
Theme-D User Guide

Tommi Höynälänmaa

September 17, 2022

1

Contents

1 Copyright 1

2 General 2

3 Installation 2
3.1 Debian and Ubuntu . 2
3.2 Other UNIX Systems . 2

4 Building 2
4.1 Debian-based Systems . 2

4.1.1 Building for Guile 3.0 . 3
4.1.2 Building for Guile 2.2 . 4

4.2 Other UNIX Systems . 6
4.3 Using the Software without Installation 7

5 Removing the Software 8
5.1 Debian-based Systems . 8
5.2 Other Systems . 8

6 Theme-D Environment 9

7 File Extensions 9

8 Unit Root Directories 9

9 Compiling a Theme-D Unit 10

10 Linking a Theme-D Program 11

11 Running a Theme-D Program 14

12 Theme-D Configuration File 15

13 Distributing Linked Theme-D Programs 16

14 Bootstrapping Theme-D 17

15 Compiling, Linking, and Running Test and Example Programs 18

16 Other Things 20

17 Comments 20

1 Copyright

Copyright (C) 2008-2022 Tommi Höynälänmaa

See file COPYING for the license.

1

2 General

This guide covers only UNIX systems. The software has been tested in Debian
and Ubuntu. Many of the commands in this guide have to be run as root. A
root session is opened either with command su root or sudo depending on your
system. In Ubuntu the command is sudo.

3 Installation

3.1 Debian and Ubuntu

If you use Synaptic Package Manager install the following packages:

� theme-d-rte

� theme-d-translator

� theme-d-stdlib

If you also want to have the documentation install package theme-d-doc, too.
The bootstrapped Theme-D system is contained in package theme-d-bootstrap.
In order to install the system from the command line give the following com-
mand:

sudo apt-get install theme-d-rte theme-d-translator theme-d-stdlib

and optionally one or both of the commands

sudo apt-get install theme-d-doc

sudo apt-get install theme-d-bootstrap

3.2 Other UNIX Systems

Follow the instructions in the next section.

4 Building

4.1 Debian-based Systems

These instructions apply to Debian-based Linux distributions such as Debian
and Ubuntu. You can build the software for either Guile 3.0 or Guile 2.2. If
you use Guile 3.0 its version has to be >= 3.0.7.

The default directory configuration of Theme-D is stored in file /etc/theme-d-config.
You may override this by defining environment variable THEME D CONFIG FILE to
be the path of your own configuration file. The root directory of the Theme-D in-
stallation shall be called theme-d-root-dir . By default this is /usr/share/theme-d
in Debian-based installations and /usr/local/share/theme-d in other instal-
lations.

2

Symbol rev in the package names means the Debian revision of the packages.
It is typically 1.

Install first one of the packages guile-3.0-dev or guile-2.2-dev (or both)
Use command

apt-get install guile-3.0-dev

or

apt-get install guile-2.2-dev

as root. You can check if these packages have already been installed with
commands

dpkg -s guile-3.0-dev

dpkg -s guile-2.2-dev

If you have both guile-3.0-dev and guile-2.2-dev installed you may
choose which platform to use for Theme-D.

4.1.1 Building for Guile 3.0

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Change to the directory where you want to unpack the Theme-D source
code

3. Copy files theme-d-5.0.0.tar.xz and theme-d 5.0.0-rev.debian.tar.xz
into that directory.

4. Give command

ln -s theme-d-5.0.0.tar.xz theme-d 5.0.0.orig.tar.xz

5. Unpack Theme-D source code with command

tar xvf theme-d-5.0.0.tar.xz

6. Change to the subdirectory theme-d-5.0.0.

7. Give command

tar xvf ../theme-d 5.0.0-rev.debian.tar.xz

3

8. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

9. Give command

dpkg-buildpackage -uc -us -ui -b

10. Give commands

cd ..

dpkg -i th-scheme-utilities 5.0.0-rev arch.deb
dpkg -i libthemedsupport 5.0.0-rev arch.deb
dpkg -i theme-d-rte 5.0.0-rev arch.deb
dpkg -i theme-d-translator 5.0.0-rev arch.deb
dpkg -i theme-d-stdlib 5.0.0-rev all.deb

where arch is the name of your processor architecture. These commands
have to be run as root.

