7CpuInfo, *PS7CpuInfo;

void CpuInfo()

{

 TS7CpuInfo Info;

 int res=Client->GetCpuInfo(&Info);

 if (Check(res,"Unit Info"))

 {

 printf(" Module Type Name : %s\n",Info.ModuleTypeName);

 printf(" Serial Number : %s\n",Info.SerialNumber);

 printf(" AS Name : %s\n",Info.ASName);

 printf(" Module Name : %s\n",Info.ModuleName);

 };

}

P a g . | 148

Snap7 1.4.2 - Reference manual

P a g . 148 |

Snap7 1.4.2 - Reference manual

Cli_GetCpInfo

Description

Gets CP (communication processor) info.

Declaration

int Cli_GetCpInfo(S7Object Client, TS7CpInfo *pUsrData);

function Cli_GetCpInfo(Client : S7Object;

 pUsrData : PS7CpInfo) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pUsrData Pointer to struct in Address of the user CP info buffer

TS7CpInfo struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Example extracted from client.cpp (see)

typedef struct {

 int MaxPduLengt;

 int MaxConnections;

 int MaxMpiRate;

 int MaxBusRate;

} TS7CpInfo, *PS7CpInfo;

void CpInfo()

{

 TS7CpInfo Info;

 int res=Client->GetCpInfo(&Info);

 if (Check(res,"Communication processor Info"))

 {

 printf(" Max PDU Length : %d bytes\n",Info.MaxPduLengt);

 printf(" Max Connections : %d \n",Info.MaxConnections);

 printf(" Max MPI Rate : %d bps\n",Info.MaxMpiRate);

 printf(" Max Bus Rate : %d bps\n",Info.MaxBusRate);

 };

}

P a g . | 149

Snap7 1.4.2 - Reference manual

P a g . 149 |

Snap7 1.4.2 - Reference manual

PLC control functions

With these control function it’s possible to Start/Stop a CPU and perform some other

maintenance tasks.

Function Purpose

Cli_PlcHotStart Puts the CPU in RUN mode performing an HOT START.

Cli_PlcColdStart Puts the CPU in RUN mode performing a COLD START.

Cli_PlcStop Puts the CPU in STOP mode.

Cli_CopyRamToRom Performs the Copy Ram to Rom action.

Cli_Compress Performs the Compress action.

Cli_GetPlcStatus Returns the CPU status (running/stopped).

P a g . | 150

Snap7 1.4.2 - Reference manual

P a g . 150 |

Snap7 1.4.2 - Reference manual

Cli_PlcHotStart

Description

Puts the CPU in RUN mode performing an HOT START.

Declaration

int Cli_PlcHotStart(S7Object Client);

function Cli_PlcHotStart(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This function is subject to the security level set.

P a g . | 151

Snap7 1.4.2 - Reference manual

P a g . 151 |

Snap7 1.4.2 - Reference manual

Cli_PlcColdStart

Description

Puts the CPU in RUN mode performing a COLD START.

Declaration

int Cli_PlcColdStart(S7Object Client);

function Cli_PlcColdStart(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This function is subject to the security level set.

P a g . | 152

Snap7 1.4.2 - Reference manual

P a g . 152 |

Snap7 1.4.2 - Reference manual

Cli_PlcStop

Description

Puts the CPU in STOP mode.

Declaration

int Cli_PlcStop(S7Object Client);

function Cli_PlcStop(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This function is subject to the security level set.

P a g . | 153

Snap7 1.4.2 - Reference manual

P a g . 153 |

Snap7 1.4.2 - Reference manual

Cli_CopyRamToRom

Description

Performs the Copy Ram to Rom action.

Declaration

int Cli_CopyRamToRom(S7Object Client, int Timeout);

function Cli_CopyRamToRom(Client : S7Object; Timeout : integer) :

integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Timeout Integer 32 In
Maximum time expected to complete
the operation (ms).

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

Not all CPUs support this operation.

The CPU must be in STOP mode.

P a g . | 154

Snap7 1.4.2 - Reference manual

P a g . 154 |

Snap7 1.4.2 - Reference manual

Cli_Compress

Description

Performs the Memory compress action.

Declaration

int Cli_Compress(S7Object Client, int Timeout);

function Cli_Compress(Client : S7Object; Timeout : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Timeout Integer 32 In
Maximum time expected to complete
the operation (ms).

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

Not all CPUs support this operation.

The CPU must be in STOP mode.

P a g . | 155

Snap7 1.4.2 - Reference manual

P a g . 155 |

Snap7 1.4.2 - Reference manual

Cli_GetPlcStatus

Description

Returns the CPU status (running/stopped).

Declaration

int Cli_GetPlcStatus(S7Object Client, int *Status);

function Cli_GetPlcStatus(Client : S7Object;

 Var Status : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Status Pointer to Integer 32 In Address of Status variable.

Status values

 Value

S7CpuStatusUnknown 0x00 The CPU status is unknown.

S7CpuStatusRun 0x08 The CPU is running.

S7CpuStatusStop 0x04 The CPU is stopped.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 156

Snap7 1.4.2 - Reference manual

P a g . 156 |

Snap7 1.4.2 - Reference manual

Security functions

With these functions is possible to know the current protection level, and to set/clear

the current session password.

The correct name of the below functions Cli_SetSessionPassword and

Cli_ClearSessionPassword, would have to be Cli_Login and Cli_Logout to avoid

misunderstandings about their scope.

Especially because, if you look at the source code, there is an encoding function that

translates the plain password before send it to the PLC.

PASSWORD HACKING IS VERY FAR FROM THE AIM OF THIS PROJECT, MOREOVER

YOU NEED TO KNOW THE CORRECT PASSWORD TO MEET THE CPU SECURITY

LEVEL.

Detailed information about the protection level can be found in §33.19 of "System

Software for S7-300/400 System and Standard Functions".

Function Purpose

Cli_SetSessionPassword Send the password to the PLC to meet its security level.

Cli_ClearSessionPassword Clears the password set for the current session (logout).

Cli_GetProtection Gets the CPU protection level info.

P a g . | 157

Snap7 1.4.2 - Reference manual

P a g . 157 |

Snap7 1.4.2 - Reference manual

Cli_SetSessionPassword

Description

Send the password to the PLC to meet its security level.

Declaration

int Cli_SetSessionPassword(S7Object Client, char *Password);

function Cli_SetSessionPassword(Client : S7Object;

 Password : PAnsiChar) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Password Pointer to Ansi String In 8 chars string

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

A password accepted by a PLC is an 8 chars string, a greater password will be

trimmed, and a smaller one will be "right space padded".

P a g . | 158

Snap7 1.4.2 - Reference manual

P a g . 158 |

Snap7 1.4.2 - Reference manual

Cli_ClearSessionPassword

Description

Clears the password set for the current session (logout).

Declaration

int Cli_ClearSessionPassword(S7Object Client);

function Cli_ClearSessionPassword(Client : S7Object) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 159

Snap7 1.4.2 - Reference manual

P a g . 159 |

Snap7 1.4.2 - Reference manual

Cli_GetProtection

Description

Gets the CPU protection level info.

Declaration

int Cli_GetProtection(S7Object Client, TS7Protection *pUsrData);

function Cli_GeProtection(Client : S7Object;

 pUsrData : PS7Protection) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pUsrData Pointer to struct in
Address of the user Protection info
buffer

TS7Protection struct

for Pascal and C# definition see snap7.pas and snap7.net.cs

S7Protection Values

 Values

sch_schal 1, 2, 3 Protection level set with the mode selector.

sch_par 0, 1, 2, 3 Password level, 0 : no password

sch_rel 0, 1, 2, 3 Valid protection level of the CPU

bart_sch 1, 2, 3, 4
Mode selector setting (1:RUN, 2:RUN-P,
3:STOP, 4:MRES, 0:undefined or cannot be
determined)

anl_sch; 0, 1, 2
Startup switch setting (1:CRST, 2:WRST,
0:undefined, does
not exist of cannot be determined)

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

typedef struct {

 word sch_schal;

 word sch_par;

 word sch_rel;

 word bart_sch;

 word anl_sch;

} TS7Protection, *PS7Protection;

P a g . | 160

Snap7 1.4.2 - Reference manual

P a g . 160 |

Snap7 1.4.2 - Reference manual

Low level functions

Snap7 hides the IsoTCP underlying layer. With this function however, it’s possible to

exchange an IsoTCP telegram with a PLC.

Function Purpose

Cli_IsoExchangeBuffer Exchanges a given S7 PDU (protocol data unit) with the CPU.

P a g . | 161

Snap7 1.4.2 - Reference manual

P a g . 161 |

Snap7 1.4.2 - Reference manual

Cli_IsoExchangeBuffer

Description

Exchanges a given S7 PDU (protocol data unit) with the CPU.

Declaration

int Cli_IsoExchangeBuffer(S7Object Client, void *pUsrData, int *Size);

function Cli_IsoExchangeBuffer (Client : S7Object; pUsrData : pointer,

 var Size : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pUsrData Pointer In Address of the user buffer.

Size Pointer to integer 32 In Buffer size available

 Out Reply telegram size

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

The S7 PDU supplied is encapsulated into an IsoTCP telegram then is sent to the CPU.

Finally, the S7 PDU is extracted from the reply telegram and is copied into the user

buffer.

Look at S7_types.h for more info about S7 PDU.

No size check is performed : use a large enough buffer.

P a g . | 162

Snap7 1.4.2 - Reference manual

P a g . 162 |

Snap7 1.4.2 - Reference manual

Miscellaneous functions

These are utility functions.

Function Purpose

Cli_GetExecTime Returns the last job execution time in milliseconds.

Cli_GetLastError Returns the last job result.

Cli_GetPduLength Returns info about the PDU length (requested and negotiated).

Cli_ErrorText Returns a textual explanation of a given error number.

Cli_GetConnected Returns the connection status of the client.

P a g . | 163

Snap7 1.4.2 - Reference manual

P a g . 163 |

Snap7 1.4.2 - Reference manual

Cli_GetExecTime

Description

Returns the last job execution time in milliseconds.

Declaration

int Cli_GetExecTime(S7Object Client, int *Time);

function Cli_GetExecTime(Client : S7Object;

 var Time : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Time Pointer to integer 32 In Address of the time variable

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 164

Snap7 1.4.2 - Reference manual

P a g . 164 |

Snap7 1.4.2 - Reference manual

Cli_GetLastError

Description

Returns the last job result.

Declaration

int Cli_GetLastError(S7Object Client, int *LastError);

function Cli_GetLastError(Client : S7Object;

 var LastError : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

LastError Pointer to integer 32 In Address of the LastError variable

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 165

Snap7 1.4.2 - Reference manual

P a g . 165 |

Snap7 1.4.2 - Reference manual

Cli_GetPduLength

Description

Returns info about the PDU length.

Declaration

int Cli_GetPduLength(S7Object Client, int *Requested, int *Negotiated);

function Cli_GetPduLength(Client : S7Object;

 var Requested, Negotiated : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Requested Pointer to integer 32 In Address of the PDU Req. variable

Negotiated Pointer to integer 32 In Address of the PDU Neg. variable

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

During the S7 connection Client and Server (the PLC) negotiate the PDU length.

PDU requested can be modified with Cli_SetParam().

It’s useful to know the PDU negotiated when we need to call Cli_ReadMultivar() or

Cli_WriteMultiVar().

All other data transfer functions handle by themselves this information and split

automatically the telegrams if needed.

P a g . | 166

Snap7 1.4.2 - Reference manual

P a g . 166 |

Snap7 1.4.2 - Reference manual

Cli_ErrorText

Description

Returns a textual explanation of a given error number.

Declaration

int Cli_ErrorText(int Error, char *Text, int TextLen);

function Cli_ErrorText(Error : integer, Text : PAnsiChar;

 TextLen : integer) : integer;

Parameters

 Type Dir.

Error Integer 32 In Error code

Text Pointer to Ansi String In Address of the char array

TextLen Integer 32 In Size of the char array

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This is a translation function, so there is no need of a client handle.

The messages are in (internet) English, all they are in s7_text.cpp.

P a g . | 167

Snap7 1.4.2 - Reference manual

P a g . 167 |

Snap7 1.4.2 - Reference manual

Cli_GetConnected

Description

Returns the connection status

Declaration

int Cli_GetConnected(S7Object Client, int *IsConnected);

function Cli_GetConnected(Client : S7Object;

 var IsConnected : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

IsConnected Pointer to integer 32 In
Address of the IsConnected
variable

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

IsConnected is 0 if the client is not connected otherwise contains an integer !=0.

P a g . | 168

Snap7 1.4.2 - Reference manual

P a g . 168 |

Snap7 1.4.2 - Reference manual

Asynchronous functions

These functions are executed in a separate thread simultaneously to the execution of

the caller program.

Function Purpose

Cli_AsReadArea Reads a data area from a PLC.

Cli_AsWriteArea Writes a data area into a PLC.

Cli_AsDBRead Reads a part of a DB from a PLC.

Cli_AsDBWrite Writes a part of a DB into a PLC.

Cli_AsABRead Reads a part of IPU area from a PLC.

Cli_AsABWrite Writes a part of IPU area into a PLC.

Cli_AsEBRead Reads a part of IPI area from a PLC.

Cli_AsEBWrite Writes a part of IPI area into a PLC.

Cli_AsMBRead Reads a part of Merkers area from a PLC.

Cli_AsMBWrite Writes a part of Merkers area into a PLC.

Cli_AsTMRead Reads timers from a PLC.

Cli_AsTMWrite Write timers into a PLC.

Cli_AsCTRead Reads counters from a PLC.

Cli_AsCTWrite Write counters into a PLC.

Cli_AsListBlocksOfType Returns the AG blocks list of a given type.

Cli_AsReadSZL Reads a partial list of given ID and Index.

Cli_AsReadSZLList Reads the list of partial lists available in the CPU.

Cli_AsFullUpload Uploads a block from AG with Header and Footer infos.

Cli_AsUpload Uploads a block from AG.

Cli_AsDownload Download a block into AG.

Cli_AsDBGet Uploads a DB from AG using DBRead.

Cli_AsDBFill Fills a DB in AG with a given byte.

Cli_AsCopyRamToRom Performs the Copy Ram to Rom action.

Cli_AsCompress Performs the Compress action.

P a g . | 169

Snap7 1.4.2 - Reference manual

P a g . 169 |

Snap7 1.4.2 - Reference manual

Cli_SetAsCallback

Description

Sets the user callback that the Client object has to call when the asynchronous data

transfer is complete.

Declaration

int Cli_SetAsCallback(S7Object Client, pfn_CliCompletion pCompletion,

 void *usrPtr);

function Cli_SetAsCallback(Client : S7Object; pCompletion,

 usrPtr : pointer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

pCompletion Pointer to function In Pointer to the Callback function

usrPtr Pointer In User pointer passed back

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The expected callback is defined as:

typedef void (S7API *pfn_CliCompletion) (void *usrPtr, int opCode,

 int opResult);

Where S7API is __stdcall only for Windows.

This function must be present into your source code, so let’s see also how is defined

across other languages:

Pascal:

TS7CliCompletion = procedure(usrPtr : Pointer; opCode, opResult :

integer);

{$IFDEF MSWINDOWS}stdcall;{$ELSE}cdecl;{$ENDIF}

C#

public delegate void S7CliCompletion(IntPtr usrPtr, int opCode,

 int opResult);

usPtr is an optional parameter (meaning that it can be NULL) that is useful to switch

the context from API-procedural to object-oriented (except for C#).

