C++ Annotations Version 13.00.01

Frank B. Brokken
University of Groningen,
PO Box 407,
9700 AK Groningen
The Netherlands
Published at the University of Groningen
ISBN 90 367 0470 7

=5

2024: the C++ Annotations now exist for 30 years!

1994-2024

Abstract

This document is intended for knowledgeable users of C (or any other language using a C-like gram-
mar, like Perl or Java) who would like to know more about, or make the transition to, C++. This
document is the main textbook for Frank’s C++ programming courses, which are yearly organized
at the University of Groningen. The C++ Annotations do not cover all aspects of C++, though. In
particular, C++’s basic grammar is not covered when equal to C’s grammar. Any basic book on C
may be consulted to refresh that part of C++’s grammar.

If you want a hard-copy version of the C++ Annotations: printable versions are available in
zip-archives containing files in postscript, pdf and other formats at

https://gitlab.com/fbb-git /cppannotations-zip

Pages of files having names starting with cplusplus are in A4 paper size, pages of files having names
starting with cplusplusus are in the US legal paper size. The C++ Annotations are also available as
a Kindle book.

The latest version of the C++ Annotations in html-format can be browsed at:

https://fbb-git.gitlab.io/cppannotations/

Contents

1 Overview Of The Chapters 1
2 Introduction 3
2.1 What’s new in the C++ Annotations 4
2.2 C++shistory e e 4
2.2.1 History of the C++ Annotations 5
2.2.2 Compiling a C program using a C++ compiler 5
2.2.3 Compiling a C++ program it 6

2.3 C++:advantagesandclaims e 7
2.4 What is Object-Oriented Programming? 8
2.5 Differencesbetween Cand C++ L 10
2.5.1 The function ‘main’ 10
2.5.2 End-of-linecomment L 10
2.5.83 Stricttype checking 11
2.5.4 Function Overloading e 12
2.5.5 Default function arguments 13
2.5.6 NULL-pointers vs. O-pointers and nullptr 14
2.5.7 The ‘void’ parameter list 14
2.5.8 The #define __cplusplus’ 15
2.5.9 Using standard C functions 15
2.5.10 HeaderfilesforbothCand C++ 15
2.5.11 Defininglocal variables 16
2.5.12 The keyword ‘typedef” 18
2.5.13 Functionsas partofastruct, 19
2.5.14 Evaluation orderofoperands. 19

ii

3 A First Impression Of C++ 21

3.1

3.2

3.3

3.4

3.5

Notable differences with C 21
3.1.1 Usingthekeyword‘const’ 21
3.1.2 NameSpaces v v i i e e e e e e e e e e e e e e e e e e e 24
3.1.3 The scope resolution operator::, 24
3.1.4 ‘eout’, ‘cin’,and ‘cerr’ e e 25
Functions as partof structs 27
3.2.1 Data hiding: public, private andclass 27
322 StructsinCvs.structsinC++ Lo Lo 29
Several additionsto C’s grammar 30
3.3.1 References 30
3.3.2 RvalueReferences 34
3.3.3 Lvalues,rvaluesandmore 36
3.3.4 Strongly typed enumerations. 38
3.3.5 Inmitializerlists L 39
3.3.6 Inmitializers for bit-fields o 40
3.3.7 Typeinference using ‘auto’ 41
3.3.8 Defining types and ‘using’ declarations 45
3.3.9 Range-based for-loops 46
3.3.10 Raw String Literals e 48
3.3.11 Binaryconstants e 49
3.3.12 Selection statements with initializers oo, 49
3.3.13 Attributes e 50
3.3.14 Three-way comparison (<=>)t i e 52
New language-defined datatypes 52
3.4.1 Thedatatype bool’ 53
3.4.2 Thedatatype‘wchar_t’ 54
3.4.3 Unicodeencoding i e 54
3.4.4 Thedata type longlongint’ 55
3.4.5 Thedatatype ‘size_t’ 55
3.4.6 The data type ‘std::byte’ 55
3.4.7 Digit separators e e e 56
Anewsyntaxforcasts e 56

iii

3.5.1 The ‘static_cast’-operator 57

3.5.2 The ‘const_cast’-operator e 58
3.5.3 The ‘reinterpret_cast’-operator 58
3.5.4 The ‘dynamic_cast’-operator 59
3.5.5 Casting ’shared_ptr’objects 60

3.6 Keywords and reservednamesin C++ 60
4 Namespaces 63
4.1 NameSPacCeS v v v i i e e e e e e e e e e e e e e e e e e 63
4.1.1 Defining namespaces ot e e e e e e e e e e 63
4.1.2 Referringtoentities e 64
4.1.3 The standard namespace 69
4.1.4 Nesting namespaces and namespace aliasing 70

4.2 The std::chrono namespace (handlingtime) 73
4.2.1 Time resolutions: std:ratio Lo o 74
4.2.2 Amounts of time: std::chrono::duration L. 75
4.2.3 Clocks measuringtime 77
4.2.4 Points in time: std::chrono::time_point, 78

4.3 The std::filesystem namespace e 81
4.3.1 the’ file_clock’type 81
4.3.2 Theclass’error_code’ e 82
4.3.3 Names of file system entries: path 84
4.3.4 Handling directories: directory_entry 89

4.3.5 Types (file_type) and permissions (perms) of file system elements: file_status . 92

4.3.6 Information about the space of file systems: space_info 96

4.3.7 File system exceptions: filesystem_error 96

5 The ‘string’ Data Type 929
5.1 Operationson strings e e e e e 100
5.2 Astdistring reference 101
5.2.1 Inmitializers 102

522 Tterators. 103

5.2.83 0perators e e e e e 103

5.24 Member functions 104

iv

5.2.5 Conversion functions e 110

5.3 stdustring_view L e e e e 111
6 The IO-stream Library 113
6.1 Special headerfiles e 116
6.2 The foundation: the class ‘los_base’ 117
6.3 Interfacing ‘streambuf’ objects: the class 908’ 117
6.3.1 Conditionstates 118
6.3.2 Formatting output andinput L 121

6.4 Output e 127
6.4.1 Basic output: the class ‘ostream’ 127
6.4.2 Output to files: the class ‘ofstream’ 129
6.4.3 Output to memory: the class ‘ostringstream’ 131
6.4.4 The ‘put_time’ manipulator 133

6.5 Input e e e 136
6.5.1 Basicinput: the class ‘istream’ 136
6.5.2 Input from files: the class ‘ifstream’ 140
6.5.3 Input from memory: the class ‘istringstream’ 141
6.5.4 Copyingstreams i i e e e 141
6.5.5 Coupling streams 143

6.6 Advanced topics e e 143
6.6.1 Movingstreams e 143
6.6.2 Redirectingstreams 144
6.6.3 Reading AND Writing streams 145

7 Classes 153
7.1 Theconstructor 155
7.1.1 Afirstapplication e 156
7.1.2 Constructors: with and without arguments 159

7.2 Ambiguity resolution e 161
7.2.1 Types‘Data’vs. Data() e e 163
7.2.2 Superfluous parentheses 164
7.2.3 Existingtypes e e e e 165

7.3 Objects inside objects: composition 166

7.3.1 Composition and (const) objects: (const) member initializers 166

7.3.2 Composition and reference objects: reference member initializers 167
7.4 Data member initializers L L 169
7.4.1 Delegating constructors 170
7.5 Uniform initialization L 171
7.6 Defaulted and deleted class members L Lo oL 174
7.7 Const member functions and constobjects 174
7.7.1 Anonymousobjects 176
7.8 Thekeyword‘inline’ e 179
7.8.1 Defining membersinline, 180
7.8.2 When to use inline functions L Lo oL oL 181
7.8.3 Inlinevariables. 182
7.9 Local classes: classes inside functions Lo L. 183
7.10 The keyword ‘mutable’ 184
7.11 Header file organization e e 185
7.11.1 Using namespacesin headerfiles 189
7.12 Sizeof applied to class datamembers 190
Static Data And Functions 191
8.1 Staticdata e 191
8.1.1 Privatestaticdata 192
8.1.2 Publicstaticdata 193
8.1.3 Initializing staticconstdata 194
8.1.4 Generalized constant expressions (constexpr) 194
8.2 Static member functions 198
8.2.1 Callingconventions i 200
Classes And Memory Allocation 203
9.1 Operators ‘new’ and ‘delete’ 204
9.1.1 Allocating arrays v it e e e e e e e e e e e e 205
9.1.2 Deletingarrays. 0 0 e e e e e e 206
9.1.3 Enlargingarrays e e e e e e e 207
9.1.4 Managing ‘raw’ MemOTY v v v v v v e e e e e e e e e e e e 208
9.1.5 The ‘placement new’ operator 209

vi

9.2 Thedestructor e 211

9.2.1 Object pointersrevisited 213
9.2.2 The function set_new_handler() 216

9.3 The assignment operator e 217
9.3.1 Overloading the assignment operator 218

9.4 The this’pointer. e 221
9.4.1 Sequential assignmentsandthis 222

9.5 The copy constructor: initialization vs. assignment 222
9.6 Revising the assignment operator 224
9.6.1 SWapPPING v i e e e e e e e e e e e e e 226

9.7 Movingdata e e e 229
9.7.1 The move constructor (dynamicdata) 231
9.7.2 The move constructor (composition) 233
9.7.3 Move-assignment e e e e 234
9.7.4 Revising the assignment operator (partII) 235
9.7.5 Moving and the destructor 235
9.7.6 Move-onlyclasses 236
9.7.7 Default move constructors and assignment operators 236
9.7.8 Moving: implications for classdesign 238

9.8 Copy Elision and Return Value Optimization 239
9.9 Unrestricted Unions e 240
9.9.1 Implementing the destructor 241
9.9.2 Embedding an unrestricted union in a surroundingeclass 242
9.9.3 Swapping unrestrictedunions L .. 244
9.9.4 Assignment e e 246

9.10 Aggregate Data Types i e e e 247
9.11 Conclusion e e 248
10 Exceptions 249
10.1 Exception syntax e e e e 250
10.2 An example using exceptions e e e e e e 250
10.2.1 Anachronisms: ‘setjmp’ and ‘longjmp’, 252
10.2.2 Exceptions: the preferred alternative 253

vii

10.3 Throwing exceptions i e 255

10.3.1 The empty ‘throw’ statement, 257

104 The try block e e e 259
10.5 Catching exceptions e e 259
10.5.1 Thedefaultcatcher 262

10.6 Functions unable to throw exceptions: the ‘noexcept’ keyword 263
10.7 Tostreams and exceptions. e e e e e e 263
10.8 Standard exceptions e e 264
10.8.1 Standard exceptions: touseornottouse? 265

10.9 System error, error_category, and error_condition 266
10.9.1 The class ‘std:ierror_category’ 268
10.9.2 The class ‘std::error_condition’ 269
10.9.3 Theclass system_error e 270
10.9.4 Exception propagation: std::exception_ptr 271
10.10Exception guarantees e e e e 272
10.10.1 The basic guarantee i i i i e e e e 273
10.10.2 The strong guarantee i e e 274
10.10.3 The nothrow guarantee 276
10.11Function try blocks 277
10.1ZExceptions in constructors L e e 279
10.13Exceptions in destructors. e 283
11 More Operator Overloading 287
11.1 Overloading ‘operator[1()’ e 287
11.1.1 Multi-argument ‘operator[1()’ 290

11.2 Overloading insertion and extraction operators 291
11.3 Conversion operators i it e e e e e e e e e e 293
11.4 An alternative implementation of the ‘byte’type 296
11.5 The keyword ‘explicit’ e 298
11.5.1 Explicit conversionoperators. 299

11.6 Overloading increment and decrement operators 300
11.7 Overloading binary operators i 302
11.7.1 Member function reference bindings (& and &&) 306

viii

11.7.2 The three-way comparison operator ‘<=>" 309

11.8 Overloading ‘operator new(size_t) e 311
11.9 Overloading ‘operator delete(void *)’ 313
11.100perators ‘new[]’ and ‘delete[]’. 313
11.10.1 Overloading ‘new[]’ e 314
11.10.2 Overloading ‘delete[] 315
11.10.3 The ‘operator delete(void %, size_t) family 316
11.10.4 ‘newl], ‘delete[]’ and exceptions 317
11.11Function Objects e e e 318
11.11.1 Constructing manipulators 320
11.12Lambda eXpresSions i i e e e e e e e e e e 324
11.12.1 Lambda expressions: syntaxttt 324
11.12.2 Using lambda expressions it 328
11.13The case of [iolfstream::open() 331
11.14User-defined literals L 332
11.180verloadable operators e 334
12 Abstract Containers 335
12.1 Notations used in thischapter 337
12.2 The ‘pair’ container e e 337
12.3 Allocators 339
12.4 Available Containers L 340
12.4.1 The ‘array’ container 340
12.4.2 The ‘vector’ container 342
12.4.3 The ‘list’ container 345
12.4.4 The ‘queue’ container e e 351
12.4.5 The ‘priority_queue’ container 353
12.4.6 The ‘deque’ container i 355
12.4.7 The ‘map’ container i e e e 358
12.4.8 The ‘multimap’ container 366
12.4.9 The ‘set’ container 367
12.4.10 The ‘multiset’ container 370
12.4.11 The ‘stack’ container L 372

ix

12.4.12 The ‘unordered_map’ container (‘hash table’) 374

12.4.13 The ‘unordered_set’ container v v i i i e 380
12.4.14 Heterogeneouslookup 382

12.5 The ‘complex’ container e e 383
13 Inheritance 385
13.1 Related types. o e e e 386
13.1.1 Inheritance depth: desirable? 388

13.2 Access rights: public, private, protected 389
13.2.1 Public, protected and private derivation 390
13.2.2 Promoting accessrights 391

13.3 The constructor of a derivedclass L 392
13.3.1 Move construction e 393
13.3.2 Move assignment e e e e e e e 394
13.3.3 Inheriting constructors 394
13.3.4 Aggregate Initializations 395

13.4 The destructor of aderivedclass 395
13.5 Redefining member functions 396
13.6 Multiple inheritance 398
13.7 Conversions between base classes and derived classes 401
13.7.1 Conversions with object assignments 401
13.7.2 Conversions with pointer assignments 402

13.8 Using non-default constructors withnew[]. 403
14 Polymorphism 407
14.1 Virtual functions L e 409
14.1.1 Constructors of polymorhiceclasses 412

14.2 Virtual destructors e 413
14.3 Pure virtual functions L 414
14.3.1 Implementing pure virtual functions 415

14.4 Explicit virtual overrides 416
14.5 Virtual functions and multiple inheritance 417
14.5.1 Ambiguity in multiple inheritance. o oL 418
14.5.2 Virtualbaseclasses 419

14.5.3 When virtual derivation is not appropriate 422

14.6 Run-time type identification 423
14.6.1 The dynamic_castoperator 424

14.6.2 The ‘typeid’ operator e e 427

14.7 Inheritance: when to use to achieve what? 429
14.8 The ‘streambuf’class L 431
14.8.1 Protected ‘streambuf’ members o oL 433

14.8.2 Theclass‘filebuf’. 438

14.8.3 Safely interfacing streams to another std::streambuf 438

14.9 Reading and writing using ‘std::iostream’ 439
14.10A polymorphic exceptionclass 440
14.11How polymorphism is implemented 443
14.12Undefined reference to vtable L 445
14.13Virtual constructors L 447

15 Friends 451
15.1 Friend functions 452
15.2 Extended friend declarations L L 453

16 Classes Having Pointers To Members 455
16.1 Pointers to members: anexample 455
16.2 Defining pointers tomembers 456
16.3 Using pointers tomembers 458
16.4 Pointers to staticmembers L 461
16.5 Pointer Sizes e e e e e e e 462

17 Nested Classes 467
17.1 Defining nested class members 469
17.2 Declaring nested classes e 470
17.3 Accessing private members in nested classes 470
17.4 Nesting enumerations i e e e e 474
17.4.1 Empty enumerations e 476

17.5 Revisiting virtual constructors 476

18 The Standard Template Library 479

xi

18.1 Predefined function objects 479

18.1.1 Arithmetic functionobjects 481
18.1.2 Relational function objects 484
18.1.3 Logical function objects 484
18.1.4 The ‘std::not_fn’negator 485
18.2 Tterators e e 486
18.2.1 std:distance and std:isize oL 489
18.2.2 Imsertiterators 490
18.2.3 Iterators for istream’ objects 491
18.2.4 Iterators for ‘ostream’ objects. 493
18.2.5 Moving elements to another container 494
18.3 The class unique_ptr’ e e e 495
18.3.1 Defining ‘unique_ptr’objects 496
18.3.2 Creating a plain ‘unique_ptr’ 497
18.3.3 Moving another ‘unique_ptr’ 497
18.3.4 Pointing to a newly allocated object 498
18.3.5 Operatorsand members 499
18.3.6 Using ‘unique_ptr’ objects forarrays 500
18.4 The class ‘shared_ptr’ e 500
18.4.1 Defining ‘shared_ptr’objects 501
18.4.2 Creating a plain ‘shared_ptr’ 501
18.4.3 Pointing to a newly allocated object 502
18.4.4 Operatorsand members 503
18.4.5 Castingsharedpointers. 504
18.4.6 Using ‘shared_ptr’ objects forarrays 505
18.5 Smart ‘smart pointer’ construction: ‘make_shared’ and ‘make_unique’ 505
18.6 Classes having pointer data members 506
18.7 Comparison classes e e e e e e 508
18.7.1 Theclass ‘weak_equality’ 508
18.7.2 The class ‘strong_equality’ 509
18.7.3 The class ‘partial_ordering’ 509
18.7.4 Theclass ‘weak_ordering’ 510
18.7.5 The class ‘strong_ordering’ 510

xii

18.8 Regular Expressions 0 i i e e e 511

18.8.1 The regular expression mini language 511
18.8.2 Defining regular expressions: std:iregex 513
18.8.3 Retrieving matches: std::match_results. 516
18.8.4 Regular expression matching functions L. 518

18.9 Randomization and Statistical Distributions 525
18.9.1 Random Number Generators 525
18.9.2 Statistical distributions L 527
18.10EE . . o o o o e e 540
18.110ptional return values e 542
19 The STL Generic Algorithms 545
19.1 The Generic Algorithms 545
19.1.1 Execution policies i i e e 547
19.1.2 accumulate 548
19.1.3 adjacent_difference 549
19.1.4 adjacent_find e 550
19.1.5 all_of/any_of/mnone_of 551
19.1.6 begin/end e e e e 552
19.1.7 binary_search e 552
19.1.8 copy/copy_if e 554
19.1.9 copy_backward 555
19.1.10 count/count_if e 555
19.1.11 equal L. e e e e 556
19.1.12 equal_range e e e e e 557
19.1.183 exchange e e e 559
19.1.14 fill /fill_n . . Lo e e 559
19.1.15 find / find_if /find_if not 560
19.1.16 find_end 561
19.1.17 find_first_of e 562
19.1.18 for_each e 563
19.1.19 generate/ generate_n e e 565
19.1.20 includes e 566

19.1.21 inner_product e e e e e 568

19.1.22 inplace_merge e e e e e e e 569
19.1.23 10ta L e 570
19.1.24 is_partitioned e e e e 570
19.1.25 is_permutation e e 571
19.1.26 is_sorted e e 572
19.1.27 is_sorted_until e, 573
19.1.28 1ter_SWap v v o e e e e e e e e e e e e e e e e e e 573
19.1.29 lexicographical_compare 574
19.1.30 lower_bound e e, 575
19.1.31 max /min Lo e e e e e 577
19.1.32 max_element/ min_element/ minmax_element 578
19.1.33 merge e e e e e e e e e e e e 579
19.1.34 MINMAX ot s e e e e e e e 580
19.1.35 mismatch L 581
19.1.36 move /move_backward 582
19.1.37 next_permutation/ prev_permutation 583
19.1.38 nth_element e, 585
19.1.39 partial_sort / partial_sort_copy. 585
19.1.40 partial_sum e e e e e 586
19.1.41 partition / partition_point / stable_partition 587
19.1.42 partition_copy o e e e e e e e e e 589
19143 reduce oL e 589
19.1.44 remove / remove_if / remove_copy/remove_copy_if 590
19.1.45 replace / replace_if / replace_copy / replace_copy_if 592
19.1.46 1eVerse/ reverSe_COPY « « « v v v v v v e e e e e e e e e e e e e e e e e e 593
19.1.47 rotate /rotate_copy e e e 594
19.148 sample e e e e e e 595
19.1.49 search /search_n e 596
19.1.50 set_difference e, 597
19.1.51 set_intersection e e e e 598
19.1.52 set_symmetric_difference 599
19.1.53 set_Union v v v e 600

Xiv

19.1.54 sort/stable_sort L e, 601

19.1.55 swap /swap_ranges v v vt i e e e e e e e e e e e e e 603
19.1.56 transform e 604
19.1.57 transform_reduce e e, 605
19.1.58 handling uninitialized memory, 607
19.1.59 uniqueo e 609
19.1.60 UNIQUE_COPY + + « « v v v e 610
19.1.61 upper_bound e e 611
19.1.62 Heap algorithms e 613

20 Multi Threading 617
20.1 Multi Threading e e e 618
20.1.1 The namespace std::this_thread 618
20.1.2 Theclass std::thread L 619
20.1.3 Theclassstd:;jthread 628