11. If you want to install the Theme-D documentation give command

dpkg -i theme-d-doc 5.0.0-rev all.deb

as root.

12. If you want to install the Theme-D bootstrapped environment give com-
mand

dpkg -i theme-d-bootstrap 5.0.0-rev all.deb

as root.

4.1.2 Building for Guile 2.2

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Change to the directory where you want to unpack the Theme-D source
code

3. Copy files theme-d-5.0.0.tar.xz and theme-d 5.0.0-rev.debian.tar.xz
into that directory.

4

4. Give command

ln -s theme-d-5.0.0.tar.xz theme-d 5.0.0.orig.tar.xz

5. Unpack Theme-D source code with command

tar xvf theme-d-5.0.0.tar.xz

6. Change to the subdirectory theme-d-5.0.0.

7. Give command

tar xvf ../theme-d 5.0.0-rev.debian.tar.xz

8. Give command

dch -v 5.0.0-revoldguile

and write some comment into the changelog.

9. Change the value of the variable GUILE VERSION to 2.2 and GUILE VERSION2

to 2.2.0 in file debian/rules, 14th and 15th line.

10. Change the package names guile-3.0 and guile-3.0-dev to guile-2.2

and guile-2.2-dev in the Build-Depends field in file debian/control

(8th line). Remove the (>= 3.0.7) from Build-Depends.

11. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

12. Give command

dpkg-buildpackage -uc -us -ui -b

13. Give commands

cd ..

dpkg -i th-scheme-utilities 5.0.0-revoldguile arch.deb

5

dpkg -i libthemedsupport 5.0.0-revoldguile arch.deb
dpkg -i theme-d-rte 5.0.0-revoldguile arch.deb
dpkg -i theme-d-translator 5.0.0-revoldguile arch.deb
dpkg -i theme-d-stdlib 5.0.0-revoldguile all.deb

where arch is the name of your processor architecture. These commands
have to be run as root.

14. If you want to install the Theme-D documentation give command

dpkg -i theme-d-doc 5.0.0-revoldguile all.deb

as root.

15. If you want to install the Theme-D bootstrapped environment give com-
mand

dpkg -i theme-d-bootstrap 5.0.0-rev all.deb

as root.

4.2 Other UNIX Systems

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Install Guile 3.0 or 2.2 if you don’t have it already. Check the version of
the Guile development environment with commands

pkg-config --modversion guile-3.0

pkg-config --modversion guile-2.2

See http://www.gnu.org/software/guile/.

3. Create some directory and unpack Theme-D package there with command

tar xvf theme-package-path/theme-d-5.0.0.tar.xz

The subdirectory theme-d-5.0.0 of the directory where you unpacked
Theme-D shall be called theme-d-source-dir .

4. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

6

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

5. Change to the the subdirectory theme-d-source-dir .

6. Give command

./configure

You may give the following options to command ./configure:

� --with-guile=version : Specify the Guile version explicitly. The
version has to be either 3.0 or 2.2.

� --with-guile-program=file : Specify the Guile program used by the
software explicitly. The default is /usr/bin/guile-version.

� --disable-nonopt-compilation : Do not use the -O1 flag for guile
code compilation.

� --without-support-library : Don’t use the libthemedsupport

library.

� --disable-extra-math : Don’t include the (standard-library extra-math)

module in your installation.

� --disable-posix-math : Don’t include the (standard-library posix-math)

module in your installation.

If you use option --without-support-library option you also have to
use options --disable-extra-math and --disable-posix-math.