Let's suppose that we have a TStation class that uses a Client, CliCompletion must

be a plain function (because the OS doesn’t know anything about classes members).

P a g . | 170

Snap7 1.4.2 - Reference manual

P a g . 170 |

Snap7 1.4.2 - Reference manual

Q : How can we instruct our Snap7Client to let him call our class member ?

A : Storing the class instance in usrPtr.

Examples:

C++

// Class definition

class TStation()

{

private:

 TS7Client *Client;

public:

 TStation();

 void TransferComplete(int opCode, int opResult);

};

// This is the plain function (API-procedural context)

void S7API CliCompletion(void *usrPtr, int opCode, int opResult)

{

 // Cast usrPtr to Station

 TStation *MyStation = (TStation *) usrPtr;

 // Call the member

 MyStation->TransferComplete(opCode, opResult);

}

// This is the TStation member (OO Context)

void TStation::TransferComplete(int opCode, int opResult)

{

 if (opResult==0)

 DoSomething();

 else

 DoSomethingElse();

}

TStation::TStation()

{

 // Client creation and callback set

 Client = new TS7Client();

 // Callback set

 Client->SetAsCallback(CliCompletion, this);

 // “this” parameter is the fingerprint of TStation instance.

}

P a g . | 171

Snap7 1.4.2 - Reference manual

P a g . 171 |

Snap7 1.4.2 - Reference manual

Pascal

// Class definition

TStation = class

private

 Client : TS7Client;

public

 constructor Create;

 procedure TransferComplete(opCode, opResult : integer);

end;

// This is the plain function (API-procedural context)

procedure CliCompletion(usrPtr : pointer, opCode,

 opResult : integer);

{$IFDEF MSWINDOWS}stdcall;{$ELSE}cdecl;{$ENDIF}

begin

 // Cast usrPtr to Station and call the method

 TStation(usrPtr).TransferComplete(opCode, opResult);

end;

// This is the TStation member (OO Context)

procedure TStation.TransferComplete(opCode, opResult : integer);

begin

 if opResult=0 then

 DoSomething

 else

 DoSomethingElse;

end;

constructor TStation.Create;

begin

 // Client creation and callback set

 Client := TS7Client.Create;

 Client.SetAsCallback(CliCompletion, self);

 // “self” parameter is the fingerprint of TStation instance.

end;

P a g . | 172

Snap7 1.4.2 - Reference manual

P a g . 172 |

Snap7 1.4.2 - Reference manual

C#

Here the thing is simpler, using a delegate we don’t need to cast usrPtr.

class TStation

{

 static S7Client Client;

 static void CompletionProc(IntPtr usrPtr, int opCode,

 int opResult)

 {

 if (opCode == 0)

 DoSomething();

 else

 DoSomethingElse();

 }

 public TStation()

 {

 Client = new S7Client();

 Client.SetAsCallBack(CompletionProc, IntPtr.Zero);

 }

}

Remarks

To disable the callback calling after an asynchronous job, call Cli_SetAsCallback with

CompletionProc=NULL

P a g . | 173

Snap7 1.4.2 - Reference manual

P a g . 173 |

Snap7 1.4.2 - Reference manual

Cli_CheckAsCompletion

Description

Checks if the current asynchronous job was done and terminates immediately.

Declaration

int Cli_CheckAsCompletion(S7Object Client, int *opResult);

function Cli_CheckAsCompletion(Client : S7Object;

 var opResult : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

opResult Pointer to Integer 32 In Operation Result

Return value

 Value

JobComplete 0 Job was done

JobPending 1 Job in progress

errLibInvalidObject -2 Invalid handled supplied

If Return value is JobComplete, opResult contains the function result, i.e. the same

value that we would have if we had called the synchronous function.

Remarks

Use this function inside a while cycle only in conjunction with other operations and

always inserting a small delay to avoid CPU waste time.

Wrong use of function : the cycle is wasting the CPU time, consider to use
Cli_WaitAsCompletion.

Correct use of function .

while (Cli_CheckAsCompletion(MyClient, opResult)!=JobComplete)

{};

while (Cli_CheckAsCompletion(MyClient, opResult)!=JobComplete)

{

 DoSomething();

 Sleep(1);

};

P a g . | 174

Snap7 1.4.2 - Reference manual

P a g . 174 |

Snap7 1.4.2 - Reference manual

Cli_WaitAsCompletion

Description

Waits until the current asynchronous job is done or the timeout expires.

Declaration

int Cli_WaitAsCompletion(S7Object Client, int Timeout);

function Cli_WaitAsCompletion(Client : S7Object;

 Timeout : integer) : integer;

Parameters

 Type Dir.

Client Native Integer In
The handle as return value of
Cli_Create(), passed by value.

Timeout Integer 32 In Operation Timeout (ms)

Return value

This function returns the Job result, i.e. the same value that we would have if we had

called the synchronous function.

 0 : The asynchronous function was accomplished with no errors.

 0x02200000 - errCliJobTimeout if timeout expired.

 Other values : see the Errors Code List.

Remarks

This function uses native OS primitives (events, signals..) to avoid CPU time waste.

P a g . | 175

Snap7 1.4.2 - Reference manual

P a g . 175 |

Snap7 1.4.2 - Reference manual

Cli_AsReadArea

Description

This is the asynchronous counterpart of Cli_ReadArea.

See it for the parameters explanation.

Declaration

int Cli_AsReadArea(S7Object Client, int Area, int DBNumber, int Start,

 int Amount, int WordLen, void *pUsrData);

function Cli_AsReadArea(Client : S7Object; Area, DBNumber, Start,

 Amount, WordLen : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 176

Snap7 1.4.2 - Reference manual

P a g . 176 |

Snap7 1.4.2 - Reference manual

Cli_AsWriteArea

Description

This is the asynchronous counterpart of Cli_WriteArea.

See it for the parameters explanation.

Declaration

int Cli_AsWriteArea(S7Object Client, int Area, int DBNumber, int Start,

 int Amount, int WordLen, void *pUsrData);

function Cli_AsWriteArea(Client : S7Object; Area, DBNumber, Start,

 Amount, WordLen : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 177

Snap7 1.4.2 - Reference manual

P a g . 177 |

Snap7 1.4.2 - Reference manual

Cli_AsDBRead

Description

This is the asynchronous counterpart of Cli_DBRead.

See it for the parameters explanation.

Declaration

int Cli_AsDBRead(S7Object Client, int DBNumber, int Start, int Size,

 void *pUsrData);

function Cli_AsDBRead(Client : S7Object; DBNumber, Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 178

Snap7 1.4.2 - Reference manual

P a g . 178 |

Snap7 1.4.2 - Reference manual

Cli_AsDBWrite

Description

This is the asynchronous counterpart of Cli_DBWrite.

See it for the parameters explanation.

Declaration

int Cli_AsDBWrite(S7Object Client, int DBNumber, int Start, int Size,

 void *pUsrData);

function Cli_AsDBWrite(Client : S7Object; DBNumber, Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 179

Snap7 1.4.2 - Reference manual

P a g . 179 |

Snap7 1.4.2 - Reference manual

Cli_AsABRead

Description

This is the asynchronous counterpart of Cli_ABRead.

See it for the parameters explanation.

Declaration

int Cli_AsABRead(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_AsABRead(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 180

Snap7 1.4.2 - Reference manual

P a g . 180 |

Snap7 1.4.2 - Reference manual

Cli_AsABWrite

Description

This is the asynchronous counterpart of Cli_ABWrite.

See it for the parameters explanation.

Declaration

int Cli_AsABWrite(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_AsABWrite(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 181

Snap7 1.4.2 - Reference manual

P a g . 181 |

Snap7 1.4.2 - Reference manual

Cli_AsEBRead

Description

This is the asynchronous counterpart of Cli_EBRead.

See it for the parameters explanation.

Declaration

int Cli_AsEBRead(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_AsEBRead(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 182

Snap7 1.4.2 - Reference manual

P a g . 182 |

Snap7 1.4.2 - Reference manual

Cli_AsEBWrite

Description

This is the asynchronous counterpart of Cli_EBWrite.

See it for the parameters explanation.

Declaration

int Cli_AsEBWrite(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_AsEBWrite(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 183

Snap7 1.4.2 - Reference manual

P a g . 183 |

Snap7 1.4.2 - Reference manual

Cli_AsMBRead

Description

This is the asynchronous counterpart of Cli_MBRead.

See it for the parameters explanation.

Declaration

int Cli_AsMBRead(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_AsMBRead(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 184

Snap7 1.4.2 - Reference manual

P a g . 184 |

Snap7 1.4.2 - Reference manual

Cli_AsMBWrite

Description

This is the asynchronous counterpart of Cli_MBWrite.

See it for the parameters explanation.

Declaration

int Cli_AsMBWrite(S7Object Client, int Start, int Size, void *pUsrData);

function Cli_AsMBWrite(Client : S7Object; Start,

 Size : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 185

Snap7 1.4.2 - Reference manual

P a g . 185 |

Snap7 1.4.2 - Reference manual

Cli_AsTMRead

Description

This is the asynchronous counterpart of Cli_TMRead.

See it for the parameters explanation.

Declaration

int Cli_AsTMRead(S7Object Client, int Start, int Amount, void *pUsrData);

function Cli_AsTMRead(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 186

Snap7 1.4.2 - Reference manual

P a g . 186 |

Snap7 1.4.2 - Reference manual

Cli_AsTMWrite

Description

This is the asynchronous counterpart of Cli_TMWrite.

See it for the parameters explanation.

Declaration

int Cli_AsTMWrite(S7Object Client, int Start, int Amount, void

*pUsrData);

function Cli_AsTMWrite(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 187

Snap7 1.4.2 - Reference manual

P a g . 187 |

Snap7 1.4.2 - Reference manual

Cli_AsCTRead

Description

This is the asynchronous counterpart of Cli_CTRead.

See it for the parameters explanation.

Declaration

int Cli_AsCTRead(S7Object Client, int Start, int Amount, void *pUsrData);

function Cli_AsCTRead(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 188

Snap7 1.4.2 - Reference manual

P a g . 188 |

Snap7 1.4.2 - Reference manual

Cli_AsCTWrite

Description

This is the asynchronous counterpart of Cli_CTWrite.

See it for the parameters explanation.

Declaration

int Cli_AsCTWrite(S7Object Client, int Start, int Amount, void

*pUsrData);

function Cli_AsCTWrite(Client : S7Object; Start,

 Amount : integer; pUsrData : pointer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 189

Snap7 1.4.2 - Reference manual

P a g . 189 |

Snap7 1.4.2 - Reference manual

Cli_AsListBlocksOfType

Description

This is the asynchronous counterpart of Cli_ListBlocksOfType.

See it for the parameters explanation.

Declaration

int Cli_AsListBlocksofType(S7Object Client, int BlockType,

 TS7BlocksOfType *pUsrData, int *ItemsCount);

function Cli_AsListBlocksOfType(Client : S7Object;

 BlockType : integer; pUsrData : PS7BlocksOfType;

 var ItemsCount : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 190

Snap7 1.4.2 - Reference manual

P a g . 190 |

Snap7 1.4.2 - Reference manual

Cli_AsReadSZL

Description

This is the asynchronous counterpart of Cli_ReadSZL.

See it for the parameters explanation.

Declaration

int Cli_AsReadSZL(S7Object Client, int ID, int Index,

 TS7SZL *pUsrData, int *Size);

function Cli_AsReadSZL(Client : S7Object; ID, Index : integer;

 pUsrData : PS7SZL; var Size : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 191

Snap7 1.4.2 - Reference manual

P a g . 191 |

Snap7 1.4.2 - Reference manual

Cli_AsReadSZLList

Description

This is the asynchronous counterpart of Cli_ReadSZLList.

See it for the parameters explanation.

Declaration

int Cli_AsReadSZLList(S7Object Client, TS7SZLList *pUsrData,

 int *ItemsCount);

function Cli_AsReadSZLList(Client : S7Object; pUsrData : PS7SZLList;

 var ItemsCount : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 192

Snap7 1.4.2 - Reference manual

P a g . 192 |

Snap7 1.4.2 - Reference manual

Cli_AsFullUpload

Description

This is the asynchronous counterpart of Cli_FullUpload.

See it for the parameters explanation.

Declaration

int Cli_AsFullUpload(S7Object Client, int BlockType, int BlockNum,

 void *pUsrData, int *Size);

function Cli_AsFullUpload(Client : S7Object; BlockType, BlockNum :

integer;

 pUsrData : pointer; var Size : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 193

Snap7 1.4.2 - Reference manual

P a g . 193 |

Snap7 1.4.2 - Reference manual

Cli_AsUpload

Description

This is the asynchronous counterpart of Cli_Upload.

See it for the parameters explanation.

Declaration

int Cli_AsUpload(S7Object Client, int BlockType, int BlockNum,

 void *pUsrData, int *Size);

function Cli_AsUpload(Client : S7Object; BlockType, BlockNum : integer;

 pUsrData : pointer; var Size : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 194

Snap7 1.4.2 - Reference manual

P a g . 194 |

Snap7 1.4.2 - Reference manual

Cli_AsDownload

Description

This is the asynchronous counterpart of Cli_Download.

See it for the parameters explanation.

Declaration

int Cli_AsDownload(S7Object Client, int BlockNum, void *pUsrData, int

*Size);

function Cli_ASDownload(Client : S7Object; BlockNum : integer;

 pUsrData : pointer; var Size : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 195

Snap7 1.4.2 - Reference manual

P a g . 195 |

Snap7 1.4.2 - Reference manual

Cli_AsDBGet

Description

This is the asynchronous counterpart of Cli_DBGet.

See it for the parameters explanation.

Declaration

int Cli_AsDBGet(S7Object Client, int DBNumber, void *pUsrData, int *Size);

function Cli_AsDBGet(Client : S7Object; DBNumber : integer;

 pUsrData : pointer; var Size : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 196

Snap7 1.4.2 - Reference manual

P a g . 196 |

Snap7 1.4.2 - Reference manual

Cli_AsDBFill

Description

This is the asynchronous counterpart of Cli_DBFill.

See it for the parameters explanation.

Declaration

int Cli_AsDBFill(S7Object Client, int DBNumber, int FillChar);

function Cli_AsDBFill(Client : S7Object; DBNumber : integer;

 FillChar : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 197

Snap7 1.4.2 - Reference manual

P a g . 197 |

Snap7 1.4.2 - Reference manual

Cli_AsCopyRamToRom

Description

This is the asynchronous counterpart of Cli_CopyRamToRom.

See it for the parameters explanation.

Declaration

int Cli_AsCopyRamToRom(S7Object Client, int Timeout);

function Cli_AsCopyRamToRom(Client : S7Object; Timeout : integer) :

integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 198

Snap7 1.4.2 - Reference manual

P a g . 198 |

Snap7 1.4.2 - Reference manual

Cli_AsCompress

Description

This is the asynchronous counterpart of Cli_Compress.

See it for the parameters explanation.

Declaration

int Cli_AsCompress(S7Object Client, int Timeout);

function Cli_AsCompress(Client : S7Object; Timeout : integer) : integer;

Return value

 0 : The Asynchronous Job was successfully started.

 0x00300000 (errCliJobPending) : Another job is running.

 Other values : see the Errors Code List.

Remarks

The function starts the job and terminates immediately. To know the job completion

you can use one of the above functions.