20.2 Synchronization (mutexes) e 631
20.2.1 Initialization in multi-threaded programs 633
20.2.2 Shared mutexes 635

20.3 Locks and lock handling 636
20.3.1 Name-independent declarations 639
20.3.2 Deadlocks L 640
20.3.3 Sharedlocks 642
20.3.4 Scopedlocks e e 644

20.4 Event handling (condition variables) 645
20.4.1 The class std::condition_variable 647
20.4.2 The class std::condition_variable_any 648
20.4.3 An example using condition variables 649

20.5 Atomic actions: mutexes not required 652
20.6 An example: threaded quicksort 655
20.7 Shared States e 659
20.8 Asynchronous return objects: std::future 659
20.8.1 The std::future_error exception and the std::future_errcenum 661

20.9 Shared asynchronous return objects: std::shared_future 663

XV

20.108tarting a new thread: std::asyne 665

20.11Preparing a task for execution: std::packaged_task 668
20.12T'he class ‘std::promise’ e e 672
20.13An example: multi-threaded compilations 675
20.14Transactional Memory e e e e 680
20.188ynchronizing output to streams 681
20.15.1 The ‘std::syncbuf’ streambuf, ..., 683
20.15.2 Multi-threaded compilations using ‘osyncstream’ 683

21 Function and Variable Templates 687
21.1 Defining function templates 687
21.1.1 Considerations regarding template parameters 689
21.1.2 Autoanddecltype 692
21.1.3 Late-specified returntype 695

21.2 Passing arguments by reference (reference wrappers) 697
21.3 Using local and unnamed types as template arguments 698
21.4 Template parameter deduction 699
21.4.1 Lvalue transformations o 700
21.4.2 Qualification transformations 701
21.4.3 Transformationtoabaseclass 702
21.4.4 The template parameter deduction algorithm 703
21.4.5 Template type contractions 704

21.5 Declaring function templates 705
21.5.1 Instantiation declarations 706

21.6 Instantiating function templates 706
21.6.1 Instantiations: no ‘code bloat’ 708

21.7 Using explicit template types 709
21.8 Overloading function templates 710
21.8.1 An example using overloaded function templates 711
21.8.2 Ambiguities when overloading function templates 712
21.8.3 Declaring overloaded function templates 713

21.9 Specializing templates for deviating types L. 713
21.9.1 Avoiding too many specializations, 715

xvi

21.9.2 Declaring specializations 716

21.9.3 Complications when using the insertion operator 717
21.108tatic assertions e e 717
21.1MNumeric limits 718
21.12Polymorphous wrappers for functionobjects L. 720
21.13Compiling template definitions and instantiations 721
21.14The function selection mechanism L .. 723

21.14.1 Determining the template type parameters 724
21.155FINAE: Substitution Failure Is Not An Error 727
21.16Conditional function definitions using ‘if constexpr’ 728
21.17Summary of the template declarationsyntax 729
21.18Variables as templates (template variables) 729

22 Class Templates 731

22.0.1 Template Argument Deduction 732
22.1 Defining class templates 738

22.1.1 Constructing the circular queue: CirQue 739

22.1.2 Non-type parameters e 740

22.1.3 Membertemplates e 742

22.1.4 CirQue’s constructors and member functions 744

22.1.5 Using CirQueobjects e 748

22.1.6 Default class template parameters 749

22.1.7 Declaring classtemplates 750

22.1.8 Preventing template instantiations 750

22.1.9 Generic lambda expressions e e 752
22.2 Static datamembers 754

22.2.1 Extended use of the keyword ‘typename’ 755
22.3 Specializing class templates for deviatingtypes. 758

22.3.1 Example of a class specialization 759
22.4 Partial specializations e 761

22.4.1 Intermezzo: some simple matrix algebraic concepts 762

22.4.2 The Matrix class template, 763

22.4.3 The MatrixRow partial specialization 764

xvii

22.4.4 The MatrixColumn partial specialization. 766

22.4.5 The 1x1 matrix: avoid ambiguity 766

22.5 Variadic templates e e 768
22.5.1 Defining and using variadic templates 769
22.5.2 Perfect forwarding 771
22.5.3 The unpack operator 773
22.5.4 Non-type variadictemplates 775
22.5.5 Folding expressions i i i i it e e e e e e 775

226 Tuples e e e 777
22.6.1 Tuples and structured bindings 778

22.7 Computing the return type of function objects 781
22.8 Instantiating class templates 783
22.9 Processing class templates and instantiations, 785
22.10eclaring friends e e e 785
22.10.1 Non-templates used as friends in templates 786
22.10.2 Templates instantiated for specific typesasfriends 788
22.10.3 Unbound templates asfriends 794
22.10.4 Extended friend declarations oo, 796
22.11Class template derivation 796
22.11.1 Deriving ordinary classes from class templates 798
22.11.2 Deriving class templates from class templates 799
22.11.3 Deriving class templates from ordinary classes 801
22.18tatic Polymorphism e 806
22.12.1 An example of static polymorphism 807
22.12.2 Converting dynamic polymorphic classes to static polymorphic classes 810
22.12.3 Using static polymorphism to avoid reimplementations 814
22.13Class templates and nesting 816
22.14Constructing iterators e e 817
22.14.1 Implementing a ‘RandomAccesslterator’ 820
22.14.2 Implementing a ‘reverse_iterator’, 824

23 Advanced Template Use 829
23.1 Subtleties L e 830

23.1.1 Type resolution for base classmembers. 830

23.1.2 :template, .template and ->template L oL, 832
23.2 Template Meta Programming 835
23.2.1 Values according totemplates 835
23.2.2 Selecting alternatives using templates 837
23.2.3 Templates: Iterations by Recursion 841
23.3 User-defined literals 842
23.4 Template template parameters 844
23.4.1 Policyclasses-1 845
23.4.2 Policy classes - II: template template parameters 847
23.4.3 Structure by Policy 851
23.5 Alias Templates e e 852
23.6 Trait classes e e 853
23.6.1 Distinguishing class from non-classtypes 856
23.6.2 Availabletypetraits 858
23.7 Defining ‘ErrorCodeEnum’ and ’ErrorConditionEnum’ enumerations 862
23.7.1 Deriving classes from std::error_category 864
23.8 Using ‘noexcept’ when offering the ‘strong guarantee’ 867
23.9 More conversions to class types e 869
23.9.1 Typestotypes i i e e e e e e 869
23.9.2 Anemptytype e e e 870
23.9.3 Typeconvertibility 870
23.10Femplate TypeList processing e 873
23.10.1 The length of a TypeList 874
23.10.2 Searching a TypeList e 875
23.10.3 Selecting from a TypeList, 876
23.10.4 Prefixing/Appendingto a TypeList 877
23.10.5 Erasing from a TypeList 878
23.1WUsing a TypeList e e e e 882
23.11.1 The Wrap and Multi class templates 882
23.11.2 The MultiBase class template 884
23.11.3 Support templates 885
23.11.4 Using Multio e 887

Xix

23.1Kxpression Templates e 888

23.12.1 Designing an Expression Template 889
23.12.2 Implementing an Expression Template 890
23.12.3 The BasicType trait class and orderingclasses 891
23.13C0NCEPES . . . e e e e e e e e e e 892
23.13.1 Defining concepts e e e 894
23.13.2 Requirements. e e e e e e e e e 895
23.13.3 Predefined concepts e 902
23.13.4 Applying concepts to template parameterpacks 908
23.13.5 Applying concepts to free functions 910
23.13.6 Implementing constrained class members 911
23.13.7 Constrained partial specializations 912

24 Coroutines 917
24.1 Defininga coroutine. 920
24.1.1 The coroutine’s State class (promise_type) 922
24.1.2 Simplifying the stateclass 925

24.2 Embedding coroutinesinclasses 926
24.2.1 The ‘Reader’ coroutinehandler. 928
24.2.2 The ‘Writer’ coroutine handler 930

24.3 ‘Awaitables’, ‘Awaiters’ and ‘co_await’. 930
24.4 The class ‘Awaiter’ e 932
24.5 Accessing State from inside coroutines 933
24.6 Finite State Automatons via coroutines 935
24.6.1 The ‘Start’ handlerclass 937
24.6.2 Completing the Finite State Automaton 939

24.7 Recursive coroutines e e 939
24.7.1 Recursively calling recursiveCoro 941
24.7.2 Beyond a single recursivecall oL, 942

24.8 Coroutine iterators 944
24.9 Visiting directories using coroutines 945
24.9.1 The ‘Dir’ class showing directory entries 946
24.9.2 Visiting directories using coroutines 947

24.9.3 Functions vs. coroutines 949

25 Modules 951
25.1 An initial, completemodule 952
25.2 NameSPaCes . . . v v v v o e 955
25.3 Module header files L 957

25.3.1 Localheaderfiles 957
25.4 Templates e e e e e 958
25.4.1 Templatesinclasses e e 959
25.5 Module partitions e e 961
25.5.1 The Math:Utility partition 962
25.5.2 The Math:Add partition, 963
25.5.3 The Math moduleitself 963
25.5.4 Compiling the remaining sourcefiles 964
25.5.5 Using a module having partitions 966
25.6 Module mapping e e e e 966
25.7 Modules in libraries L 968
25.7.1 Locally developed libraries, 970

26 Concrete Examples 973

26.1 Using file descriptors with ‘streambuf’classes 973
26.1.1 Classes for output operations 973
26.1.2 Classes for input operations 976
26.1.3 Fixed-sized field extraction from istream objects 985

26.2 The fork’system call e 989
26.2.1 AbasicForkclass 989
26.2.2 Parentsand Children 991
26.2.3 Redirectionrevisited 992
26.2.4 The ‘Daemon’ program v v v it e e e e e e 993
26.2.5 Theclass ‘Pipe’ e 994
26.2.6 The class ‘ParentSlurp’ e 996
26.2.7 Communicating with multiple children 997

26.3 Adding binary operatorstoclasses e 1010
26.3.1 Merely using operators e e e 1011

xx1

26.3.2 The CRTP and defining operator function templates 1012

26.3.3 Insertion and extraction L o . 1013
26.4 Distinguishing lvalues from rvalues with operator[I() 1014
26.5 Implementing a ‘reverse_iterator’ 1016
26.6 Using ‘bisonc++ and “flexc++ e e e e 1019
26.6.1 Using ‘flexc++ tocreateascanner. 1020
26.6.2 Using ‘bisonc++ and ‘flexc++ 1024

Index 1033

xxii

Chapter 1

Overview Of The Chapters

The chapters of the C++ Annotations cover the following topics:

Chapter 1: This overview of the chapters.

Chapter 2: A general introduction to C++.

Chapter 3: A first impression: differences between C and C++.

Chapter 4: Name Spaces: how to avoid name collisions.

Chapter 5: The ‘string’ data type.

Chapter 6: The C++ I/O library.

Chapter 7: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of a

class.

Chapter 8: Static data and functions: members of a class not bound to objects.

Chapter 9:

Allocation and returning unused memory: new, delete, and the function

set_new_handler().

Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21:

Exceptions: handle errors where appropriate, rather than where they occur.
Give your own meaning to operators.

Abstract Containers to put stuff into.

Building classes upon classes: setting up class hierarchies.

Changing the behavior of member functions accessed through base class pointers.
Gaining access to private parts: friend functions and classes.

Classes having pointers to members: pointing to locations inside objects.
Constructing classes and enums within classes.

The Standard Template Library.

The STL generic algorithms.

Multi Threading.

Function templates: using molds for type independent functions.

CHAPTER 1. OVERVIEW OF THE CHAPTERS

Chapter 22: Class templates: using molds for type independent classes.
Chapter 23: Advanced Template Use: programming the compiler.
Chapter 24: Coroutines.

Chapter 26: Several examples of programs written in C++.

Chapter 2

Introduction

This document offers an introduction to the C++ programming language. It is a guide for C/C++
programming courses, yearly presented by Frank at the University of Groningen. This document is
not a complete C/C++ handbook, as much of the C-background of C++ is not covered. Other sources
should be referred to for that (e.g., the on-line book! suggested to me by George Danchev (danchev at
spnet dot net)).

The reader should be forewarned that extensive knowledge of the C programming language is ac-
tually assumed. The C++ Annotations continue where topics of the C programming language end,
such as pointers, basic flow control and the construction of functions.

Some elements of the language, like specific lexical tokens (like digraphs (e.g., <: for [, and >: for |))
are not covered by the C++ Annotations, as these tokens occur extremely seldom in C++ source code.
In addition, trigraphs (using ?7< for {, and 77> for }) have been removed from C++.

The working draft of the C++ standard is freely available, and can be cloned from the git-repository
at https://gitlab.com/cplusplus/draft.git

The version number of the C++ Annotations (currently 13.00.01) is updated when the content of the
document change. The first number is the major number, and is probably not going to change for
some time: it indicates a major rewriting. The middle number is increased when new information
is added to the document. The last number only indicates small changes; it is increased when, e.g.,
series of typos are corrected.

This document is published by the Center of Information Technology, University of Groningen, the
Netherlands under the GNU General Public License?.

The C++ Annotations were typeset using the yodl® formatting system.

All correspondence concerning suggestions, additions, improvements or
changes to this document should be directed to the author:

Frank B. Brokken
University of Groningen,
PO Box 407,

9700 AK Groningen
The Netherlands

Thttp:/publications.gbdirect.co.uk/c_book/
2http:/www.gnu.org/licenses/
Shttps:/fbb-git.gitlab.io/yodl/

4 CHAPTER 2. INTRODUCTION

(email: f.b.brokken@rug.nl)

In this chapter an overview of C++’s defining features is presented. A few extensions to C are
reviewed and the concepts of object based and object oriented programming (OOP) are briefly intro-
duced.

2.1 What’s new in the C++ Annotations

This section is modified when the first or second part of the version number changes (and occasionally
also for the third field of the version number). At a major version upgrade the entries of the previous
major version are kept, and entries referring to older releases are removed.

* Version 13.0.0 adds a new chapter (25) about C++ Modules, covers the _ name-independent
declaration, upgraded the C++ standard to C++26, clarified and repaired typos in several sec-
tions.

* Version 12.5.0 adds a subsection about constructors of polymorphic classes (cf. section 14.1.1)
and adds a section about reading and writing devices using the std::iostream class (cf. section

14.9).
The image celebrating the Annotations’ 30th year of existence was based on this picture.*

* Version 12.4.0 adds a section about the std::byte type (cf. chapter 3), offers an alternative
implementation (cf. section 11.4), and covers the definition of multi-argument index operators
(chapter 11). The description of how to implement class constructors that may throw exceptions
was updated (cf. section 10.12).

* Version 12.3.0 updates and reorganizes the coverage of the generic algorithms, fixes many typos
and unclarities in the Annotations’ text, removed superfluous sections since C++20, and adds
an overview of facilities to handle objects constructed in raw memory.

* Version 12.2.0 takes into account that std::iterator is deprecated. Section 22.14 was rewritten;
section 11.1 was updated (operator|] const should return Type const & instead of Type values);
added section 5.3 covering std::string view; added section 20.15 covering synchronization of
output to streams in multi-threaded programs; added sections 22.10.2.1 and 23.13.7.2 about
bound-friends; 'typedef’ definitions were replaced by 'using’ declarations.

* Version 12.1.0 adds a description of the _file clock::to_sys static member (section 4.3.1), re-
paired the descriptions of popx() members of various abstract containers, and reorganized the
description of the facilities of the filesystem::path class.

* Version 12.0.0 adds a new chapter about coroutines (chapter 24) and a new section (20.1.3) to
chapter 20.

2.2 C++’s history

The first implementation of C++ was developed in the 1980s at the AT&T Bell Labs, where the Unix
operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, converting special constructions
in its source code to plain C. Back then this code was compiled by a standard C compiler. The ‘pre-
code’, which was read by the C++ pre-compiler, was usually located in a file with the extension .cc,

4https://pixabay.com/photos/fireworks-new-years-eve-city-sky-1953253/

2.2. C++S HISTORY 5

.C or .cpp. This file would then be converted to a C source file with the extension .c, which was
thereupon compiled and linked.

The nomenclature of C++ source files remains: the extensions .cc and .cpp are still used. However,
the preliminary work of a C++ pre-compiler is nowadays usually performed during the actual compi-
lation process. Often compilers determine the language used in a source file from its extension. This
holds true for Borland’s and Microsoft’s C++ compilers, which assume a C++ source for an extension
.cpp. The GNU compiler g++, which is available on many Unix platforms, assumes for C++ the
extension .cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is a superset
of C: C++ offers the full C grammar and supports all C-library functions, and adds to this features
of its own. This makes the transition from C to C++ quite easy. Programmers familiar with C may
start ‘programming in C++’ by using source files having extensions .cc or .cpp instead of .c, and may
then comfortably slip into all the possibilities offered by C++. No abrupt change of habits is required.

2.2.1 History of the C++ Annotations

The original version of the C++ Annotations was written by Frank Brokken and Karel Kubat in
Dutch using LaTeX. After some time, Karel rewrote the text and converted the guide to a more
suitable format and (of course) to English in September 1994.

The first version of the guide appeared on the net in October 1994. By then it was converted to
SGML.

Gradually new chapters were added, and the content was modified and further improved (thanks to
countless readers who sent us their comments).

In major version four Frank added new chapters and converted the document from SGML to yodI°.

The C++ Annotations are freely distributable. Be sure to read the legal notes®.

Reading the annotations beyond this point implies that you are aware of these
notes and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to
Frank”.

2.2.2 Compiling a C program using a C++ compiler

Prospective C++ programmers should realize that C++ is not a perfect superset of C. There are some
differences you might encounter when you simply rename a file to a file having the extension .cc and
run it through a C++ compiler:

¢ In C, sizeof(’c’) equals sizeof(int), 'c’ being any ASCII character. The underlying philosophy
is probably that chars, when passed as arguments to functions, are passed as integers any-
way. Furthermore, the C compiler handles a character constant like ’c’ as an integer constant.
Hence, in C, the function calls

putchar(10);

Shttps:/fbb-git.gitlab.io/yodl/
6legal.shtml
"mailto:f.b.brokken@rug.nl

6 CHAPTER 2. INTRODUCTION

and
putchar("\n');

are synonymous.

By contrast, in C++, sizeof(’c’) is always 1 (but see also section 3.4.2). An int is still an int,
though. As we shall see later (section 2.5.4), the two function calls

somefunc(10);

and

somefunc('\n');

may be handled by different functions: C++ distinguishes functions not only by their names,
but also by their argument types, which are different in these two calls. The former using an
int argument, the latter a char.

* C++ requires very strict prototyping of external functions. E.g., in C a prototype like

void func();

means that a function func() exists, returning no value. The declaration doesn’t specify which
arguments (if any) are accepted by the function.

However, in C++ the above declaration means that the function func() does not accept any
arguments at all. Any arguments passed to it result in a compile-time error.

Note that the keyword extern is not required when declaring functions. A function definition be-
comes a function declaration simply by replacing a function’s body by a semicolon. The keyword
extern is required, though, when declaring variables.

2.2.3 Compiling a C++ program

To compile a C++ program, a C++ compiler is required. Considering the free nature of this document,
it won’t come as a surprise that a free compiler is suggested here. The Free Software Foundation
(FSF) provides at http://www.gnu.org a free C++ compiler which is, among other places, also part of
the Debian (http://www.debian.org) distribution of Linux (http://www .linux.org).

Always use the latest C++ standard supported by your compiler. When the latest standard isn’t
used by default, but is already partially implemented it can usually be selected by specifying the
appropriate flag. E.g., to use the C++26 standard specify the flag --std=c-++26.

Note: in the C++ Annotations it is assumed that the lastest available standard is specified using the
+NOTRANS(-{}-{})std flag, even if no +NOTRANS(-{}-{})std flag has been specified.

2.2.3.1 C++ under MS-Windows

For MS-Windows Cygwin (http://cygwin.com) or MinGW (http://mingw-w64.org/doku.php) pro-
vide the foundation for installing the Windows port of the GNU g++ compiler (see also
https://docs.microsoft.com/en-us/windows/wsl/about).

The GNU g-++ compiler’s official home page is http://gcc.gnu.org, also containing information about
how to install the compiler in an MS-Windows system.

2.3. C++: ADVANTAGES AND CLAIMS 7

2.2.3.2 Compiling a C++ source text
Generally the following command can be used to compile a C++ source file ‘source.cc:

g-+-+ source.cc

This produces a binary program (a.out or a.exe). If the default name is inappropriate, the name of
the executable can be specified using the -o flag (here producing the program source):

g4+ -0 source source.cc

If a mere compilation is required, the compiled module can be produced using the -c flag:

g-+-+ -c source.cc

This generates the file source.o, which can later on be linked to other modules.

C++ programs quickly become too complex to maintain ‘by hand’. With all serious programming
projects program maintenance tools are used. Usually the standard make program is used to main-
tain C++ programs, but good alternatives exist, like the icmake® or ccbuild’? program maintenance
utilities.

It is strongly advised to start using maintenance utilities early in the study of C++.

2.3 C++: advantages and claims

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed advantages
of C++ are:

¢ New programs would be developed in less time because old code can be reused.

* Creating and using new data types would be easier than in C.

* The memory management under C++ would be easier and more transparent.

* Programs would be less bug-prone, as C++ uses a stricter syntax and type checking.