7. Change to the the subdirectory theme-d-source-dir and give command

make

in order to prepare the code for installation. Install Theme-D by giving
command

make install-complete

as root.

4.3 Using the Software without Installation

This sofware may also be used without installing it. This is useful if you develop
Theme-D itself.

1. Install guile 3.0 or 2.2 in case you do not have it already. See

http://www.gnu.org/software/guile/

7

2. Create some directory and unpack Theme-D package there with command

tar xvf theme-package-path/theme-d-5.0.0.tar.xz

3. Go into the the subdirectory theme-d-5.0.0 of the directory created in
the previous step. Give commands

./configure

make

See section 4.2 for the configure options.

In order to use Theme-D change to the subdirectory meta and give command

./uninstalled-env bash

Now the commands theme-d-compile, theme-d-link, and run-theme-d-program

are available for you.

5 Removing the Software

5.1 Debian-based Systems

Give commands

dpkg --purge theme-d-stdlib

dpkg --purge theme-d-translator

dpkg --purge theme-d-rte

dpkg --purge libthemedsupport

dpkg --purge th-scheme-utilities

as root. In order to remove the Theme-D documentation give command

dpkg --purge theme-d-doc

as root. The bootstrapped environment can be removed with command

dpkg --purge theme-d-bootstrap

5.2 Other Systems

Give command

8

make uninstall-complete

as root in directory theme-d-source-dir .

6 Theme-D Environment

7 File Extensions

Theme-D source files have the following extensions:

� .thp for proper programs

� .ths for scripts

� .thi for interfaces

� .thb for bodies

Theme-D compiled pseudocode files have the following extensions:

� .tcp for proper programs

� .tcs for scripts

� .tci for interfaces

� .tcb for bodies

8 Unit Root Directories

When you define a unit with full name

(dir-1 ... dir-n unit-name)

the module must have filename unit-name with proper extension (see the
previous section) and it must be located in subdirectory

dir-1/.../dir-n/

of some directory unit-root-dir . The directory unit-root-dir is called a unit
root directory. If a unit name has only one component you may omit the paren-
theses from the unit name. When you compile of link a Theme-D unit you
must specify one or more unit root directories where the imported modules are
searched. These are called the module search directories. You should always
have directory theme-d-root-dir/theme-d-code among the module search di-
rectories so that the standard libraries are found by the compiler and by the
linker.

9

9 Compiling a Theme-D Unit

Give command

theme-d-compile options unit-name

where unit-name is the file name of the Theme-D unit. Options are

� --module-path= paths or -m paths : Module search paths separated with
:’s

� --output= output-filename or -o output-filename : The output filename

� --unit-type= unit-type or -u unit-type : The unit type (proper-program,
script, interface, or body)

� --message-level= message-level or -l message-level : Compiler message
level, integer number from 0 to 3.

� --expand-only : Do only macro expansion on the source.

� --no-expansion : Compile the source without macro expansion.

� --backtrace : Print backtrace on compilation error.

� --pretty-print : Pretty print the pseudocode output.

� --no-verbose-errors : Less information in the error messages.

� --show-modules : Show information about loading modules.

� --version : Show Theme-D version number and exit.

By default the unit type is computed from the source file extension. The
default module search path is theme-d-root-dir:.. If you use option -m you may
include the Theme-D default module search path in your custom path by adding
an extra “:” in the beginning of the new path, e.g. :my-path1:my-path2. The
default target file path is obtained by removing the path and the extension from
the source filename and appending the appropriate extension to the result. The
default message level is 1. Message level 0 means no output at all except in
case of error. Message level 1 displays also message on successful compilation
or linking. Message level 2 displays some debug information and level 3 a lot of
debug information. When --expand-only is set the default target filename is
myunit.expanded.thx for source file myunit.thx.