If the data size to exchange is lesser or equal than the PDU negotiated it’s preferable

to use the Synchronous function.

P a g . | 199

Snap7 1.4.2 - Reference manual

P a g . 199 |

Snap7 1.4.2 - Reference manual

Server API Reference

P a g . | 200

Snap7 1.4.2 - Reference manual

P a g . 200 |

Snap7 1.4.2 - Reference manual

Administrative functions

These functions allow controlling the behavior a Server Object.

Function Purpose

Srv_Create Creates a Server Object.

Srv_Destroy Destroys a Server Object.

Srv_StartTo Starts a Server Object onto a given IP Address.

Srv_Start Starts a Server Object onto the default adapter.

Srv_Stop Stops the Server.

Srv_GetParam Reads an internal Server parameter.

Srv_SetParam Writes an internal Server Parameter.

P a g . | 201

Snap7 1.4.2 - Reference manual

P a g . 201 |

Snap7 1.4.2 - Reference manual

Srv_Create

Description

Creates a Server and returns its handle, which is the reference that you have to use

every time you refer to that Server.

The maximum number of Servers that you can create depends only on the system

memory amount and on the network adapters amount.

Declaration

S7Object Srv_Create();

function Srv_Create : S7Object;

Parameters

No parameters

Example

S7Object Server; // Declaration

Server=Srv_Create(); // Creation

// Do something

Srv_Destroy(Server); // Destruction

Remarks

The handle is a memory pointer, so its size varies depending on the platform (32 or 64

bit). If you use the wrappers provided it is already declared as native integer,

otherwise you can store it into a “pointer type” var.

Simply store it, it should not be changed ever.

P a g . | 202

Snap7 1.4.2 - Reference manual

P a g . 202 |

Snap7 1.4.2 - Reference manual

Srv_Destroy

Description

Destroy a Server of given handle.

Before destruction the Server is stopped, all clients disconnected and all shared

memory blocks released.

Declaration

void Srv_Destroy(S7Object *Server);

procedure Srv_Destroy(var Server : S7Object);

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by reference.

Example

S7Object Server; // Declaration

Server=Srv_Create(); // Creation

// Do something

Srv_Destroy(Server); // Destruction

Remarks

The handle is passed by reference and it’s set to NULL by the function. This allows you

to call Srv_Destroy() more than once without worrying about memory exceptions.

P a g . | 203

Snap7 1.4.2 - Reference manual

P a g . 203 |

Snap7 1.4.2 - Reference manual

Srv_GetParam

Description

Reads an internal Server object parameter.

Declaration

int Srv_GetParam(S7Object Server, int ParamNumber, void *pValue);

function Srv_GetParam(Server : S7Object; ParamNumber : integer;

 pValue : pointer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

ParamNumber Integer In Parameter number.

pValue Pointer In
Pointer to the variable that will receive
the parameter value.

Return value

 0 : The parameter was successfully read.

 Other values : see the Errors Code List.

Since the couple GetParam/SetParam is present in all three Snap7 objects, there is a

detailed description of them (Internal parameters).

P a g . | 204

Snap7 1.4.2 - Reference manual

P a g . 204 |

Snap7 1.4.2 - Reference manual

Srv_SetParam

Description

Sets an internal Server object parameter.

Declaration

int Srv_SetParam(S7Object Server, int ParamNumber, void *pValue);

function Srv_SetParam(Server : S7Object; ParamNumber : integer;

 pValue : pointer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

ParamNumber Integer In Parameter number.

pValue Pointer In
Pointer to the variable that contains the
parameter value.

Return value

 0 : The parameter was successfully set.

 Other values : see the Errors Code List.

Since the couple GetParam/SetParam is present in all three Snap7 objects, there is a

detailed description of them (Internal parameters).

P a g . | 205

Snap7 1.4.2 - Reference manual

P a g . 205 |

Snap7 1.4.2 - Reference manual

Srv_StartTo

Description

Starts the server and binds it to the specified IP address and the IsoTCP port.

Declaration

int Srv_StartTo(S7Object Server, const char *Address);

function Srv_StartTo(Client : S7Object; Address : PAnsiChar) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

Address Pointer to Ansi String In
Adapter IPV4 Address
ex. “192.168.1.12” (1)

(1) If “0.0.0.0” is supplied, the default adapter is used.

Return value

 0 : The Server is successfully started (or was already running).

 Other values : see the Errors Code List.

P a g . | 206

Snap7 1.4.2 - Reference manual

P a g . 206 |

Snap7 1.4.2 - Reference manual

Srv_Start

Description

Starts the server and binds it to the IP address specified in the previous call of

Srv_StartTo().

Declaration

int Srv_Start(S7Object Server);

function Srv_Start(Client : S7Object) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

Return value

 0 : The Server is successfully started (or was already running).

 Other values : see the Errors Code List.

Remarks

If Srv_StartTo() was not previously called, “0.0.0.0” is assumed as IP address.

P a g . | 207

Snap7 1.4.2 - Reference manual

P a g . 207 |

Snap7 1.4.2 - Reference manual

Srv_Stop

Description

Stops the server, disconnects gracefully all clients, destroys al S7 workers and unbinds

the listener socket from its address.

Declaration

int Srv_Stop(S7Object Server);

function Srv_Stop(Client : S7Object) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

Return value

 0 : The Server is successfully stopped (or was already stopped).

 Other values : see the Errors Code List.

P a g . | 208

Snap7 1.4.2 - Reference manual

P a g . 208 |

Snap7 1.4.2 - Reference manual

Shared memory functions

These functions allow to share data between the user application and the server.

Function Purpose

Srv_RegisterArea Shares a given memory area with the server.

Srv_UnRegisterArea “Unshares” a memory area previously shared.

Srv_LockArea Locks a shared memory area.

Srv_UnlockArea Unlocks a previously locked shared memory area.

P a g . | 209

Snap7 1.4.2 - Reference manual

P a g . 209 |

Snap7 1.4.2 - Reference manual

Srv_RegisterArea

Description

Shares a memory area with the server. That memory block will be visible by the

clients.

Declaration

int Srv_RegisterArea(S7Object Server, int AreaCode, word Index,

 void *pUsrData, int Size);

function Srv_RegisterArea(Server : S7Object; AreaCode : integer;

 Index : word; pUsrData : pointer; Size : integer) : integer;

Parameters

 Type Dir. Mean

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

AreaCode integer 32 In Area identifier.

Index integer 16 In
DB Number if Area = srvAreaDB,
otherwise is ignored.

pUsrData Pointer to memory area In Address of user buffer.

Size integer 32 In Size of user buffer

AreaCode values

 Value Mean

S7AreaPE 0 Process Inputs.

S7AreaPA 1 Process Outputs.

S7AreaMK 2 Merkers.

S7AreaCT 3 Timers

S7AreaTM 4 Counters.

S7AreaDB 5 DB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 210

Snap7 1.4.2 - Reference manual

P a g . 210 |

Snap7 1.4.2 - Reference manual

Srv_UnRegisterArea

Description

“Unshares” a memory area previously shared with Srv_RegisterArea().

That memory block will be no longer visible by the clients.

Declaration

int Srv_UnregisterArea(S7Object Server, int AreaCode, word Index);

function Srv_UnregisterArea(Server : S7Object; AreaCode : integer;

 Index : word) : integer;

Parameters

 Type Dir. Mean

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

AreaCode integer 32 In Area identifier.

Index integer 16 In
DB Number if Area = srvAreaDB,
otherwise is ignored.

AreaCode values

 Value Mean

S7AreaPE 0 Process Inputs.

S7AreaPA 1 Process Outputs.

S7AreaMK 2 Merkers.

S7AreaCT 3 Timers

S7AreaTM 4 Counters.

S7AreaDB 5 DB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 211

Snap7 1.4.2 - Reference manual

P a g . 211 |

Snap7 1.4.2 - Reference manual

Srv_LockArea

Description

Locks a shared memory area.

Declaration

int Srv_LockArea(S7Object Server, int AreaCode, word Index);

function Srv_LockArea(Server : S7Object; AreaCode : integer;

 Index : word) : integer;

Parameters

 Type Dir. Mean

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

AreaCode integer 32 In Area identifier.

Index integer 16 In
DB Number if Area = srvAreaDB,
otherwise is ignored.

AreaCode values

 Value Mean

S7AreaPE 0 Process Inputs.

S7AreaPA 1 Process Outputs.

S7AreaMK 2 Merkers.

S7AreaCT 3 Timers

S7AreaTM 4 Counters.

S7AreaDB 5 DB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 212

Snap7 1.4.2 - Reference manual

P a g . 212 |

Snap7 1.4.2 - Reference manual

Srv_UnlockArea

Description

Unlocks a previously locked shared memory area.

Declaration

int Srv_UnlockArea(S7Object Server, int AreaCode, word Index);

function Srv_UnockArea(Server : S7Object; AreaCode : integer;

 Index : word) : integer;

Parameters

 Type Dir. Mean

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

AreaCode integer 32 In Area identifier.

Index integer 16 In
DB Number if Area = srvAreaDB,
otherwise is ignored.

AreaCode values

 Value Mean

S7AreaPE 0 Process Inputs.

S7AreaPA 1 Process Outputs.

S7AreaMK 2 Merkers.

S7AreaCT 3 Timers

S7AreaTM 4 Counters.

S7AreaDB 5 DB

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 213

Snap7 1.4.2 - Reference manual

P a g . 213 |

Snap7 1.4.2 - Reference manual

Control flow functions

These functions allow to setup/handle the events generated by a server.

Function Purpose

Srv_SetEventsCallback
Sets the user callback that the Server object has to call when an event
is created.

Srv_SetRWAreaCallback
Sets the user callback that the Server object has to call on a read or
write request.

Srv_GetMask Reads the specified filter mask.

Srv_SetMask Writes the specified filter mask.

Srv_PickEvent Extracts an event (if available) from the Events queue.

Srv_ClearEvents Empties the Event queue.

P a g . | 214

Snap7 1.4.2 - Reference manual

P a g . 214 |

Snap7 1.4.2 - Reference manual

Srv_SetEventsCallback

Description

Sets the user callback that the Server object has to call when an event is created.

Declaration

int Srv_SetEventsCallback(S7Object Server, pfn_SrvCallBack pCallBack,

 void *usrPtr);

function Srv_SetEventsCallback(Server : S7Object; pCallBack,

 usrPtr : pointer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

pCallBack Pointer to function In Pointer to the Callback function

usrPtr Pointer In User pointer passed back

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The expected callback is defined as:

typedef void (S7API *pfn_SrvCallBack) (void * usrPtr, PSrvEvent PEvent,

 int Size);

Where S7API is __stdcall only for Windows.

And PSrvEvent is a pointer to TSrvEvent defined as follow:

snap7.net.cs and snap7.pas contain the C# and Pascal definition for this struct.

usPtr is an optional parameter (meaning that it can be NULL) that is useful to switch

the context from API-procedural to object-oriented (except for C#).

Size is the Event size (for a future backward compatibility).

typedef struct{

 time_t EvtTime; // Timestamp

 int EvtSender; // Sender

 longword EvtCode; // Event code

 word EvtRetCode; // Event result

 word EvtParam1; // Param 1 (if available)

 word EvtParam2; // Param 2 (if available)

 word EvtParam3; // Param 3 (if available)

 word EvtParam4; // Param 4 (if available)

}

P a g . | 215

Snap7 1.4.2 - Reference manual

P a g . 215 |

Snap7 1.4.2 - Reference manual

This function must be present into your source code, so let’s see also how is defined

across other languages:

Pascal:

TSrvCallBack = procedure(usrPtr : pointer; PEvent : PSrvEvent;

 Size : integer);

{$IFDEF MSWINDOWS}stdcall;{$ELSE}cdecl;{$ENDIF}

C#

public delegate void TSrvCallback(IntPtr usrPtr, ref USrvEvent Event,

 int Size);

Remarks

The call of user Callback is subject to mask filtering (see Snap7Server Control flow

chapter for further information)

To clear the Callback, call this function with pCallBack=NULL

P a g . | 216

Snap7 1.4.2 - Reference manual

P a g . 216 |

Snap7 1.4.2 - Reference manual

Srv_SetRWAreaCallback

Description

Sets the user callback that the Server object has to call when an read/write Client

request.

Declaration

int Srv_SetRWAreaCallback(S7Object Server, pfn_RWAreaCallBack pCallBack,

 void *usrPtr);

function Srv_SetEventsCallback(Server : S7Object; pCallBack,

 usrPtr : pointer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

pCallBack Pointer to function In Pointer to the Callback function

usrPtr Pointer In User pointer passed back

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The expected callback is defined as:

typedef void (S7API *pfn_SrvCallBack) (void *usrPtr, int Sender,

 int Operation, PS7Tag PTag, void *pUsrData);

Where S7API is __stdcall only for Windows.

And PS7Tag is a pointer to TS7Tag struct defined as follow:

snap7.net.cs and snap7.pas contain the C# and Pascal definition for this struct.

usPtr is an optional parameter (meaning that it can be NULL) that is useful to switch

the context from API-procedural to object-oriented (except for C#).

Operation can be 0 (Read request from the Client) 1 (Write Request).

typedef struct{

 int Area; // Area code (DB, MK,…)

 int DBNumber; // DB Number (if any or 0)

 int Start; // Offset start

 int Elements; // Number of elements

 int WordLen; // Tag WordLength

}

// Start could be expressed in bits if WordLen==S7WLBit

P a g . | 217

Snap7 1.4.2 - Reference manual

P a g . 217 |

Snap7 1.4.2 - Reference manual

Remarks

The call of this user Callback is not subject to mask filtering (see Snap7Server

Control flow chapter for further information)

To clear the Callback and switch the server in normal mode call this function with

pCallBack=NULL

P a g . | 218

Snap7 1.4.2 - Reference manual

P a g . 218 |

Snap7 1.4.2 - Reference manual

Srv_SetReadsEventsCallback

Description

Sets the user callback that the Server object has to call when a Read event is created.

Declaration

int Srv_SetReadEventsCallback(S7Object Server, pfn_SrvCallBack pCallBack,

 void *usrPtr);

function Srv_SetReadEventsCallback(Server : S7Object; pCallBack,

 usrPtr : pointer) : integer;

Remarks

Refer to Srv_SetEventsCallBack for parameters, result and CallBack prototype.

The EvtRetCode will be always 0.

P a g . | 219

Snap7 1.4.2 - Reference manual

P a g . 219 |

Snap7 1.4.2 - Reference manual

Srv_GetMask

Description

Reads the specified filter mask.

Declaration

int Srv_GetMask(S7Object Server, int MaskKind, longword *Mask);

function Srv_GetMask(Server : S7Object; MaskKind : integer;

 var Mask : longword) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

MaskKind Integer In Kind of the Mask.

Mask Pointer to unsigned 32 In
Pointer to the variable that will receive
the mask value.

MaskKind values

 Value Mean

mkEvent 0 Event Mask

mkLog 1 Log Mask

Return value

 0 : The mask was successfully read.

 Other values : see the Errors Code List.

P a g . | 220

Snap7 1.4.2 - Reference manual

P a g . 220 |

Snap7 1.4.2 - Reference manual

Srv_SetMask

Description

Writes the specified filter mask.

Declaration

int Srv_SetMask(S7Object Server, int MaskKind, longword Mask);

function Srv_SetMask(Server : S7Object; MaskKind : integer;

 Mask : longword) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

MaskKind Integer In Kind of the Mask.