¢ ‘Data hiding’, the usage of data by one program part while other program parts cannot access
the data, would be easier to implement with C++.

Which of these allegations are true? Originally, our impression was that the C++ language was some-
what overrated; the same holding true for the entire object-oriented programming (OOP) approach.
The enthusiasm for the C++ language resembles the once uttered allegations about Artificial-
Intelligence (AI) languages like Lisp and Prolog: these languages were supposed to solve the most
difficult Al-problems ‘almost without effort’. New languages are often oversold: in the end, each
problem can be coded in any programming language (say BASIC or assembly language). The advan-
tages and disadvantages of a given programming language aren’t in ‘what you can do with them’,
but rather in ‘which tools the language offers to implement an efficient and understandable solu-
tion to a programming problem’. Often these tools take the form of syntactic restrictions, enforcing
or promoting certain constructions or simply suggesting intentions by applying or ‘embracing’ such

8https:/fbb-git.gitlab.io/icmake/
9https:/gitlab.com/bneijt/ccbuild/

8 CHAPTER 2. INTRODUCTION

syntactic forms. Rather than a long list of plain assembly instructions we now use flow control state-
ments, functions, objects or even (with C++) so-called templates to structure and organize code and
to express oneself ‘eloquently’ in the language of one’s choice.

Concerning the above allegations of C++, we support the following, however.

* The development of new programs while existing code is reused can also be implemented in
C by, e.g., using function libraries. Functions can be collected in a library and need not be
re-invented with each new program. C++, however, offers specific syntax possibilities for code
reuse, apart from function libraries (see chapters 13 and 21).

* Creating and using new data types is certainly possible in C; e.g., by using structs, typedefs
etc.. From these types other types can be derived, thus leading to structs containing structs and
so on. In C++ these facilities are augmented by defining data types which are completely ‘self
supporting’, taking care of, e.g., their memory management automatically (without having to
resort to an independently operating memory management system as used in, e.g., Java).

¢ In C++ memory management can in principle be either as easy or as difficult as it is in C. Espe-
cially when dedicated C functions such as xmalloc and xrealloc are used (allocating the memory
or aborting the program when the memory pool is exhausted). However, with functions like
malloc it is easy to err. Frequently errors in C programs can be traced back to miscalculations
when using malloc. Instead, C++ offers facilities to allocate memory in a somewhat safer way,
using its operator new.

* Concerning ‘bug proneness’ we can say that C++ indeed uses stricter type checking than C.
However, most modern C compilers implement ‘warning levels’; it is then the programmer’s
choice to disregard or get rid of the warnings. In C++ many of such warnings become fatal
errors (the compilation stops).

* As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or static
variables can be used and special data types such as structs can be manipulated by dedicated
functions. Using such techniques, data hiding can be implemented even in C; though it must
be admitted that C++ offers special syntactic constructions, making it far easier to implement
‘data hiding’ (and more in general: ‘encapsulation’) in C++ than in C.

C++ in particular (and OOP in general) is of course not the solution to all programming problems.
However, the language does offer various new and elegant facilities which are worth investigating. At
the downside, the level of grammatical complexity of C++ has increased significantly as compared
to C. This may be considered a serious drawback of the language. Although we got used to this
increased level of complexity over time, the transition was neither fast nor painless.

With the C++ Annotations we hope to help the reader when transiting from C to C++ by focusing on
the additions of C++ as compared to C and by leaving out plain C. It is our hope that you like this
document and may benefit from it.

Enjoy and good luck on your journey into C++!

2.4 What is Object-Oriented Programming?

Object-oriented (and object-based) programming propagates a slightly different approach to pro-
gramming problems than the strategy usually used in C programs. In C programming problems
are usually solved using a ‘procedural approach’: a problem is decomposed into subproblems and
this process is repeated until the subtasks can be coded. Thus a conglomerate of functions is created,
communicating through arguments and variables, global or local (or static).

2.4. WHAT IS OBJECT-ORIENTED PROGRAMMING? 9

e.g. mechanics
and owner

Monthly salary

A

e.g. salesmen

+
bonus per sale in showroom

A

e.g. car

+
travel expenses purchasers

Figure 2.1: Hierarchy of objects in the salary administration.

In contrast (or maybe better: in addition) to this, an object-based approach identifies the keywords
used in a problem statement. These keywords are then depicted in a diagram where arrows are
drawn between those keywords to depict an internal hierarchy. The keywords become the objects
in the implementation and the hierarchy defines the relationship between these objects. The term
object is used here to describe a limited, well-defined structure, containing all information about
an entity: data types and functions to manipulate the data. As an example of an object oriented
approach, an illustration follows:

The employees and owner of a car dealer and auto garage company are paid as follows.
First, mechanics who work in the garage are paid a certain sum each month. Second, the
owner of the company receives a fixed amount each month. Third, there are car salesmen
who work in the showroom and receive their salary each month plus a bonus per sold
car. Finally, the company employs second-hand car purchasers who travel around; these
employees receive their monthly salary, a bonus per bought car, and a restitution of their
travel expenses.

When representing the above salary administration, the keywords could be mechanics, owner, sales-
men and purchasers. The properties of such units are: a monthly salary, sometimes a bonus per
purchase or sale, and sometimes restitution of travel expenses. When analyzing the problem in this
manner we arrive at the following representation:

* The owner and the mechanics can be represented by identical types, receiving a given salary
per month. The relevant information for such a type would be the monthly amount. In addition
this object could contain data as the name, address and social security number.

* Car salesmen who work in the showroom can be represented as the same type as above but with
some extra functionality: the number of transactions (sales) and the bonus per transaction.

In the hierarchy of objects we would define the dependency between the first two objects by
letting the car salesmen be ‘derived’ from the owner and mechanics.

¢ Finally, there are the second-hand car purchasers. These share the functionality of the sales-
men except for travel expenses. The additional functionality would therefore consist of the
expenses made and this type would be derived from the salesmen.

The hierarchy of the identified objects are further illustrated in Figure 2.1.

The overall process in the definition of a hierarchy such as the above starts with the description of the
most simple type. Traditionally (and still encountered with some popular object oriented languages)
more complex types are thereupon derived from the basic type, with each derived type adding some

10 CHAPTER 2. INTRODUCTION

new functionality. From these derived types, more complex types can again be derived ad infinitum,
until a representation of the entire problem can be made.

Over the years this approach has become less popular in C++ as it typically results in very tight cou-
pling among those types, which in turns reduces rather than enhances the understanding, maintain-
ability and testability of complex programs. The term coupling refers to the degree of independence
between software components: tight coupling means a strong dependency, which is frowned upon in
C++. In C++ object oriented programs more and more favor small, easy to understand hierarchies,
limited coupling and a developmental process where design patterns (cf. Gamma et al. (1995)) play
a central role.

In C++ classes are frequently used to define the characteristics of objects. Classes contain the nec-
essary functionality to do useful things. Classes generally do not offer all their functionality (and
typically none of their data) to objects of other classes. As we will see, classes tend to hide their prop-
erties in such a way that they are not directly modifiable by the outside world. Instead, dedicated
functions are used to reach or modify the properties of objects. Thus class-type objects are able to
uphold their own integrity. The core concept here is encapsulation of which data hiding is just an
example. These concepts are further elaborated in chapter 7.

2.5 Differences between C and C++

In this section some examples of C++ code are shown. Some differences between C and C++ are
highlighted.

2.5.1 The function ‘main’

In C++ there are only two variants of the function main: int main() and int main(int argc, char xxargv).

Notes:

* The return type of main is int, and not void;

* The function main cannot be overloaded (for other than the abovementioned signatures);

¢ It is not required to use an explicit return statement at the end of main. If omitted main returns
0;

* The value of argv[argc| equals 0;

® The ‘third char *xenvp parameter’ is not defined by the C++ standard and should be avoided.

Instead, the global variable extern char xxenviron should be declared providing access to the
program’s environment variables. Its final element has the value 0;

* A C++ program ends normally when the main function returns. Using a function try block (cf.
section 10.11) for main is also considered a normal end of a C++ program. When a C++ ends
normally, destructors (cf. section 9.2) of globally defined objects are activated. A function like
exit(3) does not normally end a C++ program and using such functions is therefore deprecated.

2.5.2 End-of-line comment

According to the ANSI/ISO definition, ‘end of line comment’ is implemented in the syntax of C++.
This comment starts with // and ends at the end-of-line marker. The standard C comment, delimited
by /x and %/ can still be used in C++:

2.5. DIFFERENCES BETWEEN C AND C++ 11

int main()

// this is end-of-line comment
// one comment per line

*

this is standard-C comment, covering
multiple lines

Despite the example, it is advised not to use C type comment inside the body of C++ functions.
Sometimes existing code must temporarily be suppressed, e.g., for testing purposes. In those cases
it’s very practical to be able to use standard C comment. If such suppressed code itself contains such
comment, it would result in nested comment-lines, resulting in compiler errors. Therefore, the rule
of thumb is not to use C type comment inside the body of C++ functions (alternatively, #if 0 until
#endif pair of preprocessor directives could of course also be used).

2.5.3 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function before it is called,
and the call must match the prototype. The program

int main()

printf("Hello World\n");

often compiles under C, albeit with a warning that printf() is an unknown function. But C++ compil-
ers (should) fail to produce code in such cases. The error is of course caused by the missing #include
<stdio.h> (which in C++ is more commonly included as #include <cstdio> directive).

And while we're at it: as we've seen in C++ main always uses the int return value. Although it
is possible to define int main() without explicitly defining a return statement, within main it is not
possible to use a return statement without an explicit int-expression. For example:

int main()

return; // won't compile: expects int expression, e.g.
// return 1;

Implicit conversions from void * to non-void pointers are not allowed. E.g., the following isn’t ac-
cepted in C++:

void *none()

return 0;

int main()

int *empty = none();

12 CHAPTER 2. INTRODUCTION

2.5.4 Function Overloading

In C++ it is possible to define functions having identical names but performing different actions. The
functions must differ in their parameter lists (and/or in their const attribute). An example is given
below:

#include <stdio.h>
void show(int val)

printf("Integer: %d\n", val);

void show(double val)

printf("Double: %lIf\n", val);

void show(char const *val)

printf("String: %s\n", val);

int main()

show(12);
show(3.1415);
show("Hello World!\n");

}

In the above program three functions show are defined, only differing in their parameter lists, ex-
pecting an int, double and char *, respectively. The functions have identical names. Functions having
identical names but different parameter lists are called overloaded. The act of defining such func-
tions is called ‘function overloading’.

The C++ compiler implements function overloading in a rather simple way. Although the functions
share their names (in this example show), the compiler (and hence the linker) use quite different
names. The conversion of a name in the source file to an internally used name is called ‘name
mangling’. E.g., the C++ compiler might convert the prototype void show (int) to the internal name
Vshowl, while an analogous function having a char * argument might be called VshowCP. The actual
names that are used internally depend on the compiler and are not relevant for the programmer,
except where these names show up in e.g., a listing of the content of a library.

Some additional remarks with respect to function overloading:

* Do not use function overloading for functions doing conceptually different tasks. In the example
above, the functions show are still somewhat related (they print information to the screen).

However, it is also quite possible to define two functions lookup, one of which would find a name
in a list while the other would determine the video mode. In this case the behavior of those two
functions have nothing in common. It would therefore be more practical to use names which
suggest their actions; say, findname and videoMode.

* C++ does not allow identically named functions to differ only in their return values, as it is
always the programmer’s choice to either use or ignore a function’s return value. E.g., the
fragment

printf("Hello World!'\n");

provides no information about the return value of the function printf. Two functions printf
which only differ in their return types would therefore not be distinguishable to the compiler.

2.5. DIFFERENCES BETWEEN C AND C++ 13

* In chapter 7 the notion of const member functions is introduced (cf. section 7.7). Here it
is merely mentioned that classes normally have so-called member functions associated with
them (see, e.g., chapter 5 for an informal introduction to the concept). Apart from overloading
member functions using different parameter lists, it is then also possible to overload member
functions by their const attributes. In those cases, classes may have pairs of identically named
member functions, having identical parameter lists. Then, these functions are overloaded by
their const attribute. In such cases only one of these functions must have the const attribute.

2.5.5 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments are
supplied by the compiler when they are not specified by the programmer. For example:
#include <stdio.h>
void showstring(char *str = "Hello World!\n");
int main()
showstring("Here's an explicit argument.\n");

showstring(); // in fact this says:
// showstring("Hello World'\n");

The possibility to omit arguments in situations where default arguments are defined is just a nice
touch: it is the compiler who supplies the lacking argument unless it is explicitly specified at the
call. The code of the program will neither be shorter nor more efficient when default arguments are
used.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4);

int main()
two__ints(); // arguments: 1, 4
two__ints(20); // arguments: 20, 4
two_ints(20, 5); // arguments: 20, 5

When the function two__ints is called, the compiler supplies one or two arguments whenever neces-
sary. A statement like two_ints(,6) is, however, not allowed: when arguments are omitted they must
be on the right-hand side.

Default arguments must be known at compile-time since at that moment arguments are supplied to
functions. Therefore, the default arguments must be mentioned at the function’s declaration, rather
than at its implementation:

// sample header file
void two_ints(int a = 1, int b = 4);

// code of function in, say, two.cc
void two_ints(int a, int b)

{
}

14 CHAPTER 2. INTRODUCTION

It is an error to supply default arguments in both function definitions and function declarations.
When applicable default arguments should be provided in function declarations: when the function is
used by other sources the compiler commonly reads the header file rather than the function definition
itself. Consequently the compiler has no way to determine the values of default arguments if they
are provided in the function definition.

2.5.6 NULL-pointers vs. 0-pointers and nullptr

In C++ all zero values are coded as 0. In C NULL is often used in the context of pointers. This
difference is purely stylistic, though one that is widely adopted. In C++ NULL should be avoided
(as it is a macro, and macros can --and therefore should-- easily be avoided in C++, see also section
8.1.4). Instead 0 can almost always be used.

Almost always, but not always. As C++ allows function overloading (cf. section 2.5.4) the program-
mer might be confronted with an unexpected function selection in the situation shown in section
2.5.4:

#include <stdio.h>

void show(int val)

printf("Integer: %d\n", val);

void show(double val)

printf("Double: %lf\n", val);

void show/(char const *val)

printf("String: %s\n", val);

int main()

show(12);
show(3.1415);
show("Hello World!\n");

}

In this situation a programmer intending to call show(char const %) might call show(0). But this
doesn’t work, as 0 is interpreted as int and so show(int) is called. But calling show(NULL) doesn’t work
either, as C++ usually defines NULL as 0, rather than ((void *)0). So, show(int) is called once again.
To solve these kinds of problems the new C++ standard introduces the keyword nullptr representing
the 0 pointer. In the current example the programmer should call show(nullptr) to avoid the selection
of the wrong function. The nullptr value can also be used to initialize pointer variables. E.g.,

int *ip = nullptr; // OK
int value = nullptr; // error: value is no pointer

2.5.7 The ‘void’ parameter list
In C, a function prototype with an empty parameter list, such as

void func();

2.5. DIFFERENCES BETWEEN C AND C++ 15

means that the argument list of the declared function is not prototyped: for functions using this
prototype the compiler does not warn against calling func with any set of arguments. In C the
keyword void is used when it is the explicit intent to declare a function with no arguments at all, as
in:

void func(void);

As C++ enforces strict type checking, in C++ an empty parameter list indicates the total absence of
parameters. The keyword void is thus omitted.

2.5.8 The ‘#define __cplusplus’

Each C++ compiler which conforms to the ANSI/ISO standard defines the symbol __ cplusplus: it is
as if each source file were prefixed with the preprocessor directive #define _ cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.9 Using standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used in
C++ programs. Such functions, however, must be declared as C functions.

As an example, the following code fragment declares a function xmalloc as a C function:

extern "C" void *xmalloc(int size);

This declaration is analogous to a declaration in C, except that the prototype is prefixed with extern
n C n .

A slightly different way to declare C functions is the following:

extern "C"

// C-declarations go in here

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C header
file myheader.h which declares C functions can be included in a C++ source file as follows:

extern "C"

#include <myheader.h>

Although these two approaches may be used, they are actually seldom encountered in C++ sources.
A more frequently used method to declare external C functions is encountered in the next section.

2.5.10 Header files for both C and C++

The combination of the predefined symbol cplusplus and the possibility to define extern "C" func-
tions offers the ability to create header files for both C and C++. Such a header file might, e.g.,
declare a group of functions which are to be used in both C and C++ programs.

16 CHAPTER 2. INTRODUCTION

The setup of such a header file is as follows:

#ifdef _ cplusplus
extern "C"

L
#endif

/* declaration of C-data and functions are inserted here. E.g., */
void *xmalloc(int size);

#ifdef cplusplus
#endif

Using this setup, a normal C header file is enclosed by extern "C" { which occurs near the top of the
file and by }, which occurs near the bottom of the file. The #ifdef directives test for the type of the
compilation: C or C++. The ‘standard’ C header files, such as stdio.h, are built in this manner and
are therefore usable for both C and C++.

In addition C++ headers should support include guards. In C++ it is usually undesirable to include
the same header file twice in the same source file. Such multiple inclusions can easily be avoided by
including an #ifndef directive in the header file. For example:

#ifndef MYHEADER _H _
#define MYHEADER _H_
// declarations of the header file is inserted here,
// using #ifdef _ cplusplus etc. directives
#endif

When this file is initially scanned by the preprocessor, the symbol MYHEADER_H is not yet de-
fined. The #ifndef condition succeeds and all declarations are scanned. In addition, the symbol
MYHEADER H is defined.

When this file is scanned next while compiling the same source file, the symbol MYHEADER H_has
been defined and consequently all information between the #ifndef and #endif directives is skipped
by the compiler.

In this context the symbol name MYHEADER_H _ serves only for recognition purposes. E.g., the
name of the header file can be used for this purpose, in capitals, with an underscore character instead
of a dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give C++
header files no extension. For example, the standard iostreams cin, cout and cerr are available after
including the header file iostream, rather than iostream.h. In the Annotations this convention is used
with the standard C++ header files, but not necessarily everywhere else.

There is more to be said about header files. Section 7.11 provides an in-depth discussion of the
preferred organization of C++ header files. In addition, starting with the C+-+26 standard modules
are available resulting in a somewhat more efficient way of handling declarations than offered by
the traditional header files.

Currently, the C++ Annotations very briefly covers modules (cf. section 25).

2.5.11 Defining local variables

Although already available in the C programming language, local variables should only be defined
once they’re needed. Although doing so requires a little getting used to, eventually it tends to produce
more readable, maintainable and often more efficient code than defining variables at the beginning

2.5. DIFFERENCES BETWEEN C AND C++ 17

of compound statements. We suggest to apply the following rules of thumb when defining local
variables:

* Local variables should be created at ‘intuitively right’ places, such as in the example below.
This does not only entail the for-statement, but also all situations where a variable is only
needed, say, half-way through the function.

* More in general, variables should be defined in such a way that their scope is as limited and lo-
calized as possible. When avoidable local variables are not defined at the beginning of functions
but rather where they're first used.

¢ It is considered good practice to avoid global variables. It is fairly easy to lose track of which
global variable is used for what purpose. In C++ global variables are seldom required, and by
localizing variables the risk of using the same variable for multiple purposes (thereby invali-
dating the separate purposes of the variable), can easily be avoided.

If considered appropriate, nested blocks can be used to localize auxiliary variables. However, sit-
uations exist where local variables are considered appropriate inside nested statements. The just
mentioned for statement is of course a case in point, but local variables can also be defined within
the condition clauses of if-else statements, within selection clauses of switch statements and condition
clauses of while statements. Variables thus defined are available to the full statement, including its
nested statements. For example, consider the following switch statement:

#include <stdio.h>
int main()
switch (int ¢ = getchar())

case 'a':
case 'e":
case 'i":
case 'o':
case 'u":

printf("Saw vowel %c\n", c);
break;

case EOF:
printf("Saw EOF\n");
break;

case '0' ... '9":
printf("Saw number character %c\n", ¢);
break;

default:
printf("Saw other character, hex value 0x%2x\n", ¢);

}

Note the location of the definition of the character ‘¢’: it is defined in the expression part of the switch
statement. This implies that ‘¢’ is available only to the switch statement itself, including its nested
(sub)statements, but not outside the scope of the switch.

The same approach can be used with if and while statements: a variable that is defined in the
condition clause of an if and while statement is available in their nested statements. There are some
caveats, though:

e The variable that is defined in the condition clause must be a variable which is initialized to a
numeric or logical value;

18 CHAPTER 2. INTRODUCTION

* The variable definition cannot be nested (e.g., using parentheses) within a more complex ex-
pression.