Suppose that you have your own Theme-D code at directory my-theme-d-dir
and you have a program called (mod-1 ... mod-n) at location

mod-1/.../mod-n.thp

In order to compile the program give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thp

10

Suppose that you have a module (an interface and a body) with name (mod-1
... mod-n) in files mod-1/.../mod-n.thi and mod-1/.../mod-n.thb. In or-
der to compile the module give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thi

theme-d-compile mod-1/.../mod-n.thb

If you want to have the compiled files in the same subdirectory where the
source files are, which is usually the case, give commands

cd my-theme-d-dir
theme-d-compile -o mod-1/.../mod-n.tci \
mod-1/.../mod-n.thi

theme-d-compile -o mod-1/.../mod-n.tcb \
mod-1/.../mod-n.thb

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/theme-d/translator/theme-d-compile.scm

instead of theme-d-compile. Here MYPATH is the path where you have un-
packed Theme-D.

10 Linking a Theme-D Program

Give command

theme-d-link options program-name

where program-name is the file name of the Theme-D program. Options are

� --module-path= paths or -m paths : Module search paths separated with
:’s

� --output= output-filename or -o output-filename : The output filename.

� --intermediate-file= filename or -n filename : The intermediate file-
name.

� --intermediate-language= language or -i language : The language used
for the intermediate file.

� -x module: Link (load) the module into the target program.

� --message-level= message-level or -l message-level : Linker message
level, integer number from 0 to 3.

� --no-final-compilation : Do not compile the linker result file with
guild compile.

11

� --no-strip : Do not strip away unused code.

� --no-optimization : Do not optimize linker output.

� --no-factorization : Do not factorize the type expressions out of pro-
cedure implementations.

� --no-weak-assertions : Do not check ordinary assertions. Strong asser-
tions are always checked.

� --backtrace : Print backtrace on linking error.

� --pretty-print : Pretty print the linker output.

� --no-verbose-errors : Less information in the error messages.

� --keep-intermediate : Keep the intermediate Tree-IL or Scheme file

� --link-to-cache : Link the target file into the guile cache.

� --runtime-pretty-backtrace : Generate the code to support runtime
pretty printed backtraces.

� --no-unlinked-procedure-names : Do not generate code for reporting
unlinked procedure names.

� --module-debug-output : Print debug messages when a module body
linkage is started and ended.

� --check-all-primitives : Check that primitive procedure result values
match the result types for all primitives, including those defined with
unchecked-prim-proc.

� --duplicates= symbols : Set the values passed to default-duplicate-binding-handler
in the target program. If there are several symbols enclose them in quotes.

� --split : Split the linker output.

� --split-dir= dir : Set the directory where to put the split linker output.

� --split-basename= name : Set the basename for split linker output files.

� --guile-opt-level= level : Set the optimization level for the final guile
compilation. Default is 1.

� --extra-guild-options= options : Define the extra options passed to
guild when compiling the intermediate code to Guile bytecode.

� --version : Show Theme-D version number and exit.

The available intermediate languages are:

� tree-il : Guile Tree-IL. The Tree-IL version shall be the Guile version
for which Theme-D has been configured.

� tree-il-3.0 : Guile 3.0 Tree-IL. This is currently identical to Guile 2.2
Tree-IL.

12

� tree-il-2.2 : Guile 2.2 Tree-IL.

� guile : Guile Scheme. The Guile version shall be the version for which
Theme-D has been configured.

� guile-3.0 : Guile Scheme 3.0.

� guile-2.2 : Guile Scheme 2.2.

The option --no-optimization has no effect for target platforms for target
platforms --tree-il and --tree-il-xxx. They are always optimized. By
default Theme-D linker produces a guile objcode file. Actually, Theme-D makes
a guile Tree-IL or Scheme file and uses guile to make an objcode file from that.
The default intermediate language is Tree-IL. Note that many optimizations are
performed only with Tree-IL. If you want to optimize your code for speed you
should link your program without pretty backtraces when you no longer need
them for debugging. If you use Tree-IL as the intermediate language pretty
printing may cause the linker to crash with large programs. The syntax of the
module name in the -x option is "(mod1 ... modn)".