Mask Unsigned integer 32 In Value of the Mask.

MaskKind values

 Value Mean

mkEvent 0 Event Mask

mkLog 1 Log Mask

Return value

 0 : The mask was successfully set.

 Other values : see the Errors Code List.

P a g . | 221

Snap7 1.4.2 - Reference manual

P a g . 221 |

Snap7 1.4.2 - Reference manual

Srv_PickEvent

Description

Extracts an event (if available) from the Events queue.

Declaration

int Srv_PickEvent(S7Object Server, TSrvEvent *pEvent,

 int *EvtReady);

function Srv_PickEvent(Server : S7Object;

 var Event : TSrvEvent; var EvtReady : integer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

pEvent Pointer to struct In Address of user Event variable

EvtReady Pointer to Integer 32 In Address of user EvtReady var.

If an Event was available EvtReady=1 otherwise EvtReady=0.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

see Snap7Server Control flow chapter for further information.

Object-oriented wrappers expose a more convenient bool function.

P a g . | 222

Snap7 1.4.2 - Reference manual

P a g . 222 |

Snap7 1.4.2 - Reference manual

Srv_ClearEvents

Description

Empties the Event queue.

Declaration

int Srv_ClearEvents(S7Object Client);

function Srv_ClearEvents(Client : S7Object);

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 223

Snap7 1.4.2 - Reference manual

P a g . 223 |

Snap7 1.4.2 - Reference manual

Miscellaneous functions

These are utility functions.

Function Purpose

Srv_GetStatus Returns the last job execution time in milliseconds.

Srv_SetCpuStatus Returns the last job result.

Srv_EventText Returns a textual explanation of a given event.

Srv_ErrorText Returns a textual explanation of a given error number.

P a g . | 224

Snap7 1.4.2 - Reference manual

P a g . 224 |

Snap7 1.4.2 - Reference manual

Srv_GetStatus

Description

Reads the server status, the Virtual CPU status and the number of the clients

connected.

Declaration

int Srv_GetStatus(S7Object Server, int *ServerStatus, int *CpuStatus,

 int *ClientsCount);

function Srv_GetStatus(Server : S7Object; var ServerStatus,

 CpuStatus, ClientsCount : integer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

ServerStatus Pointer to Integer 32 In
Pointer to the variable that will receive
the Server Status.

CpuStatus Pointer to Integer 32 In
Pointer to the variable that will receive
the Virtual CPU Status.

ClientsCount Pointer to Integer 32 In
Pointer to the variable that will receive
the Clients count.

ServerStatus values

 Value Mean

SrvStopped 0 The Server is stopped.

SrvRunning 1 The Server is Running.

SrvError 2 Server Error.

CpuStatus values

 Value Mean

S7CpuStatusUnknown 0x00 Unknown.

S7CpuRun 0x08 CPU in RUN

S7CpuStop 0x04 CPU in Stop

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remark

The CPU status can be changed by a client calling the related S7 Control function (Cold

Start/ Warm Start / Stop) or programmatically, server side, calling the function

Srv_SetCpuStatus().

P a g . | 225

Snap7 1.4.2 - Reference manual

P a g . 225 |

Snap7 1.4.2 - Reference manual

Srv_SetCpuStatus

Description

Sets the Virtual CPU status.

Declaration

int Srv_SetCpuStatus(S7Object Server, int CpuStatus);

function Srv_SetCpuStatus(Server : S7Object;

 CpuStatus : integer) : integer;

Parameters

 Type Dir.

Server Native Integer In
The handle as return value of
Srv_Create(), passed by value.

CpuStatus Integer 32 In Value of Virtual CPU Status.

CpuStatus values

 Value Mean

S7CpuStatusUnknown 0x00 Unknown.

S7CpuRun 0x08 CPU in RUN

S7CpuStop 0x04 CPU in Stop

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 226

Snap7 1.4.2 - Reference manual

P a g . 226 |

Snap7 1.4.2 - Reference manual

Srv_ErrorText

Description

Returns a textual explanation of a given error number.

Declaration

int Srv_ErrorText(int Error, char *Text, int TextLen);

function Srv_ErrorText(Error : integer, Text : PAnsiChar;

 TextLen : integer) : integer;

Parameters

 Type Dir.

Error Integer 32 In Error code

Text Pointer to Ansi String In Address of the char array

TextLen Integer 32 In Size of the char array

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This is a translation function, so there is no need of a Server handle.

The messages are in (internet) English, all they are in s7_text.cpp.

P a g . | 227

Snap7 1.4.2 - Reference manual

P a g . 227 |

Snap7 1.4.2 - Reference manual

Srv_EventText

Description

Returns a textual explanation of a given event.

Declaration

int Srv_EventText(TSrvEvent *Event, char *Text, int TextLen);

function Srv_EventText(var Event : TSrvEvent, Text : PAnsiChar;

 TextLen : integer) : integer;

Parameters

 Type Dir.

Event Pointer to struct In Address of user Event variable

Text Pointer to Ansi String In Address of the char array

TextLen Integer 32 In Size of the char array

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This is a translation function, so there is no need of a Server handle.

The messages are in (internet) English, all they are in s7_text.cpp.

The event string is formatted as follow:

<Date and time><Sender><Description>[<Parameters>][<Result>]

This is an example:

2013-06-25 15:39:25 [192.168.0.70] Read SZL request, ID:0x0424 INDEX:0x0000 -->

OK

P a g . | 228

Snap7 1.4.2 - Reference manual

P a g . 228 |

Snap7 1.4.2 - Reference manual

Partner API Reference

P a g . | 229

Snap7 1.4.2 - Reference manual

P a g . 229 |

Snap7 1.4.2 - Reference manual

Administrative functions

These functions allow controlling the behavior a Partner Object.

Function Purpose

Par_Create Creates a Partner Object.

Par_Destroy Destroys a Partner Object.

Par_StartTo Starts a Partner Object onto a given IP Address.

Par_Start Starts a Partner Object onto the previous parameters supplied.

Par_Stop Stops the Partner.

Par_GetParam Reads an internal Partner parameter.

Par_SetParam Writes an internal Partner Parameter.

Par_SetSendCallback
Sets the user callback that the Partner object has to call when the
asynchronous data sent is complete.

Par_SetRecvCallback
Sets the user callback that the Partner object has to call when a
data packet is incoming.

P a g . | 230

Snap7 1.4.2 - Reference manual

P a g . 230 |

Snap7 1.4.2 - Reference manual

Par_Create

Description

Creates a Partner and returns its handle, which is the reference that you have to use

every time you refer to that Partner.

Declaration

S7Object Par_Create(int Active);

function Par_Create : S7Object;

Parameters

 Type Dir.

Active Integer In
0 : A Passive Partner will be created.
1 : An Active partner will be created.

Example

S7Object Partner; // Declaration

Partner=Par_Create(1); // Active Partner Creation

// Do something

Par_Destroy(Partner); // Destruction

Remarks

The handle is a memory pointer, so its size varies depending on the platform (32 or 64

bit). If you use the wrappers provided it is already declared as native integer,

otherwise you can store it into a “pointer type” var.

Simply store it, it should not be changed ever.

P a g . | 231

Snap7 1.4.2 - Reference manual

P a g . 231 |

Snap7 1.4.2 - Reference manual

Par_Destroy

Description

Destroy a Partner of given handle.

Before destruction the Partner is stopped, all clients disconnected and all shared

memory blocks released.

Declaration

void Par_Destroy(S7Object *Partner);

procedure Par_Destroy(var Partner : S7Object);

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by reference.

Example

S7Object Partner; // Declaration

Partner=Par_Create(); // Creation

// Do something

Par_Destroy(Partner); // Destruction

Remarks

The handle is passed by reference and it’s set to NULL by the function. This allows you

to call Par_Destroy() more than once without worrying about memory exceptions.

P a g . | 232

Snap7 1.4.2 - Reference manual

P a g . 232 |

Snap7 1.4.2 - Reference manual

Par_GetParam

Description

Reads an internal Partner object parameter.

Declaration

int Par_GetParam(S7Object Partner, int ParamNumber, void *pValue);

function Par_GetParam(Partner : S7Object; ParamNumber : integer;

 pValue : pointer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

ParamNumber Integer In Parameter number.

pValue Pointer In
Pointer to the variable that will receive
the parameter value.

Return value

 0 : The parameter was successfully read.

 Other values : see the Errors Code List.

Since the couple GetParam/SetParam is present in all three Snap7 objects, there is a

detailed description of them (Internal parameters).

P a g . | 233

Snap7 1.4.2 - Reference manual

P a g . 233 |

Snap7 1.4.2 - Reference manual

Par_SetParam

Description

Sets an internal Partner object parameter.

Declaration

int Par_SetParam(S7Object Partner, int ParamNumber, void *pValue);

function Par_SetParam(Partner : S7Object; ParamNumber : integer;

 pValue : pointer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

ParamNumber Integer In Parameter number.

pValue Pointer In
Pointer to the variable that contains the
parameter value.

Return value

 0 : The parameter was successfully set.

 Other values : see the Errors Code List.

Since the couple GetParam/SetParam is present in all three Snap7 objects, there is a

detailed description of them (Internal parameters).

P a g . | 234

Snap7 1.4.2 - Reference manual

P a g . 234 |

Snap7 1.4.2 - Reference manual

Par_StartTo

Description

Starts the Partner and binds it to the specified IP address and the IsoTCP port.

Declaration

int Par_StartTo(S7Object Partner, const char *LocalAddress,

 const char *LocalAddress, word LocTsap, word RemTsap);

function Par_StartTo(Client : S7Object; LocalAddress, RemoteAddress :

 PAnsiChar; LocTsap, RemTsap : word) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

LocalAddress Pointer to Ansi String In PC host IPV4 Address

RemoteAddress Pointer to Ansi String In PLC IPV4 Address

LocTsap Unsigned Integer 16 In Local TSAP

RemTsap Unsigned Integer 16 In PLC TSAP

(1) If “0.0.0.0” is supplied, the default adapter is used.

Return value

 0 : The Partner is successfully started (or was already running).

 Other values : see the Errors Code List.

Remark

See § Snap7Partner->The Snap7 Model for further information.

P a g . | 235

Snap7 1.4.2 - Reference manual

P a g . 235 |

Snap7 1.4.2 - Reference manual

Par_Start

Description

Starts the Partner and binds it to the parameters specified in the previous call of

Par_StartTo().

Declaration

int Par_Start(S7Object Partner);

function Par_Start(Client : S7Object) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

Return value

 0 : The Partner is successfully started (or was already running).

 Other values : see the Errors Code List.

Remarks

This function can be called only after a previous Par_StartTo() which internally sets

Addresses, and TSAPs.

P a g . | 236

Snap7 1.4.2 - Reference manual

P a g . 236 |

Snap7 1.4.2 - Reference manual

Par_Stop

Description

Stops the Partner, disconnects gracefully the remote partner.

Declaration

int Par_Stop(S7Object Partner);

function Par_Stop(Client : S7Object) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

Return value

 0 : The Partner is successfully stopped (or was already stopped).

 Other values : see the Errors Code List.

P a g . | 237

Snap7 1.4.2 - Reference manual

P a g . 237 |

Snap7 1.4.2 - Reference manual

Par_SetSendCallback

Description

Sets the user callback that the Partner object has to call when the asynchronous data

sent is complete.

Declaration

int Par_SetSendCallback(S7Object Partner, pfn_ParSendCompletion

pCompletion,

 void *usrPtr);

function Par_SetSendCallback(Partner : S7Object; pCompletion,

 usrPtr : pointer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

pCompletion Pointer to function In Pointer to the Callback function

usrPtr Pointer In User pointer passed back

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The expected callback is defined as:

typedef void (S7API *pfn_ParSendCompletion) (void *usrPtr,

 int opResult);

Where S7API is __stdcall only for Windows.

This function must be present into your source code, so let’s see also how is defined

across other languages:

Pascal:

TParBSendCompletion = procedure(usrPtr : Pointer;

 opResult : integer);

{$IFDEF MSWINDOWS}stdcall;{$ELSE}cdecl;{$ENDIF}

C#

public delegate void S7ParSendCompletion(IntPtr usrPtr,

 int opResult);

usPtr is an optional parameter (meaning that it can be NULL) that is useful to switch

the context from API-procedural to object-oriented (except for C#).

See Partner Applications for an example of callback use.

P a g . | 238

Snap7 1.4.2 - Reference manual

P a g . 238 |

Snap7 1.4.2 - Reference manual

Par_SetRecvCallback

Description

Sets the user callback that the Partner object has to call when a data packet is

incoming.

Declaration

int Par_SetRecvCallback(S7Object Partner, pfn_ParRecvCallback

pCompletion,

 void *usrPtr);

function Par_SetRecvCallback(Partner : S7Object; pCompletion,

 usrPtr : pointer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

pCompletion Pointer to function In Pointer to the Callback function

usrPtr Pointer In User pointer passed back

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

The expected callback is defined as:

typedef void (S7API *pfn_ParRecvCallback) (void *usrPtr,

 int opResult, longword R_ID, void *pData, int Size);

Where S7API is __stdcall only for Windows.

This function must be present into your source code, so let’s see also how is defined

across other languages:

Pascal:
TParRecvCallback = procedure(usrPtr : Pointer; opResult : integer;

 R_ID : longword; pData : Pointer; Size : integer);

{$IFDEF MSWINDOWS}stdcall;{$ELSE}cdecl;{$ENDIF}

C#
public delegate void S7ParSendCompletion(IntPtr usrPtr,

 int opResult, uint R_ID, IntPtr pData, int Size);

usPtr is an optional parameter (meaning that it can be NULL) that is useful to switch

the context from API-procedural to object-oriented (except for C#).

pData points to the internal Partner buffer.

Size is the amount (bytes) of the incoming packet.

opResult is the transfer job result, 0 : ok, other see Error Code List.

P a g . | 239

Snap7 1.4.2 - Reference manual

P a g . 239 |

Snap7 1.4.2 - Reference manual

Data Transfer functions

These functions allow the Partner to exchange data with its counterpart into a PLC.

Function Purpose

Par_BSend Sends a data packet to the partner.

Par_AsBSend Sends an asynchronous data packet to the partner.

Par_CheckAsBSendCompletion Checks if the current asynchronous job was completed.

Par_WaitAsBSendCompletion Waits until the current asynchronous send job is done.

Par_BRecv Receives a data packet from the partner.

Par_CheckAsBRecvCompletion Checks if a packed received was received.

P a g . | 240

Snap7 1.4.2 - Reference manual

P a g . 240 |

Snap7 1.4.2 - Reference manual

Par_BSend

Description

Sends a data packet to the partner. This function is synchronous, i.e. it terminates

when the transfer job (send+ack) is complete.

Declaration

int Par_BSend(S7Object Partner, longword R_ID, void *pUsrData, int Size);

function Par_BSend(Partner : S7Object; R_ID : longword;

 pUsrData : Pointer; Size : integer) : integer;

Parameters

 Type Dir. Mean

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

R_ID unsigned integer 32 In Routing User parameter.

pUsrData Pointer to memory area In Address of user buffer.

Size integer In Size (byte) of the user buffer

R_ID is a routing parameter : the same value must be supplied to the BRecv FB.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 241

Snap7 1.4.2 - Reference manual

P a g . 241 |

Snap7 1.4.2 - Reference manual

Par_AsBSend

Description

Sends a data packet to the partner. This function is asynchronous, i.e. it terminates

immediately, a completion method is needed to know when the transfer is complete.