The former point of attention should come as no big surprise: in order to be able to evaluate the
logical condition of an if or while statement, the value of the variable must be interpretable as either
zero (false) or non-zero (true). Usually this is no problem, but in C++ objects (like objects of the
type std::string (cf. chapter 5)) are often returned by functions. Such objects may or may not be
interpretable as numeric values. If not (as is the case with std::string objects), then such variables
can not be defined at the condition or expression clauses of condition- or repetition statements. The
following example will therefore not compile:

if (std::string myString = getString()) // assume getString returns
// a std:string value
// process myString

The above example requires additional clarification. Often a variable can profitably be given local
scope, but an extra check is required immediately following its initialization. The initialization and
the test cannot both be combined in one expression. Instead fwo nested statements are required.
Consequently, the following example won’t compile either:

if ((int ¢ = getchar()) && strchr("aeiou", c))
printf("Saw a vowel\n");

If such a situation occurs, either use two nested if statements, or localize the definition of int ¢ using
a nested compound statement:

if (int ¢ = getchar()) // nested if-statements
if (strchr("aeiou", c))
printf("Saw a vowel\n");

{ // nested compound statement
int ¢ = getchar();
if (¢ && strchr(Maeiou", c¢))
printf("Saw a vowel\n");

The C++26 standard introduced name-independent declarations. They're covered in section ref

2.5.12 The keyword ‘typedef’

The keyword typedef is still used in C++, but is not required anymore when defining union, struct or
enum definitions. This is illustrated in the following example:

struct SomeStruct

.
nt a;
double d;
char string[80];

7

When a struct, union or other compound type is defined, the tag of this type can be used as type name
(this is SomeStruct in the above example):

SomeStruct what;

what.d = 3.1415;

2.5. DIFFERENCES BETWEEN C AND C++ 19

2.5.13 Functions as part of a struct

In C++ we may define functions as members of structs. Here we encounter the first concrete example
of an object: as previously described (see section 2.4), an object is a structure containing data while
specialized functions exist to manipulate those data.

A definition of a struct Point is provided by the code fragment below. In this structure, two int data
fields and one function draw are declared.

struct Point // definition of a screen-dot

int x; // coordinates
int y; /] %[y
void draw/(); // drawing function

A similar structure could be part of a painting program and could, e.g., represent a pixel. With
respect to this struct it should be noted that:

e The function draw mentioned in the struct definition is a mere declaration. The actual code of
the function defining the actions performed by the function is found elsewhere (the concept of
functions inside structs is further discussed in section 3.2).

* The size of the struct Point is equal to the size of its two ints. A function declared inside the

structure does not affect its size. The compiler implements this behavior by allowing the func-
tion draw to be available only in the context of a Point.

The Point structure could be used as follows:

Point a; // two points on
Point b; // the screen

a.x = 0; // define first dot
a.y = 10; / and draw it
a.draw();

b = a; // copy ato b

b.y = 20; // redefine y-coord
b.draw(); // and draw it

As shown in the above example a function that is part of the structure may be selected using the dot
(.) (the arrow (->) operator is used when pointers to objects are available). This is therefore identical
to the way data fields of structures are selected.

The idea behind this syntactic construction is that several types may contain functions having iden-
tical names. E.g., a structure representing a circle might contain three int values: two values for
the coordinates of the center of the circle and one value for the radius. Analogously to the Point
structure, a Circle may now have a function draw to draw the circle.

2.5.14 Evaluation order of operands

Traditionally, the evaluation order of expressions of operands of binary operators is, except for the
boolean operators and and or, not defined. C++ changed this for postfix expressions, assignment
expressions (including compound assignments), and shift operators:

20 CHAPTER 2. INTRODUCTION

* Expressions using postfix operators (like index operators and member selectors) are evaluated
from left to right (do not confuse this with postfix increment or decrement operators, which
cannot be concatenated (e.g., variable-+++-+ does not compile)).

* Assignment expressions are evaluated from right to left;

* Operands of shift operators are evaluated from left to right.

In the following examples first is evaluated before second, before third, before fourth, whether they
are single variables, parenthesized expressions, or function calls:

first.second

fourth += third = second += first
first << second << third << fourth
first >> second >> third >> fourth

In addition, when overloading an operator, the function implementing the overloaded operator is
evaluated like the built-in operator it overloads, and not in the way function calls are generally
ordered.

Chapter 3

A First Impression Of C++

In this chapter C++ is further explored. The possibility to declare functions in structs is illustrated
in various examples; the concept of a class is introduced; casting is covered in detail; many new types
are introduced and several important notational extensions to C are discussed.

3.1 Notable differences with C

Before we continue with the ‘real’ object-approach to programming, we first introduce some notable
differences with the C programming language: not mere differences between C and C++, but impor-
tant syntactic constructs and keywords not found or differently used in C.

3.1.1 Using the keyword ‘const’
Even though the keyword const is part of the C grammar, its use is more important and much more
common and strictly used in C++ than it is in C.

The const keyword is a modifier stating that the value of a variable or of an argument may not be
modified. In the following example the intent is to change the value of a variable ival, which fails:

int main()
int const ival = 3; // a constant int
// initialized to 3
ival = 4; // assignment produces

// an error message

This example shows how ival may be initialized to a given value in its definition; attempts to change
the value later (in an assignment) are not permitted.

Variables that are declared const can, in contrast to C, be used to specify the size of an array, as in
the following example:

int const size = 20;
char buf[size]; // 20 chars big

21

22 CHAPTER 3. A FIRST IMPRESSION OF C++

Another use of the keyword const is seen in the declaration of pointers, e.g., in pointer-arguments. In
the declaration

char const *buf;

buf is a pointer variable pointing to chars. Whatever is pointed to by buf may not be changed through
buf: the chars are declared as const. The pointer buf itself however may be changed. A statement
like «buf = ’a’; is therefore not allowed, while ++buf is.

In the declaration

char *const buf;

buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf may be
changed at will.

Finally, the declaration

char const *const buf;

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: what’s written to the left
of const may not be changed.

Although simple, this rule of thumb is, unfortunately, not often used. For example, Bjarne Stroustrup
states (in https://www.stroustrup.com/bs_ faq2.html#£constplacement):

Should I put "const” before or after the type?

I put it before, but that’s a matter of taste. "const T” and "T const” were always (both)
allowed and equivalent. For example:

const int

a / OK
int const b

=2 // also OK
My guess is that using the first version will confuse fewer programmers (“is more id-
lomatic”).

But we’ve already seen an example where applying this simple ‘before’ placement rule for the key-
word const produces unexpected (i.e., unwanted) results as we will shortly see (below). Furthermore,
the ‘idiomatic’ before-placement also conflicts with the notion of const functions, which we will en-
counter in section 7.7. With const functions the keyword const is also placed behind rather than
before the name of the function.

The definition or declaration (either or not containing const) should always be read from the variable
or function identifier back to the type identifier:

“Buf is a const pointer to const characters”

This rule of thumb is especially useful in cases where confusion may occur. In examples of C++
code published in other places one often encounters the reverse: const preceding what should not be
altered. That this may result in sloppy code is indicated by our second example above:

char const *buf;

3.1. NOTABLE DIFFERENCES WITH C 23

What must remain constant here? According to the sloppy interpretation, the pointer cannot be
altered (as const precedes the pointer). In fact, the char values are the constant entities here, as
becomes clear when we try to compile the following program:

int main()

{
char const *buf = "hello";
++buf; // accepted by the compiler
*pbuf = 'u'; // rejected by the compiler

}

Compilation fails on the statement «buf = 'u’; and not on the statement ++buf.
Marshall Cline’s C++ FAQ! gives the same rule (paragraph 18.5) , in a similar context:
[18.5] What’s the difference between "const Fredx p”, "Fredx const p” and "const Fred* const

p'?
You have to read pointer declarations right-to-left.

Marshall Cline’s advice can be improved, though. Here’s a recipe that will effortlessly dissect even
the most complex declaration:
1. start reading at the variable’s name

2. read as far as possible until you reach the end of the declaration or an (as yet unmatched)
closing parenthesis.

3. return to the point where you started reading, and read backwards until you reach the begin-
ning of the declaration or a matching opening parenthesis.

4. If you reached an opening parenthesis, continue at step 2 beyond the parenthesis where you

previously stopped.

Let’s apply this recipe to the following (by itself irrelevant) complex declaration. Little arrows in-
dicate how far we should read at each step and the direction of the arrow indicates the reading
direction:

char const *(* const (*(*ip)))[])I]

ip Start at the variable's name:
'ip' is
ip) Hitting a closing paren: revert
-
(*ip) Find the matching open paren:
<- 'a pointer to'

(*ip)()) The next unmatched closing par:
-—> 'a function (not expecting
arguments)’'

(*(*ip)()) Find the matching open paren:
<- 'returning a pointer to'

(*(*ip)())[]) The next closing par:

Lhttp://www.parashift.com/c++-fag-lite/const-correctness.html

24 CHAPTER 3. A FIRST IMPRESSION OF C++

- 'an array of'

(* const (*(*ip)())[]) Find the matching open paren:
L 'const pointers to'

(* const (*(*ip)())[])[] Read until the end:
-> 'an array of'

char const *(* const (*(*ip)())[])[] Read backwards what's left:
R 'pointers to const chars'

Collecting all the parts, we get for char const *(x const (x(xip)())[])[]: ip is @ pointer to a function (not
expecting arguments), returning a pointer to an array of const pointers to an array of pointers to const
chars. This is what ip represents; the recipe can be used to parse any declaration you ever encounter.

3.1.2 Namespaces

C++ introduces the notion of a namespace: all symbols are defined in a larger context, called a
namespace. Namespaces are used to avoid name conflicts that could arise when a programmer would
like to define a function like sin operating on degrees, but does not want to lose the capability of using
the standard sin function, operating on radians.

Namespaces are covered extensively in chapter 4. For now it should be noted that most compilers
require the explicit declaration of a standard namespace: std. So, unless otherwise indicated, it is
stressed that all examples in the Annotations now implicitly use the

using namespace std;
declaration. So, if you actually intend to compile examples given in the C++ Annotations, make sure

that the sources start with the above using declaration.

3.1.3 The scope resolution operator ::

C++ introduces several new operators, among which the scope resolution operator (::). This operator
can be used in situations where a global variable exists having the same name as a local variable:

#include <stdio.h>

double counter = 50; // global variable
int main()
for (int counter = 1; this refers to the
counter != 10; local variable
++-counter)
printf("%d\n",
counter // global variable
/ // divided by
counter); // local variable

}
}

In the above program the scope operator is used to address a global variable instead of the local
variable having the same name. In C++ the scope operator is used extensively, but it is seldom used
to reach a global variable shadowed by an identically named local variable. Its main purpose is
encountered in chapter 7.

3.1. NOTABLE DIFFERENCES WITH C 25

3.14 ‘cout’, ‘cin’, and ‘cerr’

Analogous to C, C++ defines standard input- and output streams which are available when a pro-
gram is executed. The streams are:

* cout, analogous to stdout,
* cin, analogous to stdin,

* cerr, analogous to stderr.

Syntactically these streams are not used as functions: instead, data are written to streams or read
from them using the operators <<, called the insertion operator and >>, called the extraction oper-
ator. This is illustrated in the next example:

#include <iostream>
using namespace std;
int main()

int ival;
char sval[30];

cout << "Enter a number:\n";
cin >> ival;

cout << "And now a string:\n";
cin >> sval;

cout << "The number is: " << ival << "\n"
"And the string is: " << sval << "\n';

This program reads a number and a string from the cin stream (usually the keyboard) and prints
these data to cout. With respect to streams, please note:

* The standard streams are declared in the header file iostream. In the examples in the C++
Annotations this header file is often not mentioned explicitly. Nonetheless, it must be included
(either directly or indirectly) when these streams are used. Comparable to the use of the using
namespace std; clause, the reader is expected to #include <iostream> with all the examples in
which the standard streams are used.

* The streams cout, cin and cerr are variables of so-called class-types. Such variables are com-
monly called objects. Classes are discussed in detail in chapter 7 and are used extensively in
C++.

* The stream cin extracts data from a stream and copies the extracted information to variables
(e.g., ival in the above example) using the extraction operator (two consecutive > characters:
>>). Later in the Annotations we will describe how operators in C++ can perform quite dif-
ferent actions than what they are defined to do by the language, as is the case here. Function
overloading has already been mentioned. In C++ operators can also have multiple definitions,
which is called operator overloading.

* The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate variables
of different types. In the above example cout << ival results in the printing of an integer
value, whereas cout << "Enter a number" results in the printing of a string. The actions of the
operators therefore depend on the types of supplied variables.

26 CHAPTER 3. A FIRST IMPRESSION OF C++

* The extraction operator (>>) performs a so called type safe assignment to a variable by ‘ex-
tracting’ its value from a text stream. Normally, the extraction operator skips all whitespace
characters preceding the values to be extracted.

* Special symbolic constants are used for special situations. Normally a line is terminated by
inserting "\n" or ’\n’. But when inserting the endl symbol the line is terminated followed by
the flushing of the stream’s internal buffer. Thus, endl can usually be avoided in favor of "\n’
resulting in somewhat more efficient code.

The stream objects cin, cout and cerr are not part of the C++ grammar proper. The streams are part of
the definitions in the header file iostream. This is comparable to functions like printf that are not part
of the C grammar, but were originally written by people who considered such functions important
and collected them in a run-time library.

A program may still use the old-style functions like printf and scanf rather than the new-style
streams. The two styles can even be mixed. But streams offer several clear advantages and in
many C++ programs have completely replaced the old-style C functions. Some advantages of using
streams are:

¢ Using insertion and extraction operators is type-safe. The format strings which are used with
printf and scanf can define wrong format specifiers for their arguments, for which the compiler
sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is performed by
the compiler. Consequently it isn’t possible to err by providing an int argument in places where,
according to the format string, a string argument should appear. With streams there are no
format strings.

* The functions printf and scanf (and other functions using format strings) in fact implement
a mini-language which is interpreted at run-time. In contrast, with streams the C++ com-
piler knows exactly which in- or output action to perform given the arguments used. No mini-
language here.

* In addition the possibilities of the insertion and extraction operators may be extended allowing
objects of classes that didn’t exist when the streams were originally designed to be inserted into
or extracted from streams. Mini languages as used with printf cannot be extended.

* The usage of the left-shift and right-shift operators in the context of the streams illustrates yet
another capability of C++: operator overloading allowing us to redefine the actions an operator
performs in certain contexts. Coming from C operator overloading requires some getting used
to, but after a short little while these overloaded operators feel rather comfortable.

* Streams are independent of the media they operate upon. This (at this point somewhat ab-
stract) notion means that the same code can be used without any modification at all to interface
your code to any kind of device. The code using streams can be used when the device is a file on
disk; an Internet connection; a digital camera; a DVD device; a satellite link; and much more:
you name it. Streams allow your code to be decoupled (independent) of the devices your code
is supposed to operate on, which eases maintenance and allows reuse of the same code in new
situations.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 6 iostreams are
covered in greater detail. Even though printf and friends can still be used in C++ programs, streams
have practically replaced the old-style C I/O functions like printf. If you think you still need to use
printf and related functions, think again: in that case you’ve probably not yet completely grasped the
possibilities of stream objects.

3.2. FUNCTIONS AS PART OF STRUCTS 27

3.2 Functions as part of structs

Earlier we noted that functions can be part of structs (see section 2.5.13). Such functions are called
member functions. This section briefly discusses how to define such functions.

The code fragment below shows a struct having data fields for a person’s name and address. A
function print is included in the struct’s definition:

struct Person

char name[80];
char address[80];

void print();

When defining the member function print the structure’s name (Person) and the scope resolution
operator (::) are used:

void Person::print()

cout << "Name: " << name << "\n"
"Address: " << address << "\n";

The implementation of Person::print shows how the fields of the struct can be accessed without using
the structure’s type name. Here the function Person::print prints a variable name. Since Person::print
is itself a part of struct person, the variable name implicitly refers to the same type.

This struct Person could be used as follows:

Person person;

strepy(person.name, "Karel");
strepy (person.address, "Marskramerstraat 33");
person.print();

The advantage of member functions is that the called function automatically accesses the data fields
of the structure for which it was invoked. In the statement person.print() the object person is the
‘substrate’: the variables name and address that are used in the code of print refer to the data stored
in the person object.

3.2.1 Data hiding: public, private and class

As mentioned before (see section 2.3), C++ contains specialized syntactic possibilities to implement
data hiding. Data hiding is the capability of sections of a program to hide its data from other sections.
This results in very clean data definitions. It also allows these sections to enforce the integrity of
their data.

C++ has three keywords that are related to data hiding: private, protected and public. These keywords
can be used in the definition of structs. The keyword public allows all subsequent fields of a structure
to be accessed by all code; the keyword private only allows code that is part of the struct itself to
access subsequent fields. The keyword protected is discussed in chapter 13, and is somewhat outside
of the scope of the current discussion.

28 CHAPTER 3. A FIRST IMPRESSION OF C++

Interface functions to set the fields

setName () setAddress ()

Private data

d_name | |

d_address | |

print () name () address ()

Interface functions to inspect/use the fields

Figure 3.1: Private data and public interface functions of the class Person.

In a struct all fields are public, unless explicitly stated otherwise. Using this knowledge we can
expand the struct Person:

struct Person

private:
char d_name[80];
char d_address[80];
public:
void setName(char const *n);
void setAddress(char const *a);
void print();
char const *name();
char const *address();

};

As the data fields d name and d_address are in a private section they are only accessible to the
member functions which are defined in the struct: these are the functions setName, setAddress etc..
As an illustration consider the following code:

Person tbb;

fbb.setName("Frank"); // OK, setName is public
strcpy(fbb.d_name, "Knarf"); // error, x.d_name is private

Data integrity is implemented as follows: the actual data of a struct Person are mentioned in the
structure definition. The data are accessed by the outside world using special functions that are also
part of the definition. These member functions control all traffic between the data fields and other
parts of the program and are therefore also called ‘interface’ functions. The thus implemented data
hiding is illustrated in Figure 3.1. The members setName and setAddress are declared with char const
x parameters. This indicates that the functions will not alter the strings which are supplied as their
arguments. Analogously, the members name and address return char const *s: the compiler prevents
callers of those members from modifying the information made accessible through the return values
of those members.

Two examples of member functions of the struct Person are shown below:

void Person::setName(char const *n)

3.2. FUNCTIONS AS PART OF STRUCTS 29

strncpy(d _name, n, 79);
d_name[79] = 0;

char const *Person::name()

return d_name;

The power of member functions and of the concept of data hiding results from the abilities of member
functions to perform special tasks, e.g., checking the validity of the data. In the above example set-
Name copies only up to 79 characters from its argument to the data member name, thereby avoiding
a buffer overflow.

Another illustration of the concept of data hiding is the following. As an alternative to member
functions that keep their data in memory a library could be developed featuring member functions
storing data on file. To convert a program storing Person structures in memory to one that stores the
data on disk no special modifications are required. After recompilation and linking the program to
a new library it is converted from storage in memory to storage on disk. This example illustrates a
broader concept than data hiding; it illustrates encapsulation. Data hiding is a kind of encapsulation.
Encapsulation in general results in reduced coupling of different sections of a program. This in turn
greatly enhances reusability and maintainability of the resulting software. By having the structure
encapsulate the actual storage medium the program using the structure becomes independent of the
actual storage medium that is used.

Though data hiding can be implemented using structs, more often (almost always) classes are used
instead. A class is a kind of struct, except that a class uses private access by default, whereas
structs use public access by default. The definition of a class Person is therefore identical to the
one shown above, except that the keyword class has replaced struct while the initial private: clause
can be omitted. Our typographic suggestion for class names (and other type names defined by the
programmer) is to start with a capital character to be followed by the remainder of the type name
using lower case letters (e.g., Person).

3.2.2 Structs in C vs. structs in C++

In this section we’ll discuss an important difference between C and C++ structs and (member) func-
tions. In C it is common to define several functions to process a struct, which then require a pointer
to the struct as one of their arguments. An imaginary C header file showing this concept is:

/* definition of a struct PERSON Thisis C */
typedef struct

char name[80];
char address[80];
} PERSON;
/* some functions to manipulate PERSON structs */
/* initialize fields with a name and address */
void initialize(PERSON *p, char const *nm,
char const *adr);

/* print information *
void print(PERSON const *p);

/¥ etc.. */

In C++, the declarations of the involved functions are put inside the definition of the struct or class.
The argument denoting which struct is involved is no longer needed.

30 CHAPTER 3. A FIRST IMPRESSION OF C++

class Person

char d_name[80];
char d_address[80];

public:
void initialize(char const *nm, char const *adr);
void print();
/ etc..

In C++ the struct parameter is not used. A C function call such as:

PERSON x;

initialize(&x, "some name", "some address");

becomes in C++:

Person x;

x.initialize("some name", "some address");

3.3 Several additions to C’s grammar

3.3.1 References

In addition to the common ways to define variables (plain variables or pointers) C++ introduces
references defining synonyms for variables. A reference to a variable is like an alias; the variable
and the reference can both be used in statements involving the variable:

int int_ value;
int &ref = int _ value;

In the above example a variable int _value is defined. Subsequently a reference ref is defined, which
(due to its initialization) refers to the same memory location as int _value. In the definition of ref, the
reference operator & indicates that ref is not itself an int but a reference to one. The two statements

++int_ value;
++ref;

have the same effect: they increment int _value’s value. Whether that location is called int _value or
ref does not matter.

References serve an important function in C++ as a means to pass modifiable arguments to functions.
E.g., in standard C, a function that increases the value of its argument by five and returning nothing
needs a pointer parameter:

void increase(int *valp) // expects a pointer
/ to an int
*valp += 5;

int main()

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 31

int x;

increase(&x); // pass x's address

This construction can also be used in C++ but the same effect is also achieved using a reference:

void increase(int &valr) // expects a reference

// to an int
valr += 5;
}
int main()
int x;
increase(x); // passed as reference

}

It is arguable whether code such as the above should be preferred over C’s method, though. The
statement increase (x) suggests that not x itself but a copy is passed. Yet the value of x changes
because of the way increase() is defined. However, references can also be used to pass objects that are
only inspected (without the need for a copy or a const x) or to pass objects whose modification is an
accepted side-effect of their use. In those cases using references are strongly preferred over existing
alternatives like copy by value or passing pointers.