If you use option --module-path or -m you may include the Theme-D default
module search path in your custom path by an extra “:” in the path as in
compilation. Suppose that you have your own Theme-D code at directory my-
theme-d-dir and you have a program called (mod-1 ... mod-n) at location
mod-1/.../mod-n.thp. In order to link the program give commands

cd my-theme-d-dir
theme-d-link mod-1/.../mod-n.thp

The previous commands place the linked file into the root of subdirectory
my-theme-d-dir . If you want to place the linked file in the same directory where
the source files are use the following commands:

cd my-theme-d-dir
theme-d-link -o mod-1/.../mod-n.go \
mod-1/.../mod-n.thp

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/theme-d/translator/theme-d-link.scm

instead of theme-d-link. Here MYPATH is the path where you have unpacked
Theme-D.

If you have so big program that your system hangs with it it is useful to
split the linker output to several intermediate files. You can do this by giving
option --split to the linker. The linker output files are placed on a separate
subdirectory. By default this subdirectory is called program.compiled. You can
change the directory name with option --split-dir. You can also change the
basename of the output files with option --split-basename. Note that script
run-split-theme-d-program does not work if you change the basename.

13

If option --no-final-compilation is not given the Tree-IL or Scheme file
generated by the linker is compiled to Guile bytecode with command guild

compile. Option --guile-opt-level specifies the optimization level of the
final Guile compilation. Option -Olevel is passed to program guild. The default
optimization level is 1.

11 Running a Theme-D Program

When you use Guile as the target platform Theme-D programs can be run with
command

run-theme-d-program metaarg ... programfile programarg ...

where metaarg are the arguments passed to the script run-theme-d-program,
programfile is the filename of the linked Theme-D program, and programarg are
the arguments passed to the program. Suppose you have your linked Theme-D
program in file myprog.go. You can run this program with command

run-theme-d-program myprog.go

When you use Guile as the target platform it is also possible to link you
Theme-D program into a .scm intermediate file and run it with command

guile -e main -s programfile.scm programarg ...

or

guile -s programfile.scm programarg ...

for scripts.
If you need to import your own Scheme files into the Theme-D runtime envi-

ronment (because of the foreign function interface) you can do this by defining
the environment variable THEME D CUSTOM CODE. Separate the file names with
:’s. However, it is recommended to use option -x for this.

The program run-theme-d-program accepts the following arguments:

� --no-verbose-errors : No verbose information about errors (excep-
tions).

� --backtrace : Display backtrace on error.

� --pretty-backtrace : Display pretty printed backtrace on error.

� --version : Show Theme-D version number and exit.

Note that the --pretty-backtrace option works only if you have linked your
Theme-D program with option --runtime-pretty-backtrace.

In order to run a Theme-D program with split linker output give command

run-split-theme-d-program dir-name

14

where dir-name is the directory where the linker output is generated.
The pretty printed runtime backtrace has the following format:

number kind name module

...

where kind is the kind of the called procedure, name is the name of the procedure
and module is the module where the procedure has been defined. The kind may
take the following values:

� toplevel: A toplevel procedure

� local: A local procedure

� instance: An instance of a parametrized procedure

� zero: A procedure used to generate the zero value of a class

12 Theme-D Configuration File

The Theme-D configuration file is searched according to the following rules:

� Use the value of environment variable THEME D CONFIG FILE is it is de-
fined.

� Use file .theme-d-config in the user’s home directory if present.

� Otherwise use file /etc/theme-d-config.

The installation procedure sets up the configuration file. Normally you don’t
have to edit it.

The configuration file has the following format:

(theme-d (var-name var-value)...)