Declaration

int Par_AsBSend(S7Object Partner, longword R_ID, void *pUsrData,

 int Size);

function Par_AsBSend(Partner : S7Object; R_ID : longword;

 pUsrData : Pointer; Size : integer) : integer;

Parameters

 Type Dir. Mean

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

R_ID unsigned integer 32 In Routing User parameter.

pUsrData Pointer to memory area In Address of user buffer.

Size integer In Size (byte) of the user buffer

R_ID is a routing parameter : the same value must be supplied to the BRecv FB.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 242

Snap7 1.4.2 - Reference manual

P a g . 242 |

Snap7 1.4.2 - Reference manual

Par_CheckAsBSendCompletion

Description

Checks if the current asynchronous send job was completed and terminates

immediately.

Declaration

int Par_CheckAsCompletion(S7Object Partner, int *opResult);

function Par_CheckAsCompletion(Partner : S7Object;

 var opResult : integer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

opResult Pointer to Integer 32 In Operation Result

Return value

 Value

JobComplete 0 Job was done

JobPending 1 Job in progress

errLibInvalidObject -2 Invalid handled supplied

If Return value is JobComplete, opResult contains the function result, i.e. the same

value that we would have if we had called the synchronous function.

Remarks

Use this function inside a while cycle only in conjunction with other operations and

always inserting a small delay to avoid CPU waste time.

Wrong use of function : the cycle is wasting the CPU time, consider to use
Par_WaitAsBSendCompletion.

Correct use of function .

while (Par_CheckAsBSendCompletion(MyPartner, opResult)!=JobComplete)

{};

while (Par_CheckAsBSendCompletion(MyPartner, opResult)!=JobComplete)

{

 DoSomething();

 Sleep(1);

};

P a g . | 243

Snap7 1.4.2 - Reference manual

P a g . 243 |

Snap7 1.4.2 - Reference manual

Par_WaitAsBSendCompletion

Description

Waits until the current asynchronous send job is done or the timeout expires.

Declaration

int Par_WaitAsBSendCompletion(S7Object Partner, longword Timeout);

function Par_WaitAsBSendCompletion(Partner : S7Object;

 Timeout : longword) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

Timeout Unsigned Integer 32 In Operation Timeout (ms)

Return value

This function returns the Job result, i.e. the same value that we would have if we had

called the synchronous function.

 0 : The asynchronous function was accomplished with no errors.

 0x00B00000 - errParSendTimeout if timeout expired.

 Other values : see the Errors Code List.

Remarks

This function uses native OS primitives (events, signals..) to avoid CPU time waste.

P a g . | 244

Snap7 1.4.2 - Reference manual

P a g . 244 |

Snap7 1.4.2 - Reference manual

Par_BRecv

Description

Receives a data packet from the partner. This function is synchronous, it waits until a

packet is received or the timeout supplied expires.

Declaration

int Par_BRecv(S7Object Partner, longword *R_ID, void *pUsrData,

 int *Size, longword Timeout);

function Par_BRecv(Partner : S7Object; var R_ID : longword;

 pUsrData : Pointer; var Size : integer; Timeout : longword) : integer;

Parameters

 Type Dir. Mean

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

R_ID
Pointer to unsigned
integer 32

In
Address of Routing User
parameter.

pUsrData Pointer to memory area In Address of user buffer.

Size Pointer to integer 32 In Size (byte) of received packet

Timeout Unsigned Integer 32 In Operation Timeout (ms)

R_ID is the routing parameter that the remote partner supplied to its BSend FB.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 245

Snap7 1.4.2 - Reference manual

P a g . 245 |

Snap7 1.4.2 - Reference manual

Par_CheckAsBRecvCompletion

Description

Checks if a packed received was received.

Declaration

int Par_CheckAsBRecvCompletion(S7Object Partner, int *opResult,

 longword *R_ID, void *pData, int *Size);

function Par_CheckAsBRecvCompletion(Partner : S7Object;

 var opResult : integer; var R_ID : longword; pData : Pointer;

 var Size : integer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

opResult Pointer to Integer 32 In Operation Result

R_ID
Pointer to unsigned
integer 32

In Address of Routing User parameter.

pData
Pointer to memory
area

In Address of packet buffer.

Size Pointer to integer 32 In Size (byte) of received packet

Return value

 Value

JobComplete 0 Packet ready

JobPending 1 Packet not ready

errLibInvalidObject -2 Invalid handled supplied

If Return value is JobComplete, opResult contains the function result, i.e. the same

value that we would have if we had called the synchronous function.

Remarks

opResult, R_ID, pData and Size will contain valid values only if a packet was received,

i.e. Return value = JobComplete.

P a g . | 246

Snap7 1.4.2 - Reference manual

P a g . 246 |

Snap7 1.4.2 - Reference manual

Miscellaneous functions

These are utility functions.

Function Purpose

Par_GetTimes Returns the last send and recv jobs execution time in milliseconds.

Par_GetStats Returns some statistics.

Par_GetLastError Returns the last job result.

Par_GetStatus Returns the Partner status.

Par_ErrorText Returns a textual explanation of a given error number.

P a g . | 247

Snap7 1.4.2 - Reference manual

P a g . 247 |

Snap7 1.4.2 - Reference manual

Par_GetTimes

Description

Returns the last send and recv jobs execution time in milliseconds.

Declaration

int Par_GetTimes(S7Object Partner, longword *SendTime,

 longword *RecvTime);

function Par_GetTimes(Partner : S7Object;

 var SendTime, RecvTime : integer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

SendTime
Pointer to unsigned
integer 32

In Address of the send time variable

RecvTime
Pointer to unsigned
integer 32

In Address of the send time variable

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 248

Snap7 1.4.2 - Reference manual

P a g . 248 |

Snap7 1.4.2 - Reference manual

Par_GetStats

Description

Returns some statistics.

Declaration

int Par_GetTimes(S7Object Partner, longword *BytesSent,

 longword *BytesRecv, longword *SendErrors, longword *RecvErrors);

function Par_GetTimes(Partner : S7Object; var BytesSent, BytesRecv,

 SendErrors, RecvErrors : longword) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

BytesSent
Pointer to unsigned
integer 32

In Amount of bytes sent.

BytesRecv
Pointer to unsigned
integer 32

In Amount of bytes received.

SendErrors
Pointer to unsigned
integer 32

In Amount of send errors.

RecvErrors
Pointer to unsigned
integer 32

In Amount of recv errors.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 249

Snap7 1.4.2 - Reference manual

P a g . 249 |

Snap7 1.4.2 - Reference manual

Par_GetLastError

Description

Returns the last job result.

Declaration

int Par_GetLastError(S7Object Partner, int *LastError);

function Par_GetLastError(Partner : S7Object;

 var LastError : integer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

LastError Pointer to integer 32 In Address of the LastError variable

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 250

Snap7 1.4.2 - Reference manual

P a g . 250 |

Snap7 1.4.2 - Reference manual

Par_GetStatus

Description

Returns the Partner status.

Declaration

int Par_GetStatus(S7Object Partner, int *Status);

function Par_GetStatus(Partner : S7Object;

 var Status : integer) : integer;

Parameters

 Type Dir.

Partner Native Integer In
The handle as return value of
Par_Create(), passed by value.

Status Pointer to Integer 32 In
Pointer to the variable that will receive
the Partner Status.

Status values

 Value Mean

par_stopped 0 Stopped.

par_connecting 1 Running, active and trying to connect.

par_waiting 2 Running, passive and waiting for a connection

par_connected 3 Connected.

par_sending 4 Sending data.

par_receibing 5 Receiving data.

par_binderror 6 Error starting passive partner.

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

P a g . | 251

Snap7 1.4.2 - Reference manual

P a g . 251 |

Snap7 1.4.2 - Reference manual

Par_ErrorText

Description

Returns a textual explanation of a given error number.

Declaration

int Par_ErrorText(int Error, char *Text, int TextLen);

function Par_ErrorText(Error : integer, Text : PAnsiChar;

 TextLen : integer) : integer;

Parameters

 Type Dir.

Error Integer 32 In Error code

Text Pointer to Ansi String In Address of the char array

TextLen Integer 32 In Size of the char array

Return value

 0 : The function was accomplished with no errors.

 Other values : see the Errors Code List.

Remarks

This is a translation function, so there is no need of a Partner handle.

The messages are in (internet) English, all they are in s7_text.cpp.

P a g . | 252

Snap7 1.4.2 - Reference manual

P a g . 252 |

Snap7 1.4.2 - Reference manual

API Error codes

Due to the classes layering, the result error code (a 32 bit value) is composed by

three fields, as in figure:

7 6 5 4 3 2 1 0

TCP/IPISO TCPS7

NIBBLE

AREA

Errors encoding

The first 16 bits (4 nibbles) represent a TCP/IP error that is raised by the OS socket

layer. It is set in snap_msgsock.cpp.

The 5th nibble represent an ISO TCP error and is set in s7_isotcp.cpp.

The last three nibbles represent an S7 protocol error, they are shared between the

objects TSnap7MicroClient/TSnap7Client, TSnap7Server and TSnap7Partner.

The three fields can contain contemporary a valid value and normally it is so.To isolate

a layer, the error must be “and masked”.

You can find, into the wrappers provided, the complete list of them.

For TCP/IP code please refer to your OS reference.

ISO TCP Error table

Mnemonic HEX Meaning

errIsoConnect 1 Iso Connection error.
errIsoDisconnect 2 Iso Disconnection error.
errIsoInvalidPDU 3 Malformatted PDU suppled.
errIsoInvalidDataSize 4 Bad Datasize passed to send/recv function.
errIsoNullPointer 5 Null pointer supplied.
errIsoShortPacket 6 A short packet received.
errIsoTooManyFragments 7 Too many packets without EoT flag (>64)

errIsoPduOverflow 8
The sum of fragments data exceeds the maximum
packet size.

errIsoSendPacket 9 An error occurred during send.
errIsoRecvPacket A An error occurred during recv.
errIsoInvalidParams B Invalid TSAP params supplied.
errIsoResvd_1 C Reserved (unused)
errIsoResvd_2 D Reserved (unused)
errIsoResvd_3 E Reserved (unused)
errIsoResvd_4 F Reserved (unused)

P a g . | 253

Snap7 1.4.2 - Reference manual

P a g . 253 |

Snap7 1.4.2 - Reference manual

Client Errors Table

Mnemonic HEX Meaning

errNegotiatingPDU 001 Error during PDU negotiation.
errCliInvalidParams 002 Invalid param(s) supplied to the current function.

errCliJobPending 003
A Job is pending : there is an async function in
progress.

errCliTooManyItems 004
More than 20 items where passed to a
MultiRead/Write area function.

errCliInvalidWordLen 005
Invalid Wordlen param supplied to the current
function.

errCliPartialDataWritten 006
Partial data where written : The target area is smaller
than the DataSize supplied.

errCliSizeOverPDU 007
A MultiRead/MultiWrite function has datasize over
the PDU size.

errCliInvalidPlcAnswer 008 Invalid answer from the PLC.
errCliAddressOutOfRange 009 An address out of range was specified.

errCliInvalidTransportSize 00A
Invalid Transportsize parameter was supplied to a
Read/WriteArea function.

errCliWriteDataSizeMismatch 00B
Invalid datasize parameter supplied to the current
function.

errCliItemNotAvailable 00C Item requested was not found in the PLC.
errCliInvalidValue 00D Invalid value supplied to the current function.
errCliCannotStartPLC 00E PLC cannot be started.
errCliAlreadyRun 00F PLC is already in RUN stare.
errCliCannotStopPLC 010 PLC cannot be stopped.

errCliCannotCopyRamToRom 011
Cannot copy RAM to ROM : the PLC is running or
doesn’t support this function.

errCliCannotCompress 012
Cannot compress : the PLC is running or doesn’t
support this function.

errCliAlreadyStop 013 PLC is already in STOP state.
errCliFunNotAvailable 014 Function not available.
errCliUploadSequenceFailed 015 Block upload sequence failed.
errCliInvalidDataSizeRecvd 016 Invalid data size received from the PLC.
errCliInvalidBlockType 017 Invalid block type supplied to the current function.
errCliInvalidBlockNumber 018 Invalid block supplied to the current function.
errCliInvalidBlockSize 019 Invalid block size supplied to the current function.
errCliDownloadSequenceFailed 01A Block download sequence failed.

errCliInsertRefused 01B
Insert command (implicit command sent after a block
download) refused.

errCliDeleteRefused 01C Delete command refused.
errCliNeedPassword 01D This operation is password protected.
errCliInvalidPassword 01E Invalid password supplied.

errCliNoPasswordToSetOrClear 01F
There is no password to set or clear : the protection
is OFF.

errCliJobTimeout 020 Job timeout.

errCliPartialDataRead 021
Partial data where read : The source area is greater
than the DataSize supplied.

errCliBufferTooSmall 022 The buffer supplied is too small.
errCliFunctionRefused 023 Function refused by the PLC.
errCliInvalidParamNumber 024 Invalid param number suppilied to Get/SetParam.
errCliDestroying 025 Cannot perform : the client is destroying.
errCliCannotChangeParam 026 Cannot change parameter because connected.

P a g . | 254

Snap7 1.4.2 - Reference manual

P a g . 254 |

Snap7 1.4.2 - Reference manual

Server Errors Table

Mnemonic HEX Meaning

errSrvCannotStart 001 The server cannot be started.
errSrvDBNullPointer 002 A null was passed as area pointer.
errSrvAreaAlreadyExists 003 Trying to re-registering an area.
errSrvUnknownArea 004 Area code unknown.
errSrvInvalidParams 005 Invalid param(s) supplied to the current function.
errSrvTooManyDB 006 Trying to registering too many DB (>2048)
errSrvInvalidParamNumber 007 Invalid param number suppilied to Get/SetParam.
errSrvCannotChangeParam 008 Cannot change parameter because running.

Partner Errors Table

Mnemonic HEX Meaning

errParAddressInUse 002
Another passive partner is waiting for the same
active address.

errParNoRoom 003
Trying to create too many partners for the current

connection server.(>256)

errServerNoRoom 004
Trying to allocate too many connection servers
(>256)

errParInvalidParams 005 Invalid param(s) supplied to the current function.
errParNotLinked 006 Cannot execute : the partner is not linked.

errParBusy 007
Partner busy : cannot send (Send or Recv sequence
in progress)

errParFrameTimeout 008 Send or Recv sequence timeout.

errParInvalidPDU 009
Invalid PDU received, maybe a client (not a partner)
is trying to communicate.

errParSendTimeout 00A Timeout occurred in send function.
errParRecvTimeout 00B Timeout occurred in recv function.
errParSendRefused 00C Send refused by the PLC partner.
errParNegotiatingPDU 00D Error during PDU negotiation.
errParSendingBlock 00E Error during block send.
errParRecvingBlock 00F Error during block recv.
errBindError 010 Cannot bind the address supplied.
errParDestroying 011 Cannot perform : the partner is destroying.
errParInvalidParamNumber 012 Invalid param number suppilied to Get/SetParam.
errParCannotChangeParam 013 Cannot change parameter because running.

P a g . | 255

Snap7 1.4.2 - Reference manual

P a g . 255 |

Snap7 1.4.2 - Reference manual

Snap7 package

Snap7 package is named snap7-full-x.y.z.

 x is the Major Version.

 y is the minor version.

 z is the bugfix release.