Behind the scenes references are implemented using pointers. So, as far as the compiler is concerned
references in C++ are just const pointers. With references, however, the programmer does not need
to know or to bother about levels of indirection. An important distinction between plain pointers and
references is of course that with references no indirection takes place. For example:

extern int *ip;
extern int &ir;

0; // reassigns ip, now a O-pointer
0; // ir unchanged, the int variable it refers to
// is now 0.

ip
ir

In order to prevent confusion, we suggest to adhere to the following:
* In those situations where a function does not alter its parameters of a built-in or pointer type,
value parameters can be used:
void some_ func(int val)
cout << val << "\n';
int main()
U
nt x;
some_func(x); // a copy is passed
* When a function explicitly must change the values of its arguments, a pointer parameter is

preferred. These pointer parameters should preferably be the function’s initial parameters.
This is called return by argument.

void by pointer(int *valp)

32

CHAPTER 3. A FIRST IMPRESSION OF C++

*valp += 5;

* When a function doesn’t change the value of its class- or struct-type arguments, or if the mod-

ification of the argument is a trivial side-effect (e.g., the argument is a stream) references can
be used. Const-references should be used if the function does not modify the argument:

void by _reference(string const &str)

cout << str; // no modification of str

int main ()

int x =7;

by pointer(&x); // a pointer is passed
// x might be changed

string str("hello");

by reference(str); // str is not altered

}

References play an important role in cases where the argument is not changed by the function
but where it is undesirable to copy the argument to initialize the parameter. Such a situation
occurs when a large object is passed as argument, or is returned by the function. In these cases
the copying operation tends to become a significant factor, as the entire object must be copied.
In these cases references are preferred.

If the argument isn’t modified by the function, or if the caller shouldn’t modify the returned
information, the const keyword should be used. Consider the following example:

struct Person // some large structure

char name[80];
char address[90];
double salary;

b
Person person|[50]; // database of persons

// printperson expects a

// reference to a structure

// but won't change it
void printperson (Person const &subject)

cout << "Name: " << subject.name << "\n' <<
"Address: " << subject.address << "\n';

}
/ get a person by index value
Person const &personldx(int index)
{
return person[index|; // a reference is returned,
/ not a copy of person|index|

int main()

{

Person boss;

printperson(boss); // no pointer is passed,
/ so “boss' won't be
// altered by the function
printperson(personldx(5));
// references, not copies
// are passed here

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 33

¢ Furthermore, note that there is yet another reason for using references when passing objects
as function arguments. When passing a reference to an object, the activation of a so called copy
constructor is avoided. Copy constructors are covered in chapter 9.

References could result in extremely ‘ugly’ code. A function may return a reference to a variable, as
in the following example:

int &func()

static int value;
return value;

}

This allows the use of the following constructions:

func() = 20;
func() += func();

It is probably superfluous to note that such constructions should normally not be used. Nonetheless,
there are situations where it is useful to return a reference. We have actually already seen an
example of this phenomenon in our previous discussion of streams. In a statement like cout <<
"Hello" << ’\n’; the insertion operator returns a reference to cout. So, in this statement first the
"Hello" is inserted into cout, producing a reference to cout. Through this reference the "\n’ is then
inserted in the cout object, again producing a reference to cout, which is then ignored.

Several differences between pointers and references are pointed out in the next list below:

¢ A reference cannot exist by itself, i.e., without something to refer to. A declaration of a reference
like

int &ref;

is not allowed; what would ref refer to?
e References can be declared as external. These references were initialized elsewhere.

* References may exist as parameters of functions: they are initialized when the function is
called.

* References may be used in the return types of functions. In those cases the function determines
what the return value refers to.

¢ References may be used as data members of classes. We return to this usage later.
* Pointers are variables by themselves. They point at something concrete or just “at nothing”.

e References are aliases for other variables and cannot be re-aliased to another variable. Once a
reference is defined, it refers to its particular variable.

* Pointers (except for const pointers) can be reassigned to point to different variables.

* When an address-of operator & is used with a reference, the expression yields the address of the
variable to which the reference applies. In contrast, ordinary pointers are variables themselves,
so the address of a pointer variable has nothing to do with the address of the variable pointed
to.

34 CHAPTER 3. A FIRST IMPRESSION OF C++

3.3.2 Rvalue References

In C++, temporary (rvalue) values are indistinguishable from const & types. C++ introduces a new
reference type called an rvalue reference, which is defined as typename &&.

The name rvalue reference is derived from assignment statements, where the variable to the left
of the assignment operator is called an lvalue and the expression to the right of the assignment
operator is called an rvalue. Rvalues are often temporary, anonymous values, like values returned
by functions.

In this parlance the C++ reference should be considered an lvalue reference (using the notation
typename &). They can be contrasted to rvalue references (using the notation typename &&).

The key to understanding rvalue references is the concept of an anonymous variable. An anonymous
variable has no name and this is the distinguishing feature for the compiler to associate it automat-
ically with an rvalue reference if it has a choice. Before introducing some interesting constructions
let’s first have a look at some standard situations where lvalue references are used. The following
function returns a temporary (anonymous) value:

int intVal()

return 5;

}

Although intVal’s return value can be assigned to an int variable it requires copying, which might
become prohibitive when a function does not return an int but instead some large object. A reference
or pointer cannot be used either to collect the anonymous return value as the return value won’t
survive beyond that. So the following is illegal (as noted by the compiler):

int &ir = intVal(); // fails: refers to a temporary
int const &ic = intVal(); OK: immutable temporary
int *ip = &intVal(); fails: no lvalue available

Apparently it is not possible to modify the temporary returned by intVal. But now consider these
functions:

void receive(int &value) // note: lvalue reference
cout << "int value parameter\n";
void receive(int &&value) // note: rvalue reference

cout << "int R-value parameter\n";

and let’s call this function from main:

int main()
receive(18);
int value = 5;

receive(value);
receive(intVal());

This program produces the following output:

int R-value parameter

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 35

int value parameter
int R-value parameter

The program’s output shows the compiler selecting receive(int &&value) in all cases where it receives
an anonymous int as its argument. Note that this includes receive(18): a value 18 has no name and
thus receive(int &&value) is called. Internally, it actually uses a temporary variable to store the 18,
as is shown by the following example which modifies receive:

void receive(int &&value)
++value;

cout << "int R-value parameter, now: " << value << "\n'";
// displays 19 and 6, respectively.

Contrasting receive(int &value) with receive(int &&value) has nothing to do with int &value not being
a const reference. If receive(int const &value) is used the same results are obtained. Bottom line:
the compiler selects the overloaded function using the rvalue reference if the function is passed an
anonymous value.

The compiler runs into problems if void receive(int &value) is replaced by void receive(int value),
though. When confronted with the choice between a value parameter and a reference parameter
(either lvalue or rvalue) it cannot make a decision and reports an ambiguity. In practical contexts
this is not a problem. Rvalue references were added to the language in order to be able to distinguish
the two forms of references: named values (for which Ivalue references are used) and anonymous val-
ues (for which rvalue references are used).

It is this distinction that allows the implementation of move semantics and perfect forwarding. At
this point the concept of move semantics cannot yet fully be discussed (but see section 9.7 for a more
thorough discussion) but it is very well possible to illustrate the underlying ideas.

Consider the situation where a function returns a struct Data containing a pointer to a dynamically
allocated NTBS. We agree that Data objects are only used after initialization, for which two init
functions are available. As an aside: when Data objects are no longer required the memory pointed at
by text must again be returned to the operating system; assume that that task is properly performed.

struct Data
char *text;
void init(char const *txt); // initialize text from txt
void init(Data const &other)
text = strdup(other.text);
}; }
There’s also this interesting function:

Data dataFactory(char const *text);

Its implementation is irrelevant, but it returns a (temporary) Data object initialized with text. Such
temporary objects cease to exist once the statement in which they are created end.

Now we’ll use Data:

int main()

36 CHAPTER 3. A FIRST IMPRESSION OF C++

Data d1;
d1.init(dataFactory("object"));

Here the init function duplicates the NTBS stored in the temporary object. Immediately thereafter
the temporary object ceases to exist. If you think about it, then you realize that that’s a bit over the
top:

* the dataFactory function uses init to initialize the text variable of its temporary Data object. For
that it uses strdup;

* the d1.init function then also uses strdup to initialize d1.text;

* the statement ends, and the temporary object ceases to exist.

That’s two strdup calls, but the temporary Data object thereafter is never used again.

To handle cases like these rvalue reference were introduced. We add the following function to the
struct Data:

void init(Data &&tmp)

Efff;.t:e)ftm P 'B?Xt; // // ((21))

Now, when the compiler translates d1.init(dataFactory("object")) it notices that dataFactory returns
a (temporary) object, and because of that it uses the init(Data &&tmp) function. As we know that
the tmp object ceases to exist after executing the statement in which it is used, the d1 object (at (1))
grabs the temporary object’s text value, and then (at (2)) assigns 0 to other.text so that the temporary
object’s free(text) action does no harm.

Thus, struct Data suddenly has become move-aware and implements move semantics, removing the
(extra copy) drawback of the previous approach, and instead of making an extra copy of the tempo-
rary object’s NTBS the pointer value is simply transferred to its new owner.

3.3.3 Lvalues, rvalues and more

Although this section contains forward references to chapters 5, 7, and 16, its topic best fits the
current chapter. This section can be skipped without loss of continuity, and you might consider
returning to it once you're familiar with the content of these future chapters.

Historically, the C programming language distinguished between lvalues and rvalues. The terminol-
ogy was based on assignment expressions, where the expression to the left of the assignment operator
receives a value (e.g., it referred to a location in memory where a value could be written into, like a
variable), while the expression to the right of the assignment operator only had to represent a value
(it could be a temporary variable, a constant value or the value stored in a variable):

lvalue = rvalue;
C++ adds to this basic distinction several new ways of referring to expressions:

* lvalue: an lvalue in C++ has the same meaning as in C. It refers to a location where a value can
be stored, like a variable, a reference to a variable, or a dereferenced pointer.

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 37

* xvalue: an xvalue indicates an expiring value. An expiring value refers to an object (cf. chapter
7) just before its lifetime ends. Such objects normally have to make sure that resources they
own (like dynamically allocated memory) also cease to exist, but such resources may, just before
the object’s lifetime ends, be moved to another location, thus preventing their destruction.

* glvalue: a glvalue is a generalized lvalue. A generalized lvalue refers to anything that may
receive a value. It is either an lvalue or an xvalue.

* prvalue: a prvalue is a pure rvalue: a literal value (like 1.2e3) or an immutable object (e.g., the
value returned from a function returning a constant std::string (cf. chapter 5)).

An expression’s value is an xvalue if it is:

¢ the value returned by a function returning an rvalue reference to an object;
* an object that is cast to an rvalue reference;
* an expression accessing a non-static class data member whose object is

— an xvalue, or

- a .x (pointer-to-member) expression (cf. chapter 16) in which the left-hand side operand is
an xvalue and the right-hand side operand is a pointer to a data member.

The effect of this rule is that named rvalue references are treated as Ivalues and anonymous
rvalue references to objects are treated as xvalues.
Rvalue references to functions are treated as lvalues whether anonymous or not.

Here is a small example. Consider this simple struct:

struct Demo

int d_ value;

In addition we have these function declarations and definitions:

Demo &&operator+(Demo const &lhs, Demo const &rhs);
Demo &&factory();

Demo demo;
Demo &&rref = static_cast<Demo && >(demo);

Expressions like

factory();
factory().d _value;

static_cast<Demo &&>(demo);
demo + demo

are xvalues. However, the expression
rref;

is an lvalue.

In many situations it’s not particularly important to know what kind of lvalue or what kind of rvalue
is actually used. In the C++ Annotations the term /hs (left hand side) is frequently used to indicate

38 CHAPTER 3. A FIRST IMPRESSION OF C++

an operand that’s written to the left of a binary operator, while the term rhs (right hand side) is
frequently used to indicate an operand that’s written to the right of a binary operator. Lhs and rhs
operands could actually be gvalues (e.g., when representing ordinary variables), but they could also
be prvalues (e.g., numeric values added together using the addition operator). Whether or not lhs
and rhs operands are gvalues or lvalues can always be determined from the context in which they
are used.

3.3.4 Strongly typed enumerations

Enumeration values in C++ are in fact int values, thereby bypassing type safety. E.g., values of
different enumeration types may be compared for (in)equality, albeit through a (static) type cast.

Another problem with the current enum type is that their values are not restricted to the enum type
name itself, but to the scope where the enumeration is defined. As a consequence, two enumerations
having the same scope cannot have identical names.

Such problems are solved by defining enum classes. An enum class can be defined as in the following
example:

enum class SafeEnum

NOT_OK, // 0, by implication

OK - 10,

MAYBE_OK // 11, by implication
b

Enum classes use int values by default, but the used value type can easily be changed using the :
type notation, as in:

enum class CharEnum: unsigned char
NOT _OK,

OK
b

To use a value defined in an enum class its enumeration name must be provided as well. E.g., OK is
not defined, CharEnum::OK is.

Using the data type specification (noting that it defaults to int) it is possible to use enum class
forward declarations. E.g.,

enum Enuml,; // legal: no size available
enum Enum?2: unsigned int; // Legal: explicitly declared type

enum class Enum3; // Legal: default int type is used
enum class Enumd: char; // Legal: explicitly declared type

A sequence of symbols of a strongly typed enumeration can also be indicated in a switch using the
ellipsis syntax, as shown in the next example:

SafeEnum enumValue();

switch (enumValue())

case SafeEnum::NOT OK ... SafeEnum::OK:
cout << "Status is known\n";
break;

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 39

default:
cout << "Status unknown\n";
break;

}

3.3.5 Initializer lists

The C language defines the initializer list as a list of values enclosed by curly braces, possibly them-
selves containing initializer lists. In C these initializer lists are commonly used to initialize arrays
and structs.

C++ extends this concept by introducing the type initializer list<Type> where Type is replaced by the
type name of the values used in the initializer list. Initializer lists in C++ are, like their counterparts
in C, recursive, so they can also be used with multi-dimensional arrays, structs and classes.

Before using the initializer list the <initializer list> header file must be included.

Like in C, initializer lists consist of a list of values surrounded by curly braces. But unlike C,
functions can define initializer list parameters. E.g.,

void values(std::initializer list<int> iniValues)
{
}

A function like values could be called as follows:

values({2, 3, 5, 7, 11, 13});

The initializer list appears as an argument which is a list of values surrounded by curly braces. Due
to the recursive nature of initializer lists a two-dimensional series of values can also be passes, as
shown in the next example:

void values2(std::initializer list<std:initializer list<int>>> iniValues)

values2({{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13}});

Initializer lists are constant expressions and cannot be modified. However, their size and values may
be retrieved using their size, begin, and end members as follows:

void values(initializer list<int> iniValues)

cout << "Initializer list having " << iniValues.size() << "values\n";
for

initializer list<int>:const iterator begin = iniValues.begin();
begin != iniValues.end();
++begin
)

cout << "Value: " << *begin << "\n';

Initializer lists can also be used to initialize objects of classes (cf. section 7.5, which also summarizes
the facilities of initializer lists).

40 CHAPTER 3. A FIRST IMPRESSION OF C++

Implicit conversions, also called narrowing conversions are not allowed when specifying values of
initializer lists. Narrowing conversions are encountered when values are used of a type whose range
is larger than the type specified when defining the initializer list. For example

¢ specifying float or double values to define initializer lists of int values;
¢ specifying integral values exceeding the range of float to define initializer lists of float values;

¢ specifying values of integral types of a wider range than the integral type that is specified
for the initializer list, except if the specified values lie within the range of the initializer list’s
integral type

Some examples:

initializer _list<tint> ii{ 1.2 }; // 1.2 isn't an int value
initializer list<unsigned> iu{ "OULL }; // unsigned long long doesn't fit

3.3.5.1 Designated initialization

C++, like C, also supports designated initialization. However, as C++ requires that destruction of
data members occurs in the opposite order as their construction it is required that, when using
designated initialization, members are initialized in the order in which they are declared in their
class or struct. E.g.,

struct Data

int d_first;
double d_second,;
std::string d_ third;

7

Data data{ .d_first = 1, .d_ third = "hello" };

In this example, d_first and d_third are explicitly initialized, while d _second is implicitly initialized
to its default value (so: 0.0).

In C++ it is not allowed to reorder the initialization of members in a desginated initialization list.
So, Data data{ .d_ third = "hello", .d_first = 1 } is an error, but Data data{ .d_third = "hello" } is OK,
as there is no ordering conflict in the latter example (this also initializes d_first and d_second to 0).

Likewise, a union can be initialized using designated initialization, as illustrated by the next exam-
ple:

union Data

int d_first;
double d_second;
std::string *d_third;
7 // initialize the union's d_third field:
Data data{ .d_third = new string{ "hello" } };

3.3.6 Initializers for bit-fields

Bit-fields are used to specify series of bits in an integral value type. For example, in networking
software processing IP4 packets, the first uint32 t value of IP4 packets contain:

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 41

the version (4 bits);

the header length (4 bits);

the type of service (8 bits);

the total length (16 bits)

Rather than using complex bit and bit-shift operations, these fields inside integral values can be
specified using bit-fields. E.g.,

struct FirstIP4word

uint32 t version: 4;

uint32 t header: 4;

uint32 _t tos: 8;
\ uint32 t length: 16;

To total size of a FirstIP4word object is 32 bits, or four bytes. To show the version of a FirstIP4word
first object, simply do:

cout << first.version << "\n';
and to set its header length to 10 simply do

first.header = 10;

Bit fields are already available in C. The C++26 standard allows them to be initialized by default by
using initialization expressions in their definitions. E.g.,

struct FirstIP4word

uint32_t version: 4 = 1; // version now 1, by default
uint32 t header: 4 = 10; // TCP header length now 10, by default
uint32 t tos: 8;

uint32_t length: 16;
b

The initialization expressions are evaluated when the object using the bit-fields is defined. Also,
when a variable is used to initialize a bit-field the variable must at least have been declared when
the struct containing bit-fields is defined. E.g.,

extern int value;

struct FirstIP4word

ﬁint32_t length: 16 = value; // OK: value has been declared

3.3.7 Type inference using ‘auto’

The keyword auto can be used to simplify type definitions of variables and return types of functions
if the compiler is able to determine the proper types of such variables or functions.

42 CHAPTER 3. A FIRST IMPRESSION OF C++

Using auto as a storage class specifier is no longer supported by C++: a variable definition like auto
int var results in a compilation error.

The keyword auto is used in situations where it is very hard to determine the variable’s type. These
situations are encountered, e.g., in the context of templates (cf. chapters 18 until 23). It is also used
in situations where a known type is a very long one but also automatically available to the compiler.
In such cases the programmer uses auto to avoid having to type long type definitions.

At this point in the Annotations only simple examples can be given. Refer to section 21.1.2 for
additional information about auto (and the related decltype function).

When defining and initializing a variable int variable = 5 the type of the initializing expression is
well known: it’s an int, and unless the programmer’s intentions are different this could be used to
define variable’s type (a somewhat contrived example as in this case it reduces rather than improves
the clarity of the code):

auto variable = 5;

However, it is attractive to use auto. In chapter 5 the iterator concept is introduced (see also chapters
12 and 18). Iterators frequently have long type definitions, like

std::vector <std::string>::const reverse iterator

Functions may return objects having such types. Since the compiler knows about these types we
may exploit this knowledge by using auto. Assume that a function begin() is declared like this:

std::vector<std::string>::const_reverse iterator begin();

Rather than writing a long variable definition (at // 1, below) a much shorter definition (at // 2) can
be used:

std::vector<std::string>::const _reverse iterator iter = begin(); // 1
auto iter = begin(); /] 2

It’s also easy to define and initialize additional variables of such types. When initializing such vari-
ables iter can be used to initialize those variables, and auto can be used, so the compiler deduces
their types:

auto start = iter;

When defining variables using auto the variable’s type is deduced from the variable’s initializing
expression. Plain types and pointer types are used as-is, but when the initializing expression is
a reference type, then the reference’s basic type (without the reference, omitting const or volatile
specifications) is used.

If a reference type is required then auto & or auto && can be used. Likewise, const and/or pointer
specifications can be used in combination with the auto keyword itself. Here are some examples:

int value;
auto another = value; //'int another' is defined

string const &text();

auto str = text(); // text's plain type is string, so
// string str, NOT string const str
// is defined

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 43

str 4+="..."; // so, this is OK

int *ip = &value;
auto ip2 = ip; // int *ip2 is defined.

int *const &ptr = ip;

auto ip3 = ptr; // int *ip3 is defined, omitting const &
auto const &ip4 = ptr; // int *const &ip4 is defined.

In the next to last auto specification, the tokens (reading right to left) from the reference to the basic
type are omitted: here const & was appended to ptr’s basic type (int *). Hence, int xip2 is defined.