All string type variable values must be enclosed in quotes. Boolean and
integer values must not be enclosed in quotes The variables defined in the con-
figuration file are:

� guile-version: The Guile version used by Theme-D. This is a string.

� translator-dir: The location of the compiler and linker implementa-
tions.

� runtime-dir: The location of the Theme-D runtime environment.

� lib-dir: The location of the Theme-D standard library.

� examples-dir: The location of the Theme-D examples.

� tests-dir: The location of the Theme-D tests.

15

� tools-dir: The location of the Theme-D tools.

� bootstrap-dir: The location of the Theme-D bootstrap environment
sources.

� compiler-path Theme-D compiler path (a .scm file).

� linker-path Theme-D linker path (a .scm file).

� run-path Theme-D run script path path (a .scm file).

� use-support-lib?: #t if the support library is used. This is a boolean
value.

The values of the configuration variables can be fetched with command

get-theme-d-config-var config-var-name

where config-var-name is the name of the configuration variable.

13 Distributing Linked Theme-D Programs

If your target environment has Theme-D installed it is sufficient to distribute
only the linked .go file. If your target system is using a Debian-based Linux
system (e.g. Debian or Ubuntu) and you don’t want to install whole Theme-D
into it the easiest way to ensure that all the necessary files are present is to
install packages theme-d-rte, th-scheme-utilities, and libthemedsupport

into the target system.
If you are using Guile in a non-Debian system you have to ensure that the

following files are present in the Guile library path:

� theme-d/runtime/params.go

� theme-d/runtime/runtime-theme-d-environment.go

� theme-d/runtime/theme-d-stdlib-support.go

You also need to distribute one of the following files:

� theme-d/runtime/theme-d-support-all.go

� theme-d/runtime/theme-d-support-no-extra.go

� theme-d/runtime/theme-d-support-no-posix.go

� theme-d/runtime/theme-d-alt-support.go

and create symbolic link theme-d/runtime/theme-d-support.go pointing to
it. In order to find the library path give command

pkg-config --variable=siteccachedir guile-version

16

Normally you should use file theme-d-support-all.go. If you don’t use the
Theme-D support library you must use theme-d-alt-support.go. If you dis-
tribute a .go file you also need to have run-theme-d-program.scm in the target
system. These files are licensed under GNU Lesser General Public License.

If you use the support library the library libthemedsupport has to be in-
stalled in the target system. The use of the support library is recommended.

14 Bootstrapping Theme-D

The Theme-D source package contains a bootstrapped version of Theme-D,
i.e. Theme-D compiler and linker implemented with Theme-Ditself. Note that
the bootstrap environment is not yet part of the Theme-D Debian or Ubuntu
packages. To install the bootstrap environment change to the directory where
you want to install it and give command

setup-theme-d-bootstrap-env

Note that you must have either Theme-D installed on your system or use
the uninstalled version of the software, see section 4.3.

First you have to build Theme-Dwritten in itself using compiler and linker
written in Guile. Change to the theme-d-bootstrap directory and give the
following commands:

cd build1/theme-d-in-theme-d

make -f user.mk

Then you build Theme-Dusing the compiler and linker built in the previous
step:

cd ../../bootstrap/theme-d-in-theme-d

make -f user.mk

Now you have the bootstrapped Theme-D compiler and linker in files theme-d-compile-b.go
and theme-d-link-b.go in subdirectory theme-d-bootstrap/bootstrap/theme-d-in-theme-d.
You can use these programs with commands

run-theme-d-program BOOTSTRAPPATH/theme-d-compile-b.go ARGUMENTS

and

run-theme-d-program BOOTSTRAPPATH/theme-d-link-b.go ARGUMENTS

17

15 Compiling, Linking, and Running Test and
Example Programs

In order to install the Theme-D testing environment change to the directory
where you want the environment to be installed and give command

setup-theme-d-test-env

This directory shall be called theme-d-test-dir in the sequel. The test pro-
grams are located in subdirectory test-env/theme-d-code/tests and the ex-
ample programs in test-env/theme-d-code/examples. Subdirectory tools

contains scripts to run tests.
The example programs are built by giving command make -f user.mk in

subdirectory test-env/theme-d-code/examples. The example programs are
run with command run-theme-d-program program.go.