Do not be scared by the size of the package, it contains many files because it’s multi

architecture and multi-platform.

Let's see how to navigate within the project that is divided into the following folders:

 /build

 /doc

 /examples

 /release

 /rich-demos

 /src

 /LabVIEW

[build]

This folder contains all you need to build the library, it is further divided into:

 bin

Library output directory divided by platform-os, Unix OS target is the same of

which you are running the compiler.

Example : if you run "make -f i386_linux.mk all" under Ubuntu 13.10, you will

find in bin/i386-linux a library that can run into Ubuntu 13.10 and in all OS

derivative of Ubuntu that have the same GLIBC release.

 temp

Intermediate objects/temp files, can be safety emptied.

 unix

Unix (Linux/BSD/Solaris) makefiles directory.

 windows

Windows projects/makefiles directory divided by compilers

You can find detailed information about library rebuild in the chapter Rebuild Snap7.

[doc]

Here you can find the project documentation.

P a g . | 256

Snap7 1.4.2 - Reference manual

P a g . 256 |

Snap7 1.4.2 - Reference manual

[examples]

This folder contains source code examples divided by programming language.

 cpp

 dot.net

suitable for Microsoft .NET and Mono 2.10

o WinConsole

Visual Studio sonsole solution (C#)

o WinForm

Visual Studio WinForm demos (VB and C#)

 pascal

suitable for Delphi and FreePascal/Lazarus

 plain-c

 Step 7

Contains plc-side examples, they are Step 7 projects (V5.5) that can be easily

converted with TIA Portal V11 or V12.

 temp

Intermediate objects/temp files, can be safety emptied.

All the sources are multi-architecture and multi-platform, into the platform-specific

subfolder you will find projects/makefiles to build them.

[release]

This folder contains all files that are strictly needed to work with Snap7 : binary

libraries and wrappers.

See /release/deploy.html for the updated list

[rich-demos]

While the examples are working “code snippets” to see how to use the library, rich

demos are graphic programs that show almost all Snap7 features.

They are written using Lazarus (pascal) because:

 It’s multi-platform.

 It’s a powerful RAD that allow writing complex an nice programs in a breeze.

These demos don't have external dependencies, all they can be compiled with a fresh

copy of Lazarus.

Originally these programs were written using Delphi and then converted

(automatically with Lazarus).

For each platform supported there is a subfolder containing the projects ready to run.

However also the LabView examples can be considered rich-demos since they offer a

graphical interface.

Anyway you need LabVIEW environment to run them.

P a g . | 257

Snap7 1.4.2 - Reference manual

P a g . 257 |

Snap7 1.4.2 - Reference manual

[src]

This folder contains the Snap7 source code, please refer to Snap7 source code

chapter for further information.

[LabVIEW]

This folder contains all you need to interface your LabView programs with Snap7.

See LabVIEW chapter for further information.

P a g . | 258

Snap7 1.4.2 - Reference manual

P a g . 258 |

Snap7 1.4.2 - Reference manual

LabVIEW

NI LabVIEW is a software for systems design wich uses a graphical language, named

"G" (not to be confused with the more pleasant G-point), to build complex laboratory

and automation applications.

In a G program, the execution is determined by the structure of a graphical block

diagram (the LV-source code) on which the programmer connects different function-

nodes by drawing wires. These wires propagate variables and any node can execute as

soon as all its input data become available.

LabVIEW offers the same data types/structures as other programming languages but

they are not “exposed”. You know that a cluster (a struct) contains some elements,

but you don’t know where in the memory they are, i.e. you don’t know their physical

address.

From this point of view we can consider G as a managed language.

Let’s see how can we interface LabVIEW with Snap7, keeping in mind these two major

differences (execution and data storage) against the traditional programming

languages.

The wrapper provided consists of:

1. A LabVIEW library (Snap7.lvlib) that contains a set of Vis. Each vi “wraps” a

Snap7 function via the Call Library function node.

2. A “glue” DLL (lv_snap7.dll) that interfaces the Vis with Snap7.dll. It re-exports

the typed-data functions and supplies new data adapter procedures for the

untyped-data functions.

 Since many of Snap7 functions only make sense only in a procedural context :

 Asynchronous functions

All asynchronous functions are not exported, because are completely useless,

indeed, in some cases, they can be harmful.

LabVIEW is an inherently concurrent, adding a synchronization layer will

complicate uselessly the execution flow.

 Callbacks

LabVIEW cannot natively pass a pointer to a VI for use as a callback function in

a DLL, a C wrapper must be used as workaround to provide an interface

between the DLL and an user event. This is not a trivial task due to the data-

driven nature of the language.

At the end, the Event Structure must be used in a While Loop because when

the Event Structure executes, it will only wait for and handle exactly one event.

The Snap7 polling functions must be used instead. This is, imho, the better

solution, because they are simple to use and, above all, because LabVIEW has

very efficient mechanisms to optimize the parallel executions.

P a g . | 259

Snap7 1.4.2 - Reference manual

P a g . 259 |

Snap7 1.4.2 - Reference manual

DLL Calling

To understand LabVIEW Snap7 interface, it’s important to know how the Call Library

function node works.

This is not a commercial book, rewriting base concepts that are already well explained

has not much sense.

So, to explain this argument, I selected these two pages :

http://www.ni.com/white-paper/4877/en/

https://decibel.ni.com/content/docs/DOC-9080

As you can see in them, LabVIEW provides two ways to pass complex data to a DLL:

1. Adapt To Type

2. String (as LabVIEW string handle).

The first method is used when the data structure is well known in advance, i.e. when

we wire it to the call library node.

All Snap7 functions which declare a struct (in snap7.h) as input use this method.

The second method allows to write VIs that accept, as input, generic buffers

encapsulated in a string.

All Snap7 VIs that read/write an untyped buffer use the second method and the data

adaption is made in lv_snap7.dll. The string type, in spite of its name, can contain

anything since it has in head its length.

Generic buffers

Let see how Snap7 vi manage untyped buffers examining as example the

Cli_DBGet() function of the client.

This is the C prototype of the function as exported by snap7.dll.

int S7API Cli_DBGet(S7Object Client, int DBNumber, void *pUsrData,

 int *Size);

This function reads an entire DB of given Number into the buffer pointed by pUsrData.

The first two parameters are simple to manage since they are simple typed vars.

pUsrData is the pointer to a generic buffer.

Size, in input must contain the size of the buffer supplied, in output contains the DB

size, i.e how many bytes were read. If the buffer size is less than the DB size an error

is returned (but however the buffer contains the partial data read).

The adapter function exported by lv_snap7.dll has this prototype:

int S7API lv_Cli_DBGet(S7Object Client, int DBNumber,

 PLVString *pStringData, int *SizeGet);

http://www.ni.com/white-paper/4877/en/
https://decibel.ni.com/content/docs/DOC-9080

P a g . | 260

Snap7 1.4.2 - Reference manual

P a g . 260 |

Snap7 1.4.2 - Reference manual

The first two parameters are the same of Cli_DBGet().

PLVString is defined as follow:

(byte is a portable 32/64 bit “byte” defined in snap7.h).

This is the body of the adapter.

That implements this concept:

lv_Cli_DBGet(...PLVString *pStringData,...);

StringSize StringData

Cli_DBGet(...void *pUsrData, int *Size);

On the LabVIEW side the vi CliDBGet.vi is defined as follow:

typedef struct {

 int32_t size; // Block Size

 byte Data[1]; // Data

}

int S7API lv_Cli_DBGet(S7Object Client, int DBNumber,

 PLVString *pStringData, int &SizeGet)

{

 int32_t Size = *pint32_t(*pStringData); // String size

 pbyte pUsrData=pbyte(*pStringData) + sizeof(int32_t);

 int Result=Cli_DBGet(Client, DBNumber, pUsrData, &Size);

 SizeGet=Size;

 return Result;

// Note : the buffer size check is performed into Cli_DBGet

}

P a g . | 261

Snap7 1.4.2 - Reference manual

P a g . 261 |

Snap7 1.4.2 - Reference manual

Finally, a very minimalist (but working) program to read a DB in a 4K buffer :

The upper wire across all blocks is the Client reference generated by CliCreate,

internally it’s a intptr_t, externally is stored into a 64 bit integer (for using in 64 bit

architectures).

P a g . | 262

Snap7 1.4.2 - Reference manual

P a g . 262 |

Snap7 1.4.2 - Reference manual

Conventions

Graphic

Surely Snap7 VI icons will not be exposed to the New York Museum of Modern Art, but

they follow a useful convention that helps to identify them at a glance.

Naming

As said, all the VIs access to the Snap7 through the LV interface library, so for each

function we have three entity :

1. VI name

2. LV library function name

3. Snap7 function name

They are linked following this rule :

VI name <object><Function name>

LV function lv_<object>_<Function name>

Snap7 function <object>_<Function name>

Example

VI name SrvRegisterArea

LV function lv_Srv_RegisterArea

Snap7 function Srv_RegisterArea

P a g . | 263

Snap7 1.4.2 - Reference manual

P a g . 263 |

Snap7 1.4.2 - Reference manual

Release

Everything you need is stored into LabVIEW folder that is divided as follow:

[\Examples] contains a LabVIEW project which groups many examples. They are

further divided into three folders (\Client, \Server and \Partner) and are autonomous,

i.e. you can run them without loading the project.

[\lib] that contains the library Snap7.lvlib and all the interface vi.

[\lib\windows] contains lv_snap7.dll and snap7.dll, they are the deploy libraries.

[\lib\win32] contains 32 bit version of lv_snap7.dll and snap7.dll, they are the build

libraries (see LabVIEW_32.bat).

[\lib\win64] contains 64 bit version of lv_snap7.dll and snap7.dll, they are the build

libraries (see LabVIEW_64.bat).

[\lib_build] contains three projects to compile lv_snap7.dll.

[\lib_build\VS2012_LV] Visual Studio 2012 solution.

[\lib_build\MinGW32] MinGW32 makefile and batch file for 32 bit.

[\lib_build\MinGW64] MinGW64 makefile and batch file for 64 bit.

[\lib_src] contains the source files of lv_snap7.dll.

[\lib_tmp] contains temporary compilation files (can be safety emptied).

LabVIEW 32 bit and LabVIEW 64 bit (native) use different library models, please follow

these rules:

 If you plan to use Snap7 in 32 or 64 bit systems with 32 bit LabVIEW run

LabVIEW_32.bat before opening any project.

 If you plan to use Snap7 in 64 bit systems with 64 bit LabVIEW run

LabVIEW_64.bat before opening any project.

These batch files merely copy lv_snap7.dll and snap7.dll from the platform folder

(win32 or win 64) to the deploy folder (windows).

P a g . | 264

Snap7 1.4.2 - Reference manual

P a g . 264 |

Snap7 1.4.2 - Reference manual

Final remarks

 All the Snap7 blocks are thread safe.

 All the Snap7 blocks, in which a string handle is passed, check the string size

against the Size parameter passed to avoid program crash. If the string size is

less than the size param, the latter is trimmed, the function is performed but

an error of partial data read or write is produced.

 If you need to rebuild lv_snap7.dll and snap7.dll use the same c++ compiler

for both if you plan to use them in 64 bit environments.

There is still no unified ABI convention for 64 bit systems, the problem is not

the dll itself, but the .lib file needed to link them.

 For lv_snap7.dll are valid all concepts exposed in “Rebuild Snap7”.

 snap7.dll must reside in the same folder of lv_snap7.dll, and their

architecture must match (32/64 bit).

P a g . | 265

Snap7 1.4.2 - Reference manual

P a g . 265 |

Snap7 1.4.2 - Reference manual

.NET Environment

After two year, the 99% of email that I received were about the .net environment,

particularly about how to interface a VB.Net program with Snap7.

So, although I’m not a big .net expert, I decided to write two lines about interfacing it

with Snap7. (.net experts please forgive my inaccuracies).

I want to highlight that the problems found interfacing VB.NET with Snap7 are not

strictly related to Snap7 but are the same for all Win32/Win64 binary DLLs.

So, if the mechanism is not completely clear after these (poor) lines, I suggest you to

visit MSDN site, not all the functions are covered by the .net framework and in future

you would need to interface other binary DLLs.

Key concepts

 .NET programs are called “managed”, this means that they are not executed directly

by the CPU but, once compiled into CIL (an intermediate code) there is an interpreter,

the CLR, that executes them.

 Snap7.dll is a binary library, it’s executed (i.e. its functions are called) directly by the

CPU.

If you compile Snap7 under Windows or Linux x86, it will contain Intel/AMD machine

code, if you compile it into a Raspberry, it will contain ARMHF V6 machine code, and

so on..

This sadly means that you cannot link directly Snap7 with your .net program.

I.e. there is no menu item in Visual Studio that allows you to directly import

snap7.dll (and all other binary libraries).

To call binary functions (called sometime “plain c api” or “native functions”) from a

.net program, the common language runtime provides Platform Invocation Services

through referencing System.Runtime.InteropServices.

You don’t need to do this, the classes S7Client, S7Server and S7Partner that you find

into snap7.net.cs already contain all is needed to interface your code with snap7.dll.

They are .net classes, so you can use them directly in your programs.

At this point we need to divide the path : VB and C# because there are some

important differences.

P a g . | 266

Snap7 1.4.2 - Reference manual

P a g . 266 |

Snap7 1.4.2 - Reference manual

1.4.0

Thanks to the release of Visual Studio Community 2013 (free downloadable) there is

no need to have different compilers (VB and C#). From this release you can compile

with it all .net demos including VB_Mixed which contains the C# code of snap7.net.cs.

From this release you will find two solutions, one for console demos and one for

winform demos.

You don’t need to use dotnet.bat anymore.

C#

Just add snap7.net.cs file to your project and the clause “using Snap7” into the files

that reference a Snap7 class.

There are some demos for you : the console examples (compatible with MONO) that

you find into examples\dot.net and a WinForm example that you can open with Visual

Studio 2010+ Visual Studio Community 2013 into examples\dot.net\WinForm\CSharp.

That’s all for you.

P a g . | 267

Snap7 1.4.2 - Reference manual

P a g . 267 |

Snap7 1.4.2 - Reference manual

VB

Unluckily for you, you cannot use directly snap7.net.cs in your program because it’s a

c# source class library.

To be used, the wrapper must be compiled into a compiled class library, i.e. an

“universal” .net library that can be loaded by any .net language.

You need of : snap7.net.dll

In spite of its extension, snap7.net.dll is not a windows DLL (like snap7.dll) but a class

library. Thank Microsoft for the enlightening name ;)

So, in order to use the snap7 classes, you need to import snap7.net.dll referencing it

into the project properties, otherwise the compiler does not know how to find them.

This is VS2010 screen (the only that I have in English language), in any case VS2012 and

VS2013 screens are exactly the same.

Select Project properties -> References ->Add…->Browse and select snap7.net.dll

The compiler now is aware that a namespace called Snap7 can be used.

P a g . | 268

Snap7 1.4.2 - Reference manual

P a g . 268 |

Snap7 1.4.2 - Reference manual

The last step is to reference the namespace into your source code.

This is quite simple, just add Imports Snap7 in your source code as in figure.

Now you are ready to use the S7Client class after having declared it :

Dim Client As Snap7.S7Client

From 1.4.0 use VB_Mixed as template to compile snap7.net.cs with your VB application.

But unluckily for you, this is still not the end..

The compiled class library, within certain limits, must match the framework and the

architecture of your program, it could happen that the copy that you find into the Snap7

package is refused by the compiler.