In the last auto specification auto also produces int *, but in the type definition const & is added to
the type produced by auto, so int *const &ip4 is defined.

The auto keyword can also be used to postpone the definition of a function’s return type. The decla-
ration of a function intArrPtr returning a pointer to arrays of 10 ints looks like this:

int (*intArrPtr())[10];

Such a declaration is fairly complex. E.g., among other complexities it requires ‘protection of the
pointer’ using parentheses in combination with the function’s parameter list. In situations like these
the specification of the return type can be postponed using the auto return type, followed by the
specification of the function’s return type after any other specification the function might receive
(e.g., as a const member (cf. section 7.7) or following its noexcept specification (cf. section 23.8)).

Using auto to declare the above function, the declaration becomes:

auto intArrPtr() -> int (*)[10];

A return type specification using auto is called a late-specified return type.
Since the C++14 standard late return type specifications are no longer required for functions return-

ing auto. Such functions can now simply be declared like this:

auto autoReturnFunction();

In this case some restrictions apply, both to the function definitions and the function declarations:

e If multiple return statements are used in function definitions they all must return values of
identical types;

¢ Functions merely returning auto cannot be used before the compiler has seen their definitions.
So they cannot be used after mere declarations;

* When functions returning auto are implemented as recursive function then at least one return
statement must have been seen before the recursive call. E.g.,

auto fibonacci(size_t n)

if (n <=1)
return n;
return fibonacci(n - 1) + fibonacci(n - 2);

44 CHAPTER 3. A FIRST IMPRESSION OF C++

3.3.7.1 Structured binding declarations

Usually functions return single-valued results: doubles, ints, strings, etc. When functions need to
return multiple values a return by argument construction is often used, where addresses of variables
that live outside of the called function are passed to functions, allowing the functions to assign new
values to those variables.

When multiple values should be returned from a function a struct can be used, but pairs (cf. section
12.2) or tuples (cf. section 22.6) can also be used. Here’s a simple example, where a function fun
returns a struct having two data fields:

struct Return

int first;
double second;

b
Return fun()

return Return{ 1, 12.5 };

(Briefly forward referencing to sections 12.2 and 22.6: the struct definition can completely be omitted
if fun returns a pair or tuple. In those cases the following code remains valid.)

A function calling fun traditionally defines a variable of the same type as fun’s return type, and then
uses that variable’s fields to access first and second. If you don’t like the typing, auto can also be used:

int main()

auto r1 = fun();
cout << rl.first;

Instead of referring to the elements of the returned struct, pair or tuple structured binding declara-
tions can also be used. Here, auto is followed by a (square brackets surrounded) comma-separated
list of variables, where each variable is defined, and receives the value of the corresponding field or
element of the called function’s return value. So, the above main function can also be written like
this:

int main()

auto [one, two| = fun();
cout << one; // one and two: now defined

Merely specifying auto results in fun’s return value being copied, and the structured bindings vari-
ables will refer to the copied value. But structured binding declarations can also be used in com-
bination with (Ivalue/rvalue) return values. The following ensures that rone and rtwo refer to the
elements of fun’s anonymous return value:

int main()

auto &&[rone, rtwo] = fun();

If the called function returns a value that survives the function call itself, then structured binding
declarations can use lvalue references. E.g.,

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 45

Return &fun2()

static Return ret{ 4, 5 };
return ret;

int main()

auto &[lone, ltwo] = fun2(); // OK: referring to ret's fields

To use structured binding declarations it is not required to use function calls. The object providing
the data can also anonymously be defined:

int main()

auto const &[lone, ltwo] = Return{ 4, 5 };
/ or:
auto &&[lone, ltwo] = Return{ 4, 5 };
}

The object doesn’t even have to make its data members publicly available. In section TUPLES using
structured bindings not necessarily referring to data members is covered.

Another application is found in situations where nested statements of for or selection statements
benefit from using locally defined variables of various types. Such variables can easily be defined
using structured binding declarations that are initialized from anonymous structs, pairs or tuples.
Here is an example illustrating this:

// define a struct:
struct Three

{

size t year;
double firstAmount;
double interest;

/ 7/ define an array of Three objects, and process each in turn:
Three array[10];
fill(array); // not implemented here

for (auto &[year, amount, interest|: array)
cout << "Year " << year << ": amount = " << amount << "\n"

When using structured bindings the structured binding declaration must specify all elements that
are available. So if a struct has four data members the structured binding declaration must define
four elements. To avoid warnings of unused variables at lease one of the variables of the structured
binding declaration must be used.

3.3.8 Defining types and ‘using’ declarations

In C++ typedef is commonly used to define shorthand notations for complex types. Assume we want
to define a shorthand for ‘a pointer to a function expecting a double and an int, and returning an
unsigned long long int’. Such a function could be:

unsigned long long int compute(double, int);

A pointer to such a function has the following form:

unsigned long long int (*pf)(double, int);

46 CHAPTER 3. A FIRST IMPRESSION OF C++

If this kind of pointer is frequently used, consider defining it using typedef: simply put typedef in
front of it and the pointer’s name is turned into the name of a type. It could be capitalized to let it
stand out more clearly as the name of a type:

typedef unsigned long long int (*PF)(double, int);

After having defined this type, it can be used to declare or define such pointers:

PF pf = compute; // initialize the pointer to a function like
/ 'compute'

void fun(PF pf); // fun expects a pointer to a function like
// 'compute'

However, including the pointer in the typedef might not be a very good idea, as it masks the fact that
pf is a pointer. After all, PF pf looks more like ‘int x’ than ‘int *x’. To document that pf is in fact a
pointer, slightly change the typedef:

typedef unsigned long long int FUN(double, int);

FUN *pf = compute; // now pf clearly is a pointer.

The scope of typedefs is restricted to compilation units. Therefore, typedefs are usually embedded in
header files which are then included by multiple source files in which the typedefs should be used.

In addition to typedef C++ offers the using keyword to associate a type and an identifier. In practice
typedef and using can be used interchangeably. The using keyword arguably result in more readable
type definitions. Consider the following three (equivalent) definitions:

* The traditional, C style definition of a type, embedding the type name in the definition (turning
a variable name into a type name):

typedef unsigned long long int FUN(double, int);

* Apply using to improve the visibility (for humans) of the type name, by moving the type name
to the front of the definition:

using FUN = unsigned long long int (double, int);
* An alternative construction, using a late-specified return type (cf. section 3.3.7):

using FUN = auto (double, int) -> unsigned long long int;

3.3.9 Range-based for-loops

The C++ for-statement is identical to C’s for-statement:

for (init; cond; inc)
statement

Often the initialization, condition, and increment parts are fairly obvious, as in situations where all
elements of an array or vector must be processed. Many languages offer the foreach statement for
that and C++ offers the std::for _each generic algorithm (cf. section 19.1.18).

In addition to the traditional syntax C++ adds new syntax for the for-statement: the range-based
for-loop. This new syntax can be used to process all element of a range in turn. Three types of ranges
are distinguished:

¢ Plain arrays (e.g., int array[10]);

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 47

¢ Initializer lists;
¢ Standard containers (or comparable) (cf. chapter 12);

* Any other type offering begin() and end() functions returning so-called iterators (cf. section
18.2).

The following additional for-statement syntax is available:

// assume int array[30]
for (auto &element: array)
statement

The part to the left of the colon is called the for range declaration. The declared variable (element) is a
formal name; use any identifier you like. The variable is only available within the nested statement,
and it refers to (or is a copy of) each of the elements of the range, from the first element up to the
last.

There’s no formal requirement to use auto, but using auto is extremely useful in many situations. Not
only in situations where the range refers to elements of some complex type, but also in situations
where you know what you can do with the elements in the range, but don’t care about their exact
type names. In the above example int could also have been used.

The reference symbol (&) is important in the following cases:

¢ if you want to modify the elements in the nested statements

¢ if the elements themselves are structs (or classes, cf. chapter 7)

When the reference symbol is omitted the variable will be a copy of each of the subsequent elements
of the range. Fine, probably, if you merely need to look at the variables when they are of primitive
types, but needlessly inefficient if you have an array of BigStruct elements:

struct BigStruct

double array[100];
int last;

Inefficient, because you don’t need to make copies of the array’s elements. Instead, use references to
elements:

BigStruct data[100]; // assume properly initialized elsewhere
int countUsed()

int sum = 0;
// const &: the elements aren't modified
for (auto const &element: data)
sum += element.last;
return sum;

}

Range-based for-loops can also benefit from structured bindings. If struct Element holds a int key and
a double value, and all the values of positive keys should be added then the following code snippet
accomplishes that:

Element elems[100]; // somehow initialized

48 CHAPTER 3. A FIRST IMPRESSION OF C++

double sum = 0;
for (auto const &[key, value]: elems)

if (key > 0)
sum -+= value;

The C++26 standard also supports an optional initialization section (like the ones already available
for if and switch statements) for range-based for-loops. Assume the elements of an array must be
inserted into cout, but before each element we want to display the element’s index. The index variable
is not used outside the for-statement, and the extension offered in the C-+-+-26 standard allows us to
localize the index variable. Here is an example:

// localize idx: only visible in the for-stmnt
for (size_t idx = 0; auto const &element: data)
cout << idx++ << " " << element << "\n';

3.3.10 Raw String Literals

Standard series of ASCII characters (a.k.a. C strings) are delimited by double quotes, supporting
escape sequences like \n, \\ and \", and ending in 0-bytes. Such series of ASCII-characters are
commonly known as null-terminated byte strings (singular: NTBS, plural: NTBSs). C’s NTBS is the
foundation upon which an enormous amount of code has been built

In some cases it is attractive to be able to avoid having to use escape sequences (e.g., in the context
of XML). C++ allows this using raw string literals.

Raw string literals start with an R, followed by a double quote, optionally followed by a label (which
is an arbitrary sequence of non-blank characters, followed by (). The raw string ends at the closing
parenthesis), followed by the label (if specified when starting the raw string literal), which is in turn
followed by a double quote. Here are some examples:

R"(A Raw \ "String")"
R"delimiter(Another \ Raw "(String))delimiter"

In the first case, everything between "(and)" is part of the string. Escape sequences aren’t supported
so the text \ " within the first raw string literal defines three characters: a backslash, a blank
character and a double quote. The second example shows a raw string defined between the markers
"delimiter(and)delimiter".

Raw string literals come in very handy when long, complex ascii-character sequences (e.g., usage-
info or long html-sequences) are used. In the end they are just that: long NTBSs. Those long raw
string literals should be separated from the code that uses them, thus maintaining the readability
of the using code.

As an illustration: the bisonc++ parser generator supports an option +NOTRANS(-{}-{})prompt.
When specified, the code generated by bisonc++ inserts prompting code when debugging is re-
quested. Directly inserting the raw string literal into the function processing the prompting code
results in code that is very hard to read:

void prompt(ostream &out)
if (d_genDebug)
out << (d_options.prompt() ? R"(
if (d_debug)
{

S_Out__ << ”\n::::::::::::::::\n”

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 49

"t " << dflush
std::string s;
getline(std::cin, s);

)” : R”(
if (d_debug)
s _out << "\n'

)H
}

) << "\n';
Readability is greatly enhanced by defining the raw string literals as named NTBSs, defined in the
source file’s anonymous namespace (cf. chapter 4):

namespace {

char const noPrompt[] =
RH(
if (d_debug)
s_out__ << "\n'
)H. - -
char const doPrompt[] =
RH(
if (d_debug)
S_Out__ << " n::::::::::::::::\n”
" << dflush_ _;
std::string s;
getline(std::cin, s);

) n.
7
} // anonymous namespace
void prompt(ostream &out)

if (d_genDebug)
out << (d_options.prompt() ? doPrompt : noPrompt) << "\n';

3.3.11 Binary constants

In addition to hexadecimal integral constants (starting with 0x), octal integral constants (starting
with 0), and decimal integral constants (starting with one of the digits 1..9), binary integral constants
can be defined using the prefixes Ob or 0B. E.g., to represent the (decimal) value 5 the notation 0b101
can also be used.

The binary constants come in handy in the context of, e.g., bit-flags, as it immediately shows which
bit-fields are set, while other notations are less informative.

3.3.12 Selection statements with initializers

The standard for repetition statements start with an optional initialization clause. The initialization
clause allows us to localize variables to the scope of the for statements. Initialization clauses can
also be used in selection statements.

Consider the situation where an action should be performed if the next line read from the standard
input stream equals go!. Traditionally, when used inside a function, intending to localize the string

50 CHAPTER 3. A FIRST IMPRESSION OF C++

to contain the content of the next line as much as possible, constructions like the following had to be
used:

void function()
// ... any set of statements

string line; // localize line
if (getline(cin, line))
action();

// ... any set of statements

Since init ; clauses can also be used for selection statements (if and switch statements) (note that
with selection statements the semicolon is part of the initialization clause, which is different from
the optional init (no semicolon) clause in for statements), we can rephrase the above example as
follows:

void function()

{

// ... any set of statements

if (string line; getline(cin, line))
action();

// ... any set of statements

Note that a variable may still also be defined in the actual condition clauses. This is true for both
the extended if and switch statement. However, before using the condition clauses an initialization
clause may be used to define additional variables (plural, as it may contain a comma-separated list
of variables, similar to the syntax that’s available for for-statements).

3.3.13 Attributes

Attributes are compiler directives that are inserted into source files to inform the compiler of some
peculiarity of the code (variable or function) that follows the specified attribute. Attributes are used
to inform the compiler about situations that are intentional, and thus prevent the compiler from
issuing warnings.

The following attributes are recognized:

* [[carries dependency]]:
This attribute is currently not yet covered by the C++ Annotations. At this point in the C++
Annotations it can safely be ignored.

* [[deprecated]]:

This attribute (and its alternative form [[deprecated("reason")]]) is available since the C++14
standard. It indicates that the use of the name or entity declared with this attribute is al-
lowed, but discouraged for some reason. This attribute can be used for classes, typedef-names,
variables, non-static data members, functions, enumerations, and template specializations. An
existing non-deprecated entity may be redeclared deprecated, but once an entity has been de-
clared deprecated it cannot be redeclared as ‘undeprecated’. When encountering the [[depre-
cated]| attribute the compiler generates a warning, e.g.,

demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated
[-Wdeprecated-declarations] deprecatedFunction();

3.3. SEVERAL ADDITIONS TO C’S GRAMMAR 51

demo.cc:5:21: note: declared here
[[deprecated]] void deprecatedFunction()

When using the alternative form (e.g., [[deprecated("do not use")|| void fun()) the compiler gen-
erates a warning showing the text between the double quotes, e.g.,

demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated:
do not use [-Wdeprecated-declarations|
deprecatedFunction();

demo.cc:5:38: note: declared here
[[deprecated("do not use")]] void deprecatedFunction()

[[fallthrough]]

When statements nested under case entries in switch statements continue into subsequent case
or default entries the compiler issues a ‘falling through’ warning. If falling through is inten-
tional the attribute [[fallthrough]|], which then must be followed by a semicolon, should be used.
Here is an annotated example:

void function(int selector)

switch (selector)

{

case 1:

case 2: // no falling through, but merged entry points
cout << "cases 1 and 2\n";
[[fallthrough]]; // no warning: intentionally falling through

case 3:
cout << "case 3\n";

case 4: // a warning is issued: falling through not
/ announced.
cout << "case 4\n";
[[fallthrough]]; // error: there's nothing beyond

}
}

* [[maybe unused|]

This attribute can be applied to a class, typedef-name, variable, parameter, non-static data
member, a function, an enumeration or an enumerator. When it is applied to an entity no
warning is generated when the entity is not used. Example:

void fun([[maybe unused]| size t argument)

// argument isn't used, but no warning
// telling you so is issued

* [[nodiscard]]

The attribute [[nodiscard]] may be specified when declaring a function, class or enumeration. If
a function is declared [[nodiscard]] or if a function returns an entity previously declared using
[[nodiscard]] then the return value of such a function may only be ignored when explicitly cast
to void. Otherwise, when the return value is not used a warning is issued. Example:

int [[nodiscard]] importantInt();
struct [[nodiscard|] ImportantStruct { ... };

52 CHAPTER 3. A FIRST IMPRESSION OF C++

ImportantStruct factory();

int main()
importantInt(); // warning issued
factory(); // warning issued

* [[noreturn]|:
[[noreturn]| indicates that the function does not return. [[noreturn|]’s behavior is undefined if the
function declared with this attribute actually returns. The following standard functions have
this attribute: std:: Exit, std::abort, std::exit, std::quick exit, std::unexpected, std::terminate,
std::rethrow _exception, std::throw with nested, std:nested exception::rethrow nested, Here is
an example of a function declaration and definition using the [[noreturn|] attribute:

[noreturn]] void doesntReturn();
EL[noreturn]] void doesntReturn()

exit(0);

}

3.3.14 Three-way comparison (<=>)

The C++26 standard added the three-way comparison operator <=>, also known as the spaceship
operator, to C++. In C++ operators can be defined for class-types, among which equality and com-
parison operators (the familiar set of ==, !=, <, <=, > and >= operators). To provide classes with
all comparison operators merely the equality and the spaceship operator need to be defined.

Its priority is less than the priorities of the bit-shift operators << and >> and larger than the
priorities of the ordering operators <, <—, >, and >—.

Section 11.7.2 covers the construction of the three-way comparison operator.

3.4 New language-defined data types

In C the following built-in data types are available: void, char, short, int, long, float and double. C++
extends these built-in types with several additional built-in types: the types bool, wchar _t, long long
and long double (Cf. ANSI/ISO draft (1995), par. 27.6.2.4.1 for examples of these very long types).
The type long long is merely a double-long long datatype. The type long double is merely a double-long
double datatype. These built-in types as well as pointer variables are called primitive types in the
C++ Annotations.

There is a subtle issue to be aware of when converting applications developed for 32-bit architectures
to 64-bit architectures. When converting 32-bit programs to 64-bit programs, only long types and
pointer types change in size from 32 bits to 64 bits; integers of type int remain at their size of 32 bits.
This may cause data truncation when assigning pointer or long types to int types. Also, problems
with sign extension can occur when assigning expressions using types shorter than the size of an int
to an unsigned long or to a pointer.

Except for these built-in types the class-type string is available for handling character strings. The
datatypes bool, and wchar t are covered in the following sections, the datatype string is covered in
chapter 5. Note that recent versions of C may also have adopted some of these newer data types (no-
tably bool and wchar t). Traditionally, however, C doesn’t support them, hence they are mentioned
here.

3.4. NEW LANGUAGE-DEFINED DATA TYPES 53

Now that these new types are introduced, let’s refresh your memory about letters that can be used in
literal constants of various types. They are:

* b or B: in addition to its use as a hexadecimal value, it can also be used to define a binary
constant. E.g., 0b101 equals the decimal value 5. The Ob prefix can be used to specify binary
constants starting with the C++14 standard.

* E or e: the exponentiation character in floating point literal values. For example: 1.23E+3.
Here, E should be pronounced (and interpreted) as: times 10 to the power. Therefore, 1.23E+3
represents the value 1230.

* F can be used as postfix to a non-integral numeric constant to indicate a value of type float,
rather than double, which is the default. For example: 12.F (the dot transforms 12 into a
floating point value); 1.23E+3F (see the previous example. 1.23E+3 is a double value, whereas
1.23E+3F is a float value).

* L can be used as prefix to indicate a character string whose elements are wchar _t-type charac-
ters. For example: L"hello world".

* L can be used as postfix to an integral value to indicate a value of type long, rather than
int, which is the default. Note that there is no letter indicating a short type. For that a
static_cast<short>() must be used.

* p, to specify the power in hexadecimal floating point numbers. E.g. 0x10p4. The exponent
itself is read as a decimal constant and can therefore not start with 0x. The exponent part is
interpreted as a power of 2. So 0x10p2 is (decimal) equal to 64: 16 x 2°2.

* U can be used as postfix to an integral value to indicate an unsigned value, rather than an int.
It may also be combined with the postfix L to produce an unsigned long int value.

And, of course: the x and a until f characters can be used to specify hexadecimal constants (optionally
using capital letters).

3.4.1 The data type ‘bool’

The type bool represents boolean (logical) values, for which the (now reserved) constants true and
false may be used. Except for these reserved values, integral values may also be assigned to variables
of type bool, which are then implicitly converted to true and false according to the following conversion
rules (assume intValue is an int-variable, and boolValue is a bool-variable):

// from int to bool:
boolValue = intValue 7 true : false;

// from bool to int:
intValue = boolValue 7 1 : 0;

Furthermore, when bool values are inserted into streams then true is represented by 1, and false is
represented by 0. Consider the following example:

cout << "A true value: " << true << "\n"
"A false value: " << false << "\n';

The bool data type is found in other programming languages as well. Pascal has its type Boolean;
Java has a boolean type. Different from these languages, C++’s type bool acts like a kind of int type.
It is primarily a documentation-improving type, having just two values true and false. Actually, these
values can be interpreted as enum values for 1 and 0. Doing so would ignore the philosophy behind

54 CHAPTER 3. A FIRST IMPRESSION OF C++

the bool data type, but nevertheless: assigning true to an int variable neither produces warnings nor
errors.