If testX is a program compile it with command

theme-d-compile -m :.. testX.thp

and link with command

theme-d-link -m :.. testX.tcp

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If testX is a module compile it with commands

theme-d-compile -m :.. testX.thi

theme-d-compile -m :.. testX.thb

in directory theme-d-test-dir/test-env/theme-d-code/tests.
Note that some test programs import test modules in which case you must

compile the modules before the program that uses them. When a test program
imports several test modules compile first all the interfaces of the imported
modules and then all the bodies of the imported modules. Compile the interfaces
in the order they are numbered. Note also that some test programs require the
examples to be built.

In order to run a test testX give commands

run-theme-d-program testX.go

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If you want to build all the tests at once build the examples first. Then

change to the directory theme-d-test-dir/test-env/testing. Compile the tests
with command

./compile-tests.scm

18

and link them with command

./link-test-programs.scm

Then run the linked programs with command

./run-test-programs.scm

The test results can be checked with commands

./check-test-compilation.scm

./check-test-program-linking.scm

./check-test-runs.scm

for compilation, linking and running, respectively. All these scripts are located
in directory theme-d-test-dir/testing.

You can generate the test output into the subdirectory output with com-
mand

./run-test-programs-w-output.scm

Use command ./compare-output.sh to compare the output files with the
correct ones. The correct outputs of the tests can be found in subdirectory
tests in files test*.out. The outputs of tests test450 and test756 may vary
because of output buffering. The computed hash values in test test587 and the
order of elements in hash tables in tests test826 and test827 may also vary.
The backtrace in test764 and the path in test598 may be different in different
runs. The values of environment variable HOME printed by test820 are different
in different systems.

If you want to build the examples with the bootstrapped compiler and linker
set the environment variables THEME D COMPILE to

"run-theme-d-program MYPATH/theme-d-compile-b.go"

and THEME D LINK to

"run-theme-d-program MYPATH/theme-d-link-b.go"

If you want to use the bootstrapped compiler give option -b MYPATH/theme-d-compile-b.go

to command compile-tests.scm. Program link-test-programs.scm accepts
the following options:

� -i backend : Select the linker backend. The value of backend has to be
either tree-il, guile, or guile0. Value guile0 means the nonoptimized
Guile backend. The default value is tree-il.

� -k : Do not delete the intermediate file (.tree-il or .scm).

19

� -b bootstrapped-linker-path: Use the bootstrapped linker. The argument
is the path to file theme-d-link-b.go.

Command compile-tests.scm passes the contents of environment variable
EXTRA COMP OPTIONS to the compiler. Command link-test-programs.scm

passes the contents of environment variable EXTRA LINK OPTIONS to the linker.

16 Other Things

An Emacs mode for Theme-D can be found at tools/theme-d.el. There are
some example programs in subdirectory theme-d-code/examples in the Theme-
D source package. You can compile, link, and run them following the instruc-
tions given in sections 9, 10, and 11. If you install the Theme-D Debian package
twice the configuration file theme-d-config may not be installed. This problem
is solved by uninstalling Theme-D and installing it again.

Theme-D translator uses the following notation for printing pair and tu-
ple types: (:pair r s) is printed as { r . s } and (:tuple t1 ... tn) is
printed as {t1 ... tn}. Note that this notation is not accepted in Theme-D
code.

17 Comments

The linker requires that the compiled modules are placed in a proper subdirec-
tory hierarchy under some directory among the module search directories. This
condition is fulfilled if you define the module search directories to include all
the unit root directories used by your source files and put the compiled files into
same directories with the source files.

20