Please don’t email me, but learn how to recompile it yourself, it’s very simple ;)

To compile snap7.net.cs you need of a C# compiler. There are two scenarios:

1. You have Visual Studio Professional (at least)

2. You have Visual Studio Express (the VB compiler).

Scenario 1 – You have two choice:

 Open the solution Snap7.sln from examples\WinForm.net\BuildSnap7Assembly\

set the properties that you need (architecture, framework etc..) then build the

project. Copy snap7.net.dll from bin\Debug (or bin\Release) into your project

folder.

 Create a mixed solution (see the solution into \VB_Mixed) : one project is your VB

application, the other is the C# assembly.

The advantage is that you can change “onfly” the properties and rebuild the whole

solution. Once you decided the framework and the architecture you can remove it

from the project.

Scenario 2 : You need to download and install Visual Studio Express (C# compiler),

maybe into another PC or into a Virtual machine then follow the first choice

(BuildSnap7Assembly).

Into \VB and VB_Mixed you will find a small WinForm example ready to run.

P a g . | 269

Snap7 1.4.2 - Reference manual

P a g . 269 |

Snap7 1.4.2 - Reference manual

Remarks

(For both VB and C# users)

The 1.4.0 demos are now created with VS2013 and already contain both

platforms (x86 and x64) and both snap7.dll into the related bin folders.

With Visual Studio you can produce both 32 and 64 bit programs but there is no

compiler #IF that can help us, sometime this is decided at runtime.

The binary libraries (luckily) don't have the same freedom : they are 32 xor 64 bit.

This mean that you could get an error about a wrong dll format.

For 32 bit executables you need to use snap7.dll from \release\windows\Win32

For 64 bit executables you need to use snap7.dll from \release\windows\Win64

snap7.dll must be copied into the same folder of your compiled application (into

\bin\Debug or bin\Release to understand).

The demos that you find into \examples\WinForm.net were purposely created with

Visual Studio 2010. So you can load them with VS2010, VS2012, VS2013.

The Snap7.dll inside is a 32 bit library, you need to replace it, as said, if you compile

your application for x64 or AnyCpu and your program runs into a 64 bit OS.

If you are using VS2008 you can download an Express edition of VS2013 then copy

and paste the code.

Please don’t ask me to do this for you.

P a g . | 270

Snap7 1.4.2 - Reference manual

P a g . 270 |

Snap7 1.4.2 - Reference manual

Data access example

Now, just a real example of how to read a S7 struct from a PLC using the new helper

class (S7) in C# and VB.

Let’s suppose that we make a leak test on an automotive component and that we

want to acquire the result of this test.

The data of this test consists of some values (Component serial number, Leak Value

etc..) stored in DB 100 as in figure.

Every time a component is tested this struct is filled by the PLC and we want to read it

into a .NET struct, picking the fields and adjusting their byte-order (the PLC is Big-

Endian, the PC is Little-Endian, so the bytes must be reversed).

This is our C# sample struct:

And this is the C# sample function that fills the struct. Notice that the outcome of any

Client function call should be checked, here is skipped for brevity.

public struct ComponentResult

{

 public String SerialNumber; // Component Serial Number

 public int TestResult; // Result code 0:Unknown, 1:Good, 2:Scrap

 public double LeakDetected; // Leak value [cc/min]

 public DateTime TestDateTime; // Test Timestamp

}

private ComponentResult LeakResult()

{

 ComponentResult Result = new ComponentResult();

 byte[] Buffer = new byte[26];

 // Reads the buffer.

 Client.DBRead(100, 0, 26, Buffer);

 // Extracts the fields and inserts them into the struct

 Result.SerialNumber = S7.GetCharsAt(Buffer, 0, 12);

 Result.TestResult = S7.GetIntAt(Buffer, 12);

 Result.LeakDetected = S7.GetRealAt(Buffer, 14);

 Result.TestDateTime = S7.GetDateTimeAt(Buffer, 18);

 return Result;

}

P a g . | 271

Snap7 1.4.2 - Reference manual

P a g . 271 |

Snap7 1.4.2 - Reference manual

Same as above in VB.NET

The struct

…and the function

Finally, if you put a button and 4 labels in the form of VB demo, with this simple code

you can test the mechanism.

From 1.4.0 release all native types are supported (including extended S71200/1500

types). Refer to the Client demo.

Private Structure ComponentResult

 Public SerialNumber As String ' Component Serial Number

 Public TestResult As Integer ' Result code 0:Unknown, 1:Good, 2:Scrap

 Public LeakDetected As Double ' Leak value [cc/min]

 Public TestDateTime As DateTime ' Test Timestamp

End Structure

Private Function LeakResult() As ComponentResult

 Dim Result As ComponentResult

 Dim Buffer(26) As Byte

 Client.DBRead(100, 0, 26, Buffer)

 Result.SerialNumber = S7.GetCharsAt(Buffer, 0, 12)

 Result.TestResult = S7.GetIntAt(Buffer, 12)

 Result.LeakDetected = S7.GetRealAt(Buffer, 14)

 Result.TestDateTime = S7.GetDateTimeAt(Buffer, 18)

 Return Result

End Function

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim CR As ComponentResult = LeakResult()

 Label1.Text = CR.SerialNumber ' It’s already a string

 Label2.Text = System.Convert.ToString(CR.TestResult)

 Label3.Text = System.Convert.ToString(CR.LeakDetected)

 Label4.Text = System.Convert.ToString(CR.TestDateTime)

 End Sub

P a g . | 272

Snap7 1.4.2 - Reference manual

P a g . 272 |

Snap7 1.4.2 - Reference manual

Testing Snap7

Here we are supposing to use the rich demos provided, but also the examples can be

suitable for this task.

Testing the Client and the Server using two PC.

ClientDemo

192.168.0.20 0 2

IP Rack Slot

ServerDemo

0.0.0.0

IP

192.168.0.20192.168.0.10

Hub/Switch
(optional)

Testing the Client using a PC and a PLC.

ClientDemo

192.168.0.20 0 2

IP Rack Slot

PLC

192.168.0.20192.168.0.10

Hub/Switch
(optional)

P a g . | 273

Snap7 1.4.2 - Reference manual

P a g . 273 |

Snap7 1.4.2 - Reference manual

Testing the Server using a PC and an HMI.

ServerDemo

0.0.0.0

IP

192.168.0.20192.168.0.10

HMI

Hub/Switch
(optional)

Testing the Partner using two PC.

192.168.0.10Address

10.02TSAP

Locale

192.168.0.20Address

20.02TSAP

Partner

Partner A

192.168.0.20 Address

20.02 TSAP

Locale

192.168.0.10 Address

10.02 TSAP

Partner

Partner B

192.168.0.20192.168.0.10

Hub/Switch
(optional)

P a g . | 274

Snap7 1.4.2 - Reference manual

P a g . 274 |

Snap7 1.4.2 - Reference manual

Testing the Partner using a PC and a PLC.

192.168.0.10Address

10.02TSAP

Locale

192.168.0.20Address

20.02TSAP

Partner

Partner A

192.168.0.20 Address

20.02 TSAP

Locale

192.168.0.10 Address

10.02 TSAP

Partner

Partner B

192.168.0.20192.168.0.10

Hub/Switch
(optional)

PLC

Remarks

Be very careful using clientdemo with production machines.

P a g . | 275

Snap7 1.4.2 - Reference manual

P a g . 275 |

Snap7 1.4.2 - Reference manual

Snap7 source code

Snap7 is written in ISO C++.

The source code is split into three folders.

sys

Contains base classes, the socket communication layer, the threads layer and some

platform dependent files, the files are named snap_xxxxx.

These files are the lower layer of the Snap Project, Snap7 is the S7

implementation, SnapModbus … is coming soon.

core

Contains all files related to Snap7, the implementation of the IsoTCP and S7

protocol.

lib

Contains the interface files for creating the library.

There is a reason for this subdivision

 If you want to write a multiplatform Ethernet packet driver, you can use only

the sys folder.

 If you want to embed Snap7 into your source code, include all but the lib

folder.

Style

Snap7 is written in “C with objects” with two level of dependency.

The lowest allows to embed the Snap7MicroClient into your program. It was

designed to be as much as possible friend of the “Embedded C++”.

No STL, exceptions, dynamic memory or threads are used, The virtual directive of

some members can be deleted.

The resulting code should be “romable”.

Next paragraph will explain how to embed the micro client.

P a g . | 276

Snap7 1.4.2 - Reference manual

P a g . 276 |

Snap7 1.4.2 - Reference manual

Embedding Snap7MicroClient

As said, Snap7Microclient is not accessible from the outside of the library.

To embed it into your source code you need to include into your project these files:

o sys\snap_msgsock.cpp

o sys\snap_sysutils.cpp

o core\s7_isotcp.cpp

o core\s7_peer.cpp

o core\s7_micro_client.cpp

snap_msgsock

s7_server

snap_sysutils snap_threads snap_tcpsrvr

s7_isotcp

s7_peer

s7_micro_client

s7_client s7_partner s7_text

sys

core

BSD Sockets

BSD Sockets + Threads

STL (string)

Dependencies

P a g . | 277

Snap7 1.4.2 - Reference manual

P a g . 277 |

Snap7 1.4.2 - Reference manual

Rebuild Snap7

Due to its design (32 and native 64 bit) to rebuild the source code you need of a C99+

compiler, since stdint.h is strictly required.

Windows

Normally you do not need to recompile the libraries unless you modified the source

code.

The 32 bit release already works in any version of Windows, either 32 or 64 bit,

desktop or server, starting from Windows NT4 SP6 up to Windows 10.

The 64 bit release only works in all native 64 bit platforms, including the little-known

Windows XP 64 Professional. To link them, your software itself must be native 64 bit.

In the folder build\windows there are 6 solutions ready to run, Host platform

indicates where the compiler runs, and Target platform indicates where the library

produced runs:

 Host Platform Target Platform Notes

MinGW32 – 4.7.2 Win32/Win64 Win32/Win64 1

MinGW64 – 4.7.1 Win32/Win64 Win64

VS2008 Win32/Win64 Win32/Win64 2

VS2010 Win32/Win64 Win32/Win64 2

VS2012 (upd.2) Win32/Win64 Win32/Win64 2,3

VS2013 Win32/Win64 Win32/Win64

VS2015 Win32/Win64 Win32/Win64

1) This compiler is the only one compatible with Windows NT 4.0 /Windows

2000

2) Express release needs Windows Software Development Kit (SDK) to

compile 64 bit applications.

3) Windows Vista 32 bit is the “oldest” platform supported by VS2012 without

update 2.

Most likely Wine too is a suitable host platform for them, but currently is untested.

P a g . | 278

Snap7 1.4.2 - Reference manual

P a g . 278 |

Snap7 1.4.2 - Reference manual

MinGW 32bit 4.7.2

It is assumed that MinGW compiler is installed in C:\MinGW32 and its release is

4.7.2.

If not, you need to modify make.bat and makefile.

o In make.bat change the path instruction in the first line to point to the correct

compiler path.

o In makefile change the vars MINGW and MINREL (path and release).

Pay attention to not leave trailing spaces after the text.

If you don’t have it at all:

Go to

http://sourceforge.net/projects/orwelldevcpp/files/Compilers/MinGW/

download MinGW 4.7.2.7z and unpack it in c:\ .

No further settings are needed.

To build Snap7, open a command prompt into the working folder

build\windows\MinGW32 and run "make all" (or "make clean" if you want to clean

the project).

Into build\bin\win32 you will find snap7.dll and snap7.lib, the latter is the

dynamic library import file to be used with C/C++ compilers (other languages don't

need it).

Libstdc++ are statically linked, so you don’t need to distribute them with your

software.

Remarks

This compiler is the only one that supports Windows NT 4.0/Windows 2000.

http://sourceforge.net/projects/orwelldevcpp/files/Compilers/MinGW/

P a g . | 279

Snap7 1.4.2 - Reference manual

P a g . 279 |

Snap7 1.4.2 - Reference manual

MinGW 64 bit 4.7.1

It is assumed that MinGW compiler is installed in C:\MinGW64 and its release is

4.7.1.

If not, you need to modify make.bat and makefile.

o In make.bat change the path instruction in the first line to point to the correct

compiler path.

o In makefile change the vars MINGW and MINREL (path and release).

Pay attention to not leave trailing spaces after the text.

If you don’t have it at all:

Go to

http://sourceforge.net/projects/orwelldevcpp/files/Compilers/TDM-GCC/

download TDM-GCC 4.7.1 (4.7.1-tdm64-3).7z and unpack it in c:\ .

No further settings are needed.

To build Snap7, open a command prompt into the working folder

build\windows\MinGW64 and run "make all" (or "make clean" if you want to clean

the project).

Into build\bin\win64 you will find snap7.dll and snap7.lib, the latter is the

dynamic library import file to be used with C/C++ compilers (other languages don't

need it).

Libstdc++ are statically linked, so you don’t need to distribute them with your

software.

http://sourceforge.net/projects/orwelldevcpp/files/Compilers/TDM-GCC/

P a g . | 280

Snap7 1.4.2 - Reference manual

P a g . 280 |

Snap7 1.4.2 - Reference manual

Microsoft Visual Studio

There are four solutions ready into the folders build\windows, open them with the

IDE of Visual Studio, choose Win32 or x64 in the combo box of the platform and

build the solution.

Base libraries are statically linked, you don’t need to distribute Microsoft Visual C++

20xx Redistributable with your application.

Into build\bin\win32 or build\bin\win64 you will find snap7.dll and snap7.lib,

the latter is the dynamic library import file to be used with C/C++ compilers (other

languages don't need it).

Visual Studio 2012/2013/2015

All 32 bit DLLs (not only the snap7 one) generated by this compiler don’t work in

Windows NT4.0/ 2000 / XP.

This because an (unrequested) reference to the GetTickCount64 function is

generated.

This function is present in kernel32.dll starting from Vista.

To produce DLL compatible with Windows XP you need to install the Update 2 and

choose into the project options Visual Studio 2012 - Windows XP (v110_xp) as

platform set.

Visual Studio 2008 should not be suitable since it is not compliant with C99. I made

a small patch in snap7_platform.h to include it since it is a very largely used compiler.

Visual Studio Express (2008-2013) is suitable but you need to download Windows

Software Development Kit (SDK) to compile the 64 bit release of the library.

Finally, if you need the compatibility with NT 4.0 and Windows 2000 family,

these compilers cannot be used at all.

P a g . | 281

Snap7 1.4.2 - Reference manual

P a g . 281 |

Snap7 1.4.2 - Reference manual

Embarcadero C++ builder

Snap7 is compiled fine by this compiler but there is an issue : all the dynamic library

import files generated (.lib) are not compatible with all the other Windows C/C++

compilers that use the Microsoft standard, included MinGW, and vice-versa.

Microsoft lib files are in coff format.

Borland lib files are in omf format.

In any case :

o In the bin folder of C++Builder there is the utility coff2omf.exe that converts

from coff to omf.

o In the Microsoft masm package (V8+) there is the utility omf2coff.exe that

converts omf to coff.

This issue only affects the .lib file, the dll generated works fine.

Finally, to produce 64 bit libraries, you need at least Embarcadero C++ Builder XE3

upd.1.

Currently there is no ready project for this compiler.

P a g . | 282

Snap7 1.4.2 - Reference manual

P a g . 282 |

Snap7 1.4.2 - Reference manual

Unix

The libraries rebuilding is normal under Unix even though you don't modify the source

code because Libgcc (the only dependence of snap7) changes accordingly to the

OS/distribution.