Using the bool-type is usually clearer than using int. Consider the following prototypes:

bool exists(char const *{fileName); (1)
int exists(char const *fileName); (2)

With the first prototype, readers expect the function to return true if the given filename is the name
of an existing file. However, with the second prototype some ambiguity arises: intuitively the return
value 1 is appealing, as it allows constructions like

if (exists("myfile"))
cout << "myfile exists";

On the other hand, many system functions (like access, stat, and many other) return 0 to indicate a
successful operation, reserving other values to indicate various types of errors.

As a rule of thumb I suggest the following: if a function should inform its caller about the success
or failure of its task, let the function return a bool value. If the function should return success or
various types of errors, let the function return enum values, documenting the situation by its various
symbolic constants. Only when the function returns a conceptually meaningful integral value (like
the sum of two int values), let the function return an int value.

3.4.2 The data type ‘wchar_t’

The wchar _t type is an extension of the char built-in type, to accommodate wide character values (but
see also the next section). The g-+-+ compiler reports sizeof(wchar _t) as 4, which easily accommodates
all 65,536 different Unicode character values.

Note that Java’s char data type is somewhat comparable to C++’s wchar _t type. Java’s char type is
2 bytes wide, though. On the other hand, Java’s byte data type is comparable to C++’s char type: one
byte. Confusing?

3.4.3 Unicode encoding

In C++ string literals can be defined as NTBSs. Prepending an NTBS by L (e.g., L"hello") defines a
wchar_t string literal.

C++ also supports 8, 16 and 32 bit Unicode encoded strings. Furthermore, two new data types are
introduced: charl6 _t and char32 t storing, respectively, a UTF-16 and a UTF-32 unicode value.

A char type value fits in a utf 8 unicode value. For character sets exceeding 256 different values
wider types (like charl6 t or char32 t) should be used.

String literals for the various types of unicode encodings (and associated variables) can be defined
as follows:

char utf_8[] = u8"This is UTF-8 encoded.";
charl6_t utf16|| = u"This is UTF-16 encoded.";
char32 t utf32|| = U"This is UTF-32 encoded.";

Alternatively, unicode constants may be defined using the \u escape sequence, followed by a hexadec-
imal value. Depending on the type of the unicode variable (or constant) a UTF-8, UTF-16 or UTF-32
value is used. E.g.,

3.4. NEW LANGUAGE-DEFINED DATA TYPES 55

char utf_8§[] = u8"\u2018";
charl6_t utfl6[] = u"\u2018";
char32 t utf32[] = U"\u2018";

Unicode strings can be delimited by double quotes but raw string literals can also be used.

3.4.4 The data type ‘long long int’

C++ also supports the type long long int. On 32 bit systems it has at least 64 usable bits.

3.4.5 The data type ‘size_t’

The size _t type is not really a built-in primitive data type, but a data type that is promoted by POSIX
as a typename to be used for non-negative integral values answering questions like ‘how much’ and
‘how many’, in which case it should be used instead of unsigned int. It is not a specific C++ type, but
also available in, e.g., C. Usually it is defined implicitly when a (any) system header file is included.
The header file ‘officially’ defining size _t in the context of C++ is cstddef.

Using size _t has the advantage of being a conceptual type, rather than a standard type that is then
modified by a modifier. Thus, it improves the self-documenting value of source code.

Several suffixes can be used to expicitly specify the intended representation of integral constants,
like 42UL defining 42 as an unsigned long int. Likewise, suffixes uz or zu can be used to specify that
an integral constant is represented as a size_t, as in: cout << 42uz.

Sometimes functions explictly require unsigned int to be used. E.g., on amd-architectures the X-
windows function XQueryPointer explicitly requires a pointer to an unsigned int variable as one of
its arguments. In such situations a pointer to a size t variable can’t be used, but the address of an
unsigned int must be provided. Such situations are exceptional, though.

Other useful bit-represented types also exists. E.g., uint32_t is guaranteed to hold 32-bits unsigned
values. Analogously, int32 t holds 32-bits signed values. Corresponding types exist for 8, 16 and 64
bits values. These types are defined in the header file cstdint and can be very useful when you need
to specify or use integral value types of fixed sizes.

3.4.6 The data type ‘std::byte’

Quite often 8-bit variables are required, usually to access memory locations. Traditionally the char
type has been used for that, but char is a signed type and when inserting a char variable into a stream
the character’s representation instead of its value is used. Maybe more important is the inherent
confusion when using char type variables when only using its (unsigned) value: a char documents to
the reader that text is used instead of mere 8-bit values, as used by the smallest addressable memory
locations.

Different from the char type the std::byte type intends to merely represent an 8-bit value. In order to
use std::byte the <cstddef> header file must be included.

The byte is defined as a strongly typed enum, simply embedding an unsigned char:

enum class byte: unsigned char

{}

As a byte is an enum without predefined enum values plain assignments can only be used between
byte values. Byte variables can be initialized using curly braces around an existing byte or around

56 CHAPTER 3. A FIRST IMPRESSION OF C++

fixed values of at most 8 bits (see #1 in the following example). If the specified value doesn’t fit in 8
bits (#2) or if the specified value is neither a byte nor an unsigned char type variable (#3) the compiler
reports an error.

Assignments or assignment-like initializations using rvalues which are bytes initialized using paren-
theses with values not fitting in 8 bits are accepted (#4, #5). In these cases, the specified values are
truncated to their lowest 8 bits. Here are the illustrations:

byte value{ 0x23 }; // #1 (see the text above)
// byte error{ 0x123 }; // #2

char ch = 0xfb;
// byte error{ ch }; /] #3

byte bl = byte(ch); // #4
value = byte(0x123); // #5

The byte type supports all bit-wise operations, but the right-hand operand of the bit-wise operator
must also be a byte. E.g.,

value &= byte(0xf0);

Byte type values can also be ordered and compared for (in)equality.

Unfortunately, no other operations are supported. E.g., bytes cannot be added and cannot be inserted
into or extracted from streams, which somehow renders the std::byte less useful than ordinary types
(like unsigned int, uint16 _t). When needed such operations can be supported using casts (covered in
section 3.5), but it’s considered good practice to avoid casts whenever possible. However, C++ allows
us to define a byte-type that does behave like an ordinary numeric type, including and extracting its
values into and from streams. In section 11.4 such a type is developed.

3.4.7 Digit separators

To improve the readability of large numbers digit separators for integer and floating point literals
can be used. The digit separator is a single quote which may be inserted between digits of such
literals to enhance human readability. Multiple digit separators may be used, but only one separator
can be inserted between successive digits. E.g.,

1'000'000
3.141'592'653'589'793'238'5

'"123 // won't compile

1'"23 // won't compile either

3.5 A new syntax for casts

Traditionally, C offers the following cast syntax:

(typename)expression

here typename is the name of a valid type, and expression is an expression.

C style casts are now deprecated. C++ programs should merely use the new style C++ casts as they
offer the compiler facilities to verify the sensibility of the cast. Facilities which are not offered by the
classic C-style cast.

3.5. ANEW SYNTAX FOR CASTS 57

A cast should not be confused with the often used constructor notation:

typename(expression)

the constructor notation is not a cast, but a request to the compiler to construct an (anonymous)
variable of type typename from expression.

If casts are really necessary one of several new-style casts should be used. These new-style casts are
introduced in the upcoming sections.

3.5.1 The ‘static_cast’-operator

The static_cast<type>(expression) is used to convert ‘conceptually comparable or related types’ to
each other. Here as well as in other C++ style casts type is the type to which the type of expression
should be cast.

Here are some examples of situations where the static _cast can (or should) be used:
¢ When converting an int to a double.

This happens, for example when the quotient of two int values must be computed without losing
the fraction part of the division. The sqrt function called in the following fragment returns 2:

int x = 19;
int y = 4;
sqri(x / y);

whereas it returns 2.179 when a static_cast is used, as in:

sqrt(static_cast<double>(x) / y);

The important point to notice here is that a static_cast is allowed to change the representation
of its expression into the representation that’s used by the destination type.

Also note that the division is put outside of the cast expression. If the division is performed
within the cast’s expression (as in static _cast<double>(x / y)) an integer division has already
been performed before the cast has had a chance to convert the type of an operand to double.

* When converting enum values to int values (in any direction).
Here the two types use identical representations, but different semantics. Assigning an ordi-
nary enum value to an int doesn’t require a cast, but when the enum is a strongly typed enum a

cast is required. Conversely, a static_cast is required when assigning an int value to a variable
of some enum type. Here is an example:

enum class Enum

{
VALUE

Y

cout << static_cast<int>(Enum::VALUE); // show the numeric value

* When converting related pointers to each other.

The static_cast is used in the context of class inheritance (cf. chapter 13) to convert a pointer to
a so-called ‘derived class’ to a pointer to its ‘base class’. It cannot be used for casting unrelated

58

CHAPTER 3. A FIRST IMPRESSION OF C++

types to each other (e.g., a static_cast cannot be used to cast a pointer to a short to a pointer to
an int).

A void * is a generic pointer. It is frequently used by functions in the C library (e.g., mem-
cpy(3)). Since it is the generic pointer it is related to any other pointer, and a static _cast should
be used to convert a void * to an intended destination pointer. This is a somewhat awkward
left-over from C, which should probably only be used in that context. Here is an example:

The gsort function from the C library expects a pointer to a (comparison) function having two
void const * parameters. In fact, these parameters point to data elements of the array to be
sorted, and so the comparison function must cast the void const * parameters to pointers to the
elements of the array to be sorted. So, if the array is an int array[] and the compare function’s
parameters are void const *p1 and void const *p2 then the compare function obtains the address
of the int pointed to by pl by using:

static _cast<int const *>(pl);
When undoing or introducing the signed-modifier of an int-typed variable (remember that a

static_cast is allowed to change the expression’s representation!).

Here is an example: the C function tolower requires an int representing the value of an unsigned
char. But char by default is a signed type. To call tolower using an available char ch we should
use:

tolower(static _cast<unsigned char>(ch))

3.5.2 The ‘const_cast’-operator

The const keyword has been given a special place in casting. Normally anything const is const for a
good reason. Nonetheless situations may be encountered where the const can be ignored. For these
special situations the const cast should be used. Its syntax is:

const_ cast<type>(expression)

A const_cast<type>(expression) expression is used to undo the const attribute of a (pointer) type.

The need for a const_cast may occur in combination with functions from the standard C library
which traditionally weren’t always as const-aware as they should. A function strfun(char *s) might
be available, performing some operation on its char *s parameter without actually modifying the
characters pointed to by s. Passing char const hello[] = "hello"; to strfun produces the warning

passing " const char *' as argument 1 of " fun(char *)' discards const

A const_cast is the appropriate way to prevent the warning:

strfun(const _cast<char *>(hello));

3.5.3 The ‘reinterpret_cast’-operator

The third new-style cast is used to change the interpretation of information: the reinterpret cast. It
is somewhat reminiscent of the static _cast, but reinterpret cast should only be used when it is known
that the information as defined in fact is or can be interpreted as something completely different. Its
syntax is:

reinterpret cast<pointer type>(pointer expression)

3.5. ANEW SYNTAX FOR CASTS 59

Think of the reinterpret cast as a cast offering a poor-man’s union: the same memory location may
be interpreted in completely different ways.

The reinterpret _cast is used, for example, in combination with the write function that is available for
streams. In C++ streams are the preferred interface to, e.g., disk-files. The standard streams like
std::cin and std::cout also are stream objects.

Streams intended for writing (‘output streams’ like cout) offer write members having the prototype

write(char const *buffer, int length)

To write the value stored within a double variable to a stream in its un-interpreted binary form
the stream’s write member is used. However, as a double * and a char * point to variables using
different and unrelated representations, a static__cast cannot be used. In this case a reinterpret cast
is required. To write the raw bytes of a variable double value to cout we use:

cout.write(reinterpret _cast<char const *>(&value), sizeof(double));

All casts are potentially dangerous, but the reinterpret cast is the most dangerous of them all. Ef-
fectively we tell the compiler: back off, we know what we’re doing, so stop fuzzing. All bets are off,
and we’d better do know what we're doing in situations like these. As a case in point consider the
following code:

int value = 0x12345678; // assume a 32-bits int

cout << "Value's first byte has value: " << hex <<
static_cast<int>(
*reinterpret cast<unsigned char *>(&value)

);

The above code produces different results on little and big endian computers. Little endian com-
puters show the value 78, big endian computers the value 12. Also note that the different rep-
resentations used by little and big endian computers renders the previous example (cout.write(...))
non-portable over computers of different architectures.

As a rule of thumb: if circumstances arise in which casts have to be used, clearly document the
reasons for their use in your code, making double sure that the cast does not eventually cause a
program to misbehave. Also: avoid reinterpret casts unless you have to use them.

3.5.4 The ‘dynamic_cast’-operator

Finally there is a new style cast that is used in combination with polymorphism (see chapter 14). Its
syntax is:

dynamic__cast<type>(expression)

Different from the static cast, whose actions are completely determined compile-time, the dy-
namic_cast’s actions are determined run-time to convert a pointer to an object of some class (e.g.,
Base) to a pointer to an object of another class (e.g., Derived) which is found further down its so-called
class hierarchy (this is also called downcasting).

At this point in the Annotations a dynamic_cast cannot yet be discussed extensively, but we return
to this topic in section 14.6.1.

60 CHAPTER 3. A FIRST IMPRESSION OF C++

3.5.5 Casting ’shared_ptr’ objects

This section can safely be skipped without loss of continuity.

In the context of the class shared ptr, which is covered in section 18.4, several more new-style casts
are available. Actual coverage of these specialized casts is postponed until section 18.4.5.

These specialized casts are:

* static_pointer cast, returning a shared ptr to the base-class section of a derived class object;

® const_pointer cast, returning a shared ptr to a non-const object from a shared _ptr to a constant
object;

* dynamic_pointer cast, returning a shared ptr to a derived class object from a shared ptr to a
base class object.

3.6 Keywords and reserved names in C++

C++’s keywords are a superset of C’s keywords. Here is a list of all keywords of the language:

alignas charl6 _t double long reinterpret _cast true
alignof char32 t dynamic cast module requires try
and class else mutable return typedef
and _eq co_await enum namespace short typeid
asm co_return explicit new signed typename
atomic cancel co_yield export noexcept sizeof union
atomic__commit compl extern not static unsigned
atomic_noexcept concept false not_eq static_assert using
auto const float nullptr static_cast virtual
bitand const__cast for operator struct void

bitor constexpr friend or switch volatile
bool continue goto or_eq synchronized wchar t
break decltype if private template while

case default import protected this xor

catch delete inline public thread local xor eq
char do int register throw

Notes:

* Since the C++17 standard the keyword register is no longer used, but it remains a reserved
identifier. In other words, definitions like

register int index;

result in compilation errors. Also, register is no longer considered a storage class specifier
(storage class specifiers are extern, thread local, mutable and static).

* the operator keywords: and, and _eq, bitand, bitor, compl, not, not_eq, or, or _eq, xor and xor _eq
are symbolic alternatives for, respectively, &&, &=, &, |, 7, !, 1=, ||, |=, ~ and ~=.

* C++ also recognizes the special identifiers final, override, transaction safe, and transac-
tion safe override. These identifiers are special in the sense that they acquire special meanings
when declaring classes or polymorphic functions. Section 14.4 provides further details.

3.6. KEYWORDS AND RESERVED NAMES IN C++ 61

Keywords can only be used for their intended purpose and cannot be used as names for other entities
(e.g., variables, functions, class-names, etc.). In addition to keywords identifiers starting with an
underscore and living in the global namespace (i.e., not using any explicit namespace or using the
mere :: namespace specification) or living in the std namespace are reserved identifiers in the sense
that their use is a prerogative of the implementor.

62

CHAPTER 3. A FIRST IMPRESSION OF C++

Chapter 4

Namespaces

4.1 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program func-
tions like cos, sin, tan etc. are to be used accepting arguments in degrees rather than arguments in
radians. Unfortunately, the function name cos is already in use, and that function accepts radians
as its arguments, rather than degrees.

Problems like these are usually solved by defining another name, e.g., the function name cosDegrees
is defined. C++ offers an alternative solution through namespaces. Namespaces can be considered as
areas or regions in the code in which identifiers may be defined. Identifiers defined in a namespace
normally won’t conflict with names already defined elsewhere (i.e., outside of their namespaces). So,
a function cos (expecting angles in degrees) could be defined in a namespace Degrees. When calling
cos from within Degrees you would call the cos function expecting degrees, rather than the standard
cos function expecting radians.

4.1.1 Defining namespaces
Namespaces are defined according to the following syntax:

namespace identifier

// declared or defined entities
// (declarative region)

The identifier used when defining a namespace is a standard C++ identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,
classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined
within a function body. However, it is possible to define a namespace using multiple namespace
declarations. Namespaces are ‘open’ meaning that a namespace CppAnnotations could be defined
in a file filel.cc and also in a file file2.cc. Entities defined in the CppAnnotations namespace of files
filel.cc and file2.cc are then united in one CppAnnotations namespace region. For example:

// in filel.cc
namespace CppAnnotations

63

64 CHAPTER 4. NAMESPACES

double cos(double argInDegrees)

}
}

// in file2.cc
namespace CppAnnotations

double sin(double argInDegrees)

Both sin and cos are now defined in the same CppAnnotations namespace.

Namespace entities can be defined outside of their namespaces. This topic is discussed in section
4.14.1.

4.1.1.1 Declaring entities in namespaces

Instead of defining entities in a namespace, entities may also be declared in a namespace. This
allows us to put all the declarations in a header file that can thereupon be included in sources using
the entities defined in the namespace. Such a header file could contain, e.g.,

namespace CppAnnotations

double cos(double degrees);
double sin(double degrees);

}

4.1.1.2 A closed namespace

Namespaces can be defined without a name. Such an anonymous namespace restricts the visibility
of the defined entities to the source file defining the anonymous namespace.

Entities defined in the anonymous namespace are comparable to C’s static functions and variables.
In C++ the static keyword can still be used, but its preferred use is in class definitions (see chapter
7). In situations where in C static variables or functions would have been used the anonymous
namespace should be used in C++.

The anonymous namespace is a closed namespace: it is not possible to add entities to the same
anonymous namespace using different source files.

4.1.2 Referring to entities

Given a namespace and its entities, the scope resolution operator can be used to refer to its entities.
For example, the function cos() defined in the CppAnnotations namespace may be used as follows:

// assume CppAnnotations namespace is declared in the
// following header file:
#include <cppannotations>

int main()

4.1. NAMESPACES 65

cout << "The cosine of 60 degrees is: " <<
CppAnnotations::cos(60) << "\n';

This is a rather cumbersome way to refer to the cos() function in the CppAnnotations namespace,
especially so if the function is frequently used. In cases like these an abbreviated form can be used
after specifying a using declaration. Following

using CppAnnotations::cos; // note: no function prototype,
// just the name of the entity
// 1s required.

calling cos results in a call of the cos function defined in the CppAnnotations namespace. This implies
that the standard cos function, accepting radians, is not automatically called anymore. To call that
latter cos function the plain scope resolution operator should be used:

int main()

using CppAnnotations::cos;

cout << cos(60) // calls CppAnnotations::cos()
<< zcos(1.5) // call the standard cos() function
<< "\n

A using declaration can have restricted scope. It can be used inside a block. The using declaration
prevents the definition of entities having the same name as the one used in the using declaration. It
is not possible to specify a using declaration for a variable value in some namespace, and to define (or
declare) an identically named object in a block also containing a using declaration. Example:

int main()

using CppAnnotations::value;

cout << value << "\n'; // uses CppAnnotations::value
int value; // error: value already declared.

4.1.2.1 The ‘using’ directive
A generalized alternative to the using declaration is the using directive:

using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are used as if they
were declared by using declarations.

While the using directive is a quick way to import all the names of a namespace (assuming the
namespace has previously been declared or defined), it is at the same time a somewhat dirty way to
do so, as it is less clear what entity is actually used in a particular block of code.

If, e.g., cos is defined in the CppAnnotations namespace, CppAnnotations::cos is going to be used when
cos is called. However, if cos is not defined in the CppAnnotations namespace, the standard cos
function will be used. The using directive does not document as clearly as the using declaration what
entity will actually be used. Therefore use caution when applying the using directive.

66 CHAPTER 4. NAMESPACES

Namespace declarations are context sensitive: when a using namespace declaration is specified inside
a compound statement then the declaration is valid until the compound statement’s closing curly
brace has been encountered. In the next example a string first is defined without explicit speci-
fying std::string, but once the compound statement has ended the scope of the using namespace std
declaration has also ended, and so std:: is required once again when defining second:

#include <string>
int main()

{
t
using namespace std;
string first;

std::string second;

}

A using namespace directive cannot be used within the declaration block of a class- or enumeration-
type. E.g., the following example won’t compile:

struct Namespace

using namespace std; // won't compile

4.1.2.2 ‘Koenig lookup’

If Koenig lookup were called the ‘Koenig principle’, it could have been the title of a new Ludlum
novel. However, it is not. Instead it refers to a C++ technicality.

‘Koenig lookup’ refers to the fact that if a function is called without specifying its namespace, then the
namespaces of its argument types are used to determine the function’s namespace. If the namespace
in which the argument types are defined contains such a function, then that function is used. This
procedure is called the ‘Koenig lookup’.