If you experience an error regarding Libgcc or other libraries version with libsnap7.so

released, don’t try strange alchemy (such as downloading them), Snap7 relies only

on system libraries, your OS may malfunction if you replace them.

You have the full source code of Snap7 and to rebuild it is a very simple task, since all

makefiles are ready.

The only requirement is that GNU ToolChain (g++ and Make) is present, and this is

true for the main OS and distributions : BSD, Solaris, Linux (Debian, Ubuntu, Red Hat,

SlackWare, etc.), even small ARM cards that I tested had them.

Otherwise, you need to install them using the current package manager of your OS

(apt, pkgtool, Yum, etc).

Anyhow, if you type “GNU ToolChain” followed by your OS name in Google, surely you

will find very detailed information.

To know if the GNU Toolchain is correctly installed, open a terminal and enter:

g++ --version and
make –-version.

You should see the compiler and make utility release.

P a g . | 283

Snap7 1.4.2 - Reference manual

P a g . 283 |

Snap7 1.4.2 - Reference manual

Linux x86/x64

Open a terminal and go to build/unix, there type :

make –f <architecture>_linux.mk all to rebuild the library

make –f <architecture>_linux.mk clean to clean the project

make –f <architecture>_linux.mk install to rebuild and copy the library in

usr/lib

for the third option you need be root or use sudo make …

Where <architecture> can be i386 or x86_64.

Let’s suppose that you have a 32 bit release of Ubuntu, you must type:

make –f i386_linux.mk all

In the folder bin/<architecture>-linux/ you will find libsnap7.so.

You need to copy it into /usr/lib or set accordingly LD_PATH_LIBRARY.

From Version 1.2.1 there is an additional optional parameter that can be passed to the

makefile that overrides the default target lib path LibInstall=<path>

So, if you want to rebuild the library and copy it into /mylib instead of /usr/lib the

above example becames:

make –f i386_linux.mk install LibInstall=/mylib

Warning

Some 64 bit distributions (as CentOS and Red Hat) need libsnap7.so into /usr/lib64
instead of /usr/lib. So you should use LibInstall=/usr/lib64

P a g . | 284

Snap7 1.4.2 - Reference manual

P a g . 284 |

Snap7 1.4.2 - Reference manual

Linux Arm boards

There are two makefiles ready to use with single/dual/quad-core ARM boards.

 arm_v6_linux.mk for V6 ARMHF boards (like Raspberry PI).

 arm_v7_linux.mk for V7 ARMHF boards (like Raspberry PI 2, BeagleBone,

pcDuino, Cubieboard 2 and UDOO).

(They are a bit different, the second one needs -mword-relocations)

As usually, in build/unix , type :

make –f arm_v6_linux.mk all (or clean or install)

or

make –f arm_v7_linux.mk all (or clean or install)

In the folder bin/arm_vX-linux/ you will find libsnap7.so.

You need to copy it into /usr/lib or set accordingly LD_PATH_LIBRARY.

Remarks

The build process is quite slow on these boards cause the switch –pedantic that

ensures the ISO compliance. You can disable it temporarily to speed up the process.

From Version 1.2.1 there is an additional optional parameter that can be passed to the

makefile that overrides the default target lib path LibInstall=<path>

So, if you want to rebuild the library and copy it into /mylib instead of /usr/lib the

above example becames:

make –f arm_v6_linux.mk install LibInstall=/mylib

P a g . | 285

Snap7 1.4.2 - Reference manual

P a g . 285 |

Snap7 1.4.2 - Reference manual

Linux Mips boards

Starting from 1.3.0 you will find the makefile mips_linux.mk into /build/unix folder.

As usually, in build/unix , type :

make –f mips_linux.mk all (or clean or install)

In the folder bin/mips-linux/ you will find libsnap7.so.

You need to copy it into /usr/lib or set accordingly LD_PATH_LIBRARY.

Remarks

The build process is quite slow on these boards cause the switch –pedantic that

ensures the ISO compliance. You can disable it temporarily to speed up the process.

From Version 1.2.1 there is an additional optional parameter that can be passed to the

makefile that overrides the default target lib path LibInstall=<path>

So, if you want to rebuild the library and copy it into /mylib instead of /usr/lib the

above example becames:

make –f mips_linux.mk install LibInstall=/mylib

OpenWRT crosscompile

Thanks to Fulvio Bosco and Stefano Bonnin for this procedure.

1. Install OpenWRT buildroot (Successfully Tested in Debian Wheezy 32

bit architecture) following this :

http://wiki.openwrt.org/doc/howto/buildroot.exigence

2. Build Snap7.

a. Unpack snap7-full-x.y.z (starting from 1.3.0) into your /home/<user> folder,

where <user> is the user logged name.

b. Go to /snap7-full-x.y.z/build/unix and run

make –f mips_linux.mk all ToolPath=/home/<user>/openwrt/staging_dir/

c. Copy libsnap7.so from /build/bin/mips-linux into your target hardware in /usr/lib

This procedure was tested on ARDUINO YUN board

To compile plain-c snap7 examples directly on the Yun platform, expand yun disc with

procedure described here:

http://arduino.cc/en/Tutorial/ExpandingYunDiskSpace

and follow this

http://playground.arduino.cc/Hardware/Yun#Compiling_on_the_Yun

You can compile client.c under your yun with:

gcc -Wall -o client client.c -lm -lpthread -ldl ./libsnap7.so

P a g . | 286

Snap7 1.4.2 - Reference manual

P a g . 286 |

Snap7 1.4.2 - Reference manual

BSD

The working folder is, as usual, build/unix, but the command must be:

gmake –f <architecture>_bsd.mk all (or clean or install).

Where <architecture> can be i386 or x86_64.

In the folder bin/<architecture>-bsd/ you will find libsnap7.so.

You need to copy it into /usr/lib or set accordingly LD_PATH_LIBRARY.

Remarks

The resulting library is a native BSD library, not a binary compatible one.

From Version 1.2.1 there is an additional optional parameter that can be passed to the

makefile that overrides the default target lib path LibInstall=<path>

So, if you want to rebuild the library and copy it into /mylib instead of /usr/lib you

should write:

gmake –f i386_bsd.mk install LibInstall=/mylib

P a g . | 287

Snap7 1.4.2 - Reference manual

P a g . 287 |

Snap7 1.4.2 - Reference manual

Oracle Solaris 10/11

Starting from 1.3.0, thanks to Rolf Stalder, Snap7 can be rebuilt using either Oracle

Solaris Studio 12.3 or GNU g++ using also pthreads.

OSS 12.3 can be downloaded from :

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-

studio-12-3-2333052.html

In this case, the apache stdcxx has to be installed.
The package is available in the Oracle IPS repository:

http://pkg.oracle.com/solaris/release/en/search.shtml?token=stdcxx&action=Search

Simply install it with 'pkg install library/c++/stdcxx'

Two separate makefiles are provided for this purpose:

i386_solaris_cc.mk and x86_64_solaris_cc.mk for OSS.

i386_solaris_gcc.mk and x86_64_solaris_gcc.mk for GNU.

Use the makefile that you like:

gmake –f i386_solaris_xx.mk all (or clean or install)

or

gmake –f x86_64_solaris_xx.mk all (or clean or install)

where xx = cc or gcc

As usual, in the folder /bin/<architecture>-solaris/ you will find libsnap7.so.

Remarks

From Version 1.2.1 there is an additional optional parameter that can be passed to the

makefile that overrides the default target lib path LibInstall=<path>

So, if you want to rebuild the library and copy it into /mylib instead of /usr/lib you

should write:

gmake –f i386_solaris_xx.mk install LibInstall=/mylib

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-12-3-2333052.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/solaris-studio-12-3-2333052.html
http://pkg.oracle.com/solaris/release/en/search.shtml?token=stdcxx&action=Search

P a g . | 288

Snap7 1.4.2 - Reference manual

P a g . 288 |

Snap7 1.4.2 - Reference manual

Apple OSX

Apple OSX derived from BSD i.e. it belongs to the Unix family, however there is a

separated folder to build it.

To rebuild Snap7, Xcode command line tools are needed.

From Xcode 4.3 they are not automatically installed with the main software and you

need to download them.

It’s very simple, open a terminal and type:

xcode-select --install

In the next window press Install button. That’s all.

Open a terminal and go to build/osx, there type :

make –f <architecture>_osx.mk all to rebuild the library

make –f <architecture>_osx.mk clean to clean the project

make –f <architecture>_osx.mk install to rebuild and copy the library in usr/lib

for the third option you need be root or use sudo make …

Where <architecture> can be i386 or x86_64.

In the folder /build/bin/<architecture>-osx/ you will find libsnap7.dylib

You need to copy it into /usr/lib or set accordingly LD_PATH_LIBRARY.

Remarks

From Version 1.2.1 there is are two additional optional parameters that can be passed

to the makefile

LibInstall=<path> that overrides the default target lib path

LibExt=<ext> that overrides the default library extension (dylib)

P a g . | 289

Snap7 1.4.2 - Reference manual

P a g . 289 |

Snap7 1.4.2 - Reference manual

So, if you want to rebuild the library, copy it into /mylib instead of /usr/lib and

have as extension .so instead of .dylib you should write:

make –f x86_64_osx.mk install LibInstall=/mylib LibExt=so

	Title
	Summary
	Overview
	Licensing
	Disclaimer of Warranty
	Acnowledgments

	About this manual
	Convention

	Snap7 Compatibility
	OS
	Wrappers

	Siemens communications overview
	S7 Protocol
	The Siemens theatre

	Siemens data format
	Helper classes

	The Snap7 theatre
	Snap7Client
	PDU independence
	SmartConnect
	Asynchronous data transfer
	Target Compatibility
	S7 1200/1500 Notes
	Snap7MicroClient
	PLC connection

	Snap7Server
	Introduction
	Specifications
	Control flow
	Data consistency
	Resourceless servers
	Purpose:
	Remarks

	Multiple servers
	Troubleshooting
	Step 7 Project
	Server Applications
	Using PLC-aware hardware with your software
	Integration in a PLC environment.

	Snap7Partner
	The Siemens model
	The Snap7 model
	Partner use
	Partner Applications

	News from 1.1.0
	LOGO! 0BA7/0BA8
	S7 200 (via CP243)

	Snap7 Library API
	API conventions
	Wrappers
	LabVIEW

	Accessing internal parameters

	Client API Reference
	Administrative functions
	Cli_Create
	Cli_Destroy
	Cli_SetConnectionType
	Cli_ConnectTo
	Cli_SetConnectionParams
	Cli_Connect
	Cli_Disconnect
	Cli_GetParam
	Cli_SetParam

	Data I/O functions
	Cli_ReadArea
	Cli_WriteArea
	Cli_DBRead
	Cli_DBWrite
	Cli_ABRead
	Cli_ABWrite
	Cli_EBRead
	Cli_EBWrite
	Cli_MBRead
	Cli_MBWrite
	Cli_TMRead
	Cli_TMWrite
	Cli_CTRead
	Cli_CTWrite
	Cli_ReadMultiVars
	Cli_WriteMultiVars

	Directory functions
	Cli_ListBlocks
	Cli_ListBlocksOfType
	Cli_GetAgBlockInfo
	Cli_GetPgBlockInfo

	Block oriented functions
	Cli_FullUpload
	Cli_Upload
	Cli_Download
	Cli_Delete
	Cli_DBGet
	Cli_DBFill

	Date/Time functions
	Cli_GetPlcDateTime
	Cli_SetPlcDateTime
	Cli_SetPlcSystemDateTime

	System info functions
	Cli_ReadSZL
	Cli_ReadSZLList
	Cli_GetOrderCode
	Cli_GetCpuInfo
	Cli_GetCpInfo

	PLC control functions
	Cli_PlcHotStart
	Cli_PlcColdStart
	Cli_PlcStop
	Cli_CopyRamToRom
	Cli_Compress
	Cli_GetPlcStatus

	Security functions
	Cli_SetSessionPassword
	Cli_ClearSessionPassword
	Cli_GetProtection

	Low level functions
	Cli_IsoExchangeBuffer

	Miscellaneous functions
	Cli_GetExecTime
	Cli_GetLastError
	Cli_GetPduLength
	Cli_ErrorText
	Cli_GetConnected

	Asynchronous functions
	Cli_SetAsCallback
	Cli_CheckAsCompletion
	Cli_WaitAsCompletion
	Cli_AsReadArea
	Cli_AsWriteArea
	Cli_AsDBRead
	Cli_AsDBWrite
	Cli_AsABRead
	Cli_AsABWrite
	Cli_AsEBRead
	Cli_AsEBWrite
	Cli_AsMBRead
	Cli_AsMBWrite
	Cli_AsTMRead
	Cli_AsTMWrite
	Cli_AsCTRead
	Cli_AsCTWrite
	Cli_AsListBlocksOfType
	Cli_AsReadSZL
	Cli_AsReadSZLList
	Cli_AsFullUpload
	Cli_AsUpload
	Cli_AsDownload
	Cli_AsDBGet
	Cli_AsDBFill
	Cli_AsCopyRamToRom
	Cli_AsCompress

	Server API Reference
	Administrative functions
	Srv_Create
	Srv_Destroy
	Srv_GetParam
	Srv_SetParam
	Srv_StartTo
	Srv_Start
	Srv_Stop

	Shared memory functions
	Srv_RegisterArea
	Srv_UnRegisterArea
	Srv_LockArea
	Srv_UnlockArea

	Control flow functions
	Srv_SetEventsCallback
	Srv_SetRWAreaCallback
	Srv_SetReadsEventsCallback
	Srv_GetMask
	Srv_SetMask
	Srv_PickEvent
	Srv_ClearEvents

	Miscellaneous functions
	Srv_GetStatus
	Srv_SetCpuStatus
	Srv_ErrorText
	Srv_EventText

	Partner API Reference
	Administrative functions
	Par_Create
	Par_Destroy
	Par_GetParam
	Par_SetParam
	Par_StartTo
	Par_Start
	Par_Stop
	Par_SetSendCallback
	Par_SetRecvCallback

	Data Transfer functions
	Par_BSend
	Par_AsBSend
	Par_CheckAsBSendCompletion
	Par_WaitAsBSendCompletion
	Par_BRecv
	Par_CheckAsBRecvCompletion

	Miscellaneous functions
	Par_GetTimes
	Par_GetStats
	Par_GetLastError
	Par_GetStatus
	Par_ErrorText

	API Error codes
	ISO TCP Error table
	Client Errors Table
	Server Errors Table
	Partner Errors Table

	Snap7 package
	[build]
	[doc]
	[examples]
	[release]
	[rich-demos]
	[src]
	[LabVIEW]

	LabVIEW
	DLL Calling
	Generic buffers
	Conventions
	Graphic
	Naming

	Release
	Final remarks

	.NET Environment
	Key concepts
	1.4.0
	C#
	VB
	Remarks
	Data access example

	Testing Snap7
	Snap7 source code
	Embedding Snap7MicroClient

	Rebuild Snap7
	Windows
	MinGW 32bit 4.7.2
	MinGW 64 bit 4.7.1
	Microsoft Visual Studio
	Embarcadero C++ builder

	Unix
	Linux x86/x64
	Linux Arm boards
	Linux Mips boards
	OpenWRT crosscompile

	BSD
	Oracle Solaris 10/11

	Apple OSX