As an illustration consider the next example. The function FBB::fun(FBB::Value v) is defined in the
FBB namespace. It can be called without explicitly mentioning its namespace:

#include <iostream>

namespace FBB

{
enum Value // defines FBB::Value

FIRST
};

void fun(Value x)

std::cout << "fun called for " << x << "\n"

}

int main()

fun(FBB::FIRST); // Koenig lookup: no namespace
// for fun() specified
}

*

generated output:
fun called for 0

*/

4.1. NAMESPACES 67

The compiler is rather smart when handling namespaces. If Value in the namespace FBB would have
been defined as using Value = int then FBB::Value would be recognized as int, thus causing the Koenig
lookup to fail.

As another example, consider the next program. Here two namespaces are involved, each defin-
ing their own fun function. There is no ambiguity, since the argument defines the namespace and
FBB::fun is called:

#include <iostream>
namespace FBB
enum Value // defines FBB::Value
FIRST

Y

void fun(Value x)
std::cout << "FBB::fun() called for " << x << "\n';
}
namespace ES
void fun(FBB::Value x)

std::cout << "ES:fun() called for " << x << "\n';

}
int main()
fun(FBB::FIRST); // No ambiguity: argument determines
// the namespace
}

*

generated output:
FBB::fun() called for 0
*

Here is an example in which there is an ambiguity: fun has two arguments, one from each namespace.
The ambiguity must be resolved by the programmer:

#include <iostream>
namespace ES
enum Value // defines ES::Value
FIRST

Y

}

namespace FBB
enum Value // defines FBB::Value

FIRST
1

void fun(Value x, ES::Value y)

std::cout << "FBB::fun() called\n";

68 CHAPTER 4. NAMESPACES

}
}

namespace ES
void fun(FBB::Value x, Value y)

std::cout << "ES::fun() called\n";

}

int main()

// fun(FBB::FIRST, ES::FIRST); ambiguity: resolved by
// explicitly mentioning

// the namespace
ES::fun(FBB::FIRST, ES::FIRST);

}

*

generated output:
ES::fun() called
*/

An interesting subtlety with namespaces is that definitions in one namespace may break the code
defined in another namespace. It shows that namespaces may affect each other and that namespaces
may backfire if we’re not aware of their peculiarities. Consider the following example:

namespace FBB

struct Value

{}

void fun(int x);
void gun(Value x);

}

namespace ES
void fun(int x)
fun(x);
ioid gun(FBB::Value x)
{ gun(x);
}
Whatever happens, the programmer’d better not use any of the functions defined in the ES names-

pace, since that would result in infinite recursion. However, that’s not the point. The point is that
the programmer won’t even be given the opportunity to call ES::fun since the compilation fails.

Compilation fails for gun but not for fun. But why is that so? Why is ES::fun flawlessly compiling
while ES::gun isn’t? In ES::fun fun(x) is called. As x’s type is not defined in a namespace the Koenig
lookup does not apply and fun calls itself with infinite recursion.

With ES::gun the argument is defined in the FBB namespace. Consequently, the FBB::gun function
is a possible candidate to be called. But ES::gun itself also is possible as ES::gun’s prototype perfectly
matches the call gun(x).

Now consider the situation where FBB::gun has not yet been declared. Then there is of course no
ambiguity. The programmer responsible for the ES namespace is resting happily. Some time after
that the programmer who’s maintaining the FBB namespace decides it may be nice to add a function

4.1. NAMESPACES 69

gun(Value x) to the FBB namespace. Now suddenly the code in the namespace ES breaks because of
an addition in a completely other namespace (FBB). Namespaces clearly are not completely indepen-
dent of each other and we should be aware of subtleties like the above. Later in the C++ Annotations
(chapter 11) we'll return to this issue.

Koenig lookup is only used in the context of namespaces. If a function is defined outside of a names-
pace, defining a parameter of a type that’s defined inside a namespace, and that namespace also
defines a function with an identical signature, then the compiler reports an ambiguity when that
function is called. Here is an example, assuming the abovementioned namespace FBB is also avail-
able:

void gun(FBB::Value x);
int main(int arge, char **argv)

gun(FBB::Value{}); // ambiguity: FBB::gun and ::gun can both
// be called.

4.1.3 The standard namespace

The std namespace is reserved by C++. The standard defines many entities that are part of the
runtime available software (e.g., cout, cin, cerr); the templates defined in the Standard Template
Library (cf. chapter 18); and the Generic Algorithms (cf. chapter 19) are defined in the std namespace.

Regarding the discussion in the previous section, using declarations may be used when referring to
entities in the std namespace. For example, to use the std::cout stream, the code may declare this
object as follows:

#include <iostream>
using std::cout;

Often, however, the identifiers defined in the std namespace can all be accepted without much
thought. Because of that, one frequently encounters a using directive, allowing the programmer
to omit a namespace prefix when referring to any of the entities defined in the namespace speci-
fied with the using directive. Instead of specifying using declarations the following using directive is
frequently encountered: construction like

#include <iostream>
using namespace std;

Should a using directive, rather than using declarations be used? As a rule of thumb one might decide
to stick to using declarations, up to the point where the list becomes impractically long, at which point
a using directive could be considered.

Two restrictions apply to using directives and declarations:

* Programmers should not declare or define anything inside the namespace std. This is not com-
piler enforced but is imposed upon user code by the standard;

* Using declarations and directives should not be imposed upon code written by third parties. In
practice this means that using directives and declarations should be banned from header files
and should only be used in source files (cf. section 7.11.1).

70 CHAPTER 4. NAMESPACES

4.1.4 Nesting namespaces and namespace aliasing
Namespaces can be nested. Here is an example:

namespace CppAnnotations

int value;
namespace Virtual

void *pointer;

The variable value is defined in the CppAnnotations namespace. Within the CppAnnotations names-
pace another namespace (Virtual) is nested. Within that latter namespace the variable pointer is
defined. To refer to these variable the following options are available:

* The fully qualified names can be used. A fully qualified name of an entity is a list of all the
namespaces that are encountered until reaching the definition of the entity. The namespaces
and entity are glued together by the scope resolution operator:

int main()

CppAnnotations::value = 0;
CppAnnotations::Virtual::pointer = 0;

* A using namespace CppAnnotations directive can be provided. Now value can be used without
any prefix, but pointer must be used with the Virtual:: prefix:

using namespace CppAnnotations;
int main()
value = 0;

Virtual::pointer = 0;

}

* A using namespace directive for the full namespace chain can be used. Now value needs its
CppAnnotations prefix again, but pointer doesn’t require a prefix anymore:

using namespace CppAnnotations::Virtual;
int main()
CppAnnotations::value = 0;

pointer = 0;

}

* When using two separate using namespace directives none of the namespace prefixes are re-
quired anymore:

using namespace CppAnnotations;
using namespace Virtual;

int main()

value = 0;
pointer = 0;

4.1. NAMESPACES 71

* The same can be accomplished (i.e., no namespace prefixes) for specific variables by providing
specific using declarations:

using CppAnnotations::value;
using CppAnnotations::Virtual::pointer;

int main()
value = 0;

pointer = 0;

* A combination of using namespace directives and using declarations can also be used. E.g., a
using namespace directive can be used for the CppAnnotations::Virtual namespace, and a using
declaration can be used for the CppAnnotations::value variable:

using namespace CppAnnotations::Virtual;
using CppAnnotations::value;

int main()
value = 0;

pointer = 0;

}

Following a using namespace directive all entities of that namespace can be used without any further
prefix. If a single using namespace directive is used to refer to a nested namespace, then all entities of
that nested namespace can be used without any further prefix. However, the entities defined in the
more shallow namespace(s) still need the shallow namespace’s name(s). Only after providing specific
using namespace directives or using declarations namespace qualifications can be omitted.

When fully qualified names are preferred but a long name like

CppAnnotations:: Virtual::pointer

is considered too long, a namespace alias may be used:

namespace CV = CppAnnotations::Virtual;

This defines CV as an alias for the full name. The variable pointer may now be accessed using:
CV::pointer = 0;

A namespace alias can also be used in a using namespace directive or using declaration:

namespace CV = CppAnnotations::Virtual;
using namespace CV;

Nested namespace definitions

Starting with the C++17 standard, when nesting namespaces a nested namespace can directly be
referred to using scope resolution operators. E.g.,

namespace Outer::Middle::Inner

// entities defined /declared here are defined/declared in the Inner
// namespace, which is defined in the Middle namespace, which is
// defined in the Outer namespace

72 CHAPTER 4. NAMESPACES

4.1.4.1 Defining entities outside of their namespaces
It is not strictly necessary to define members of namespaces inside a namespace region. But before
an entity is defined outside of a namespace it must have been declared inside its namespace.

To define an entity outside of its namespace its name must be fully qualified by prefixing the member
by its namespaces. The definition may be provided at the global level or at intermediate levels in the
case of nested namespaces. This allows us to define an entity belonging to namespace A::B within
the region of namespace A.

Assume the type int INT8[8] is defined in the CppAnnotations::Virtual namespace. Furthermore as-
sume that it is our intent to define a function squares, inside the namespace
CppAnnotations::Virtual returning a pointer to CppAnnotations::Virtual::INT8.

Having defined the prerequisites within the CppAnnotations::Virtual namespace, our function could
be defined as follows (cf. chapter 9 for coverage of the memory allocation operator new][]):

namespace CppAnnotations
namespace Virtual
void *pointer;
using INT8 = int[8];
INTS8 *squares()
INTS *ip = new INT8J[1];

for (size t idx = 0; idx != sizeof(INTS8) / sizeof(int); +-+idx)
(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

}
}

The function squares defines an array of one INTS8 vector, and returns its address after initializing
the vector by the squares of the first eight natural numbers.

Now the function squares can be defined outside of the CppAnnotations::Virtual namespace:

namespace CppAnnotations
namespace Virtual
void *pointer;
using INT8 = int[8];
INTS *squares();
}
CppAnnotations::Virtual::INT8 *CppAnnotations::Virtual::squares()
INTS8 *ip = new INTS[1];

for (size t idx = 0; idx != sizeof(INTS8) / sizeof(int); +-+idx)
(*ip)|idx] = (idx + 1) * (idx + 1);

return ip;

4.2. THE STD::CHRONO NAMESPACE (HANDLING TIME) 73

In the above code fragment note the following:

* squares is declared inside of the CppAnnotations::Virtual namespace.

* The definition outside of the namespace region requires us to use the fully qualified name of
the function and of its return type.

* Inside the body of the function squares we are within the CppAnnotations::Virtual namespace,
so inside the function fully qualified names (e.g., for INT®) are not required any more.

Finally, note that the function could also have been defined in the CppAnnotations region. In that
case the Virtual namespace would have been required when defining squares() and when specifying
its return type, while the internals of the function would remain the same:

namespace CppAnnotations
namespace Virtual
void *pointer;
using INT8 = int[8];
INT8 *squares();

Virtual::INT8 *Virtual::squares()
INTS8 *ip = new INTS[1];

for (size t idx = 0; idx != sizeof(INT8) / sizeof(int); +-+idx)
(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

4.2 The std::chrono namespace (handling time)

The C programming language offers tools like sleep(3) and select(2) to suspend program execution
for a certain amount of time. And of course the family of time(3) functions for setting and displaying
time

Sleep and select can be used for waiting, but as they were designed in an era when multi threading
was unavailable, their usefulness is limited when used in multi threaded programs. Multi threading
has become part of C++ (covered in detail in chapter 20), and additional time-related functions are
available in the std::filesystem namespace, covered below in this chapter.

In multi threaded programs threads are frequently suspended, albeit usually for a very short time.
E.g., when a thread wants to access a variable, but the variable is currently being updated by an-
other thread, then the former thread should wait until the latter thread has completed the update.
Updating a variable usually doesn’t take much time, but if it takes an unexpectedly long time, then
the former thread may want to be informed about that, so it can do something else while the latter
thread is busy updating the variable. Interactions between threads like these cannot be realized
with functions like sleep and select.

The std::chrono namespace bridges the gap between the traditionally available time-related functions
and the time-related requirements of multi-threading and of the std::filesystem name space. All but

74 CHAPTER 4. NAMESPACES

the specific std::filesystem related time functionality is available after including the <chrono> header
file. After including the <filesystem> header file the facilities of the std::filesystem are available.

Time can be measured in various resolutions: in Olympic games time differences of hundreds of
seconds may make the distinction between a gold and silver medal, but when planning a vacation
we might talk about months before we go on vacation. Time resolutions are specified through objects
of the class std::ratio, which (apart from including the <chrono> header file) is also available after
including the <ratio> header file.

Different events usually last for different amounts of time (given a specific time resolution). Amounts
of time are specified through objects of the class std::chrono::duration.

Events can also be characterized by their points in time: midnight, January 1, 1970 GMT is a point
in time, as is 19:00, December 5, 2010. Points in time are specified through objects of the class
std::chrono::time point.

It’s not just that resolutions, durations of events, and points in time of events may differ, but the
devices (clocks) we use for specifying time also differ. In the old days hour glasses were used (and
sometimes they’re still used when boiling eggs), but on the other hand we may use atomic clocks
when measurements should be very precise. Four different types of clocks are available. The com-
monly used clock is std::chrono::system clock, but in the context of the file system there’s also an
(implicitly defined) filesystem:: _file clock.

In the upcoming sections the details of the std::chrono namespace are covered. First we look at
characteristics of time resolutions. How to handle amounts of time given their resolutions is covered
next. The next section describes facilities for defining and handling time-points. The relationships
between these types and the various clock-types are covered thereafter.

In this chapter the specification std::chrono:: is often omitted (in practice using namespace std followed
by using namespace chrono is commonly used; [std::]chrono:: specifications are occasionally used to
avoid ambiguities). Also, every now and then you’ll encounter forward references to later chapters,
like the reference to the chapter about multi-threading. These are hard to avoid, but studying those
chapters at this point fortunately can be postponed without loss of continuity.

4.2.1 Time resolutions: std::ratio

Time resolutions (or units of time) are essential components of time specifications. Time resolutions
are defined through objects of the class std::ratio.

Before the class ratio can be used, the <ratio> header file must be included. Instead the <chrono>
header file can be included.

The class ratio requires two template arguments. These are positive integral numbers surrounded by
pointed brackets defining, respectively, the numerator and denominator of a fraction (by default the
denominator equals 1). Examples:

ratio<<1> - representing one;
ratio<<60> - representing 60
ratio<1, 1000> - representing 1/1000.

The class ratio defines two directly accessible static data members: num represents its numerator,
den its denominator. A ratio definition by itself simply defines a certain amount. E.g., when executing
the following program

#include <ratio>
#include <iostream>
using namespace std;

4.2. THE STD::CHRONO NAMESPACE (HANDLING TIME) 75

int main()

cout << ratio<5, 1000>:mum << "' << ratio<5, 1000>::den << "\n' <<
milli::num << "' << milliz:den << "\n';

the text 1,200 is displayed, as that’s the ‘amount’ represented by ratio<5, 1000>: ratio simplifies the
fraction whenever possible.

A fairly large number of predefined ratio types exist. They are, like ratio itself, defined in the standard
namespace and can be used instead of the more cumbersome ratio<x> or ratio<x, y> specification:

yocto 10724 zepto 102!

atto 10718 femto 10~1° pico 107!2

nano 107° micro 106 milli 1073
centi 1072 deci 101

deca 10! hecto 102 kilo 10°
mega 106 giga 10° tera 10'2
peta 10%° exa 10'8

zetta 10%! yotta 10%*

(note: the definitions of the types yocto, zepto, zetta and yotta use integral constants exceeding 64
bits. Although these constants are defined in C++, they are not available on 64 bit or smaller archi-
tectures.)

Time related ratios can very well be interpreted as fractions or multiple of seconds, with ratio<1, 1>
representing a resolution of one second.

Here is an example showing how these abbreviations can be used:

cout << milliznum << ',' << millizden << "\n' <<
kilo:num << "' << kilo::den << "\n';

4.2.2 Amounts of time: std::chrono::duration

Amounts of time are specified through objects of the class std::chrono::duration.
Before using the class duration the <chrono> header file must be included.

Like ratio the class duration requires two template arguments. A numeric type (int64 t is normally
used) defining the type holding the duration’s amount of time, and a time-resolution (called its reso-
lution), usually specified through a std::ratio-type (often using one of its chrono abbreviations).

Using the predefined std::deca ratio, representing units of 10 seconds an interval of 30 minutes is
defined as follows:

duration<int64 t, std::deca>> halfHr(180);

Here halfHr represents a time interval of 180 deca-seconds, so 1800 seconds. Comparable to the
predefined ratios predefined duration types are available:

76 CHAPTER 4. NAMESPACES

nanoseconds duration<int64 t, nano>
microseconds duration<int64 _t, micro>
milliseconds duration<int64 _t, milli>
seconds duration<int64 t>

minutes duration<int64 t, ratio<60>>
hours duration<int64 t, ratio<3600>>

Using these types, a time amount of 30 minutes can now simply be defined as minutes halfHour(30).

The two types that were specified when defining a duration<Type, Resolution> can be retrieved as,
respectively,

* rep, which is equivalent to the numeric type (like int64 t). E.g., seconds::rep is equivalent to
int64 t;

¢ period, which is equivalent to the ratio type (like kilo) and so duration<int, kilo>::period::num is
equal to 1000.

Duration objects can be constructed by specifying an argument of its numeric type:

* duration(Type const &value):
a specific duration of value time units. Type refers to the duration’s numeric type (e.g., int64 _t).
So, when defining

minutes halfHour(30);

the argument 30 is stored inside its int64 t data member.

Duration supports copy- and move-constructors (cf. chapter 9) and its default constructor initializes
its int64 _t data member to zero.

The amount of time stored in a duration object may be modified by adding or subtracting two dura-
tion objects or by multiplying, dividing, or computing a modulo value of its data member. Numeric
multiplication operands may be used as left-hand side or right-hand side operands; in combina-
tion with the other multiplication operators the numeric operands must be used as right-hand side
operands. Compound assignment operators are also available. Some examples:

minutes fullHour = minutes{ 30 } + halfHour;
fullHour = 2 * halfHour;

halfHour = fullHour / 2;

fullHour = halfHour + halfHour;

halfHour /= 2;
halfHour *= 2;

In addition, duration offers the following members (the first member is an ordinary member function
requiring a duration object). The other three are static members (cf. chapter 8) which can be used
without requiring objects (as shown at the zero code snippet):

* Type count() const returns the value that is stored inside the duration object’s data member. For
halfHour it returns 30, not 1800;

¢ duration<Type, Resolution>::zero():
this is an (immutable) duration object whose count member returns 0. E.g.:

seconds::zero().count(); // equals int64_t 0

4.2. THE STD::CHRONO NAMESPACE (HANDLING TIME) 77

¢ duration<Type, Resolution>::min():
an immutable duration object whose count member returns the lowest value of its Type (i.e.,
std:mumeric_ limits<Type>:min() (cf. section 21.11));

* duration<Type, Resolution>::max():
an immutable duration object whose count member returns the lowest value of its Type (i.e.,
std:mumeric_ limits<Type>::max()).

Duration objects using different resolutions may be combined as long as no precision is lost. When
duration objects using different resolutions are combined the resulting resolution is the finer of the
two. When compound binary operators are used the receiving object’s resolution must be the finer or
the compilation fails.

minutes halfHour{ 30 };
hours oneHour{ 1 };

cout << (oneHour + halfHour).count(); // displays: 90
halfHour += oneHour; // OK
// oneHour += halfHours; // won't compile

The suffixes h, min, s, ms, us, ns can be used for integral values, creating the corresponding duration
time intervals. E.g., minutes min = 1h stores 60 in min.

4.2.3 Clocks measuring time

Clocks are used for measuring time. C++ offers several predefined clock types, and all but one of them
are defined in the std::chrono namespace. The exception is the clock std::filesystem:: _file clock (see
section 4.3.1 for its details).

Before using the chrono clocks the <chrono> header file must be included.
We need clock types when defining points in time (see the next section). All predefined clock types
define the following types:

* the clock’s duration type: Clock::duration (predefined clock types use nanoseconds). E.g., sys-

tem _ clock::duration oneDay{ 24h };

* the clock’s resolution type: Clock::period (predefined clock types use nano). E.g., cout << sys-
tem _ clock::period::den << ’\n’;

* the clock’s type that is used to store amounts of time: Clock::rep (predefined clock types use
int64_t). E.g., system _clock::rep amount = 0;

e the clock’s type that is used to store time points (described in the next section):
Clock::time point (predefined clock types use time point<system clock, nanoseconds>) E.g., sys-
tem clock::time point start.

All clock types have a member now returning the clock type’s time point corresponding to the cur-
rent time (relative to the clock’s epoch). It is a static member and can be used this way: sys-
tem_clock::time point tp = system _clock::now().

There are three predefined clock types in the chrono namespace:

e system_clock is the ‘wall clock’, using the system’s real time clock;

78 CHAPTER 4. NAMESPACES

e steady clock is a clock whose time increases in parallel with the increase of real time;

* high resolution clock is the computer’s fastest clock (i.e., the clock having the shortest timer-
tick interval). In practice this is the same clock as system clock.

In addition, the __file clock clock type is defined in the std::filesystem namespace. The epoch time
point of __file clock differs from the epoch time used by the other clock types, but _ file clock
has a static member to_sys(__file clock::time point) converting file clock::time points to sys-
tem_clock::time points (__file clock is covered in more detail in section 4.3.1).

In addition to now the classes system clock and high resolution clock (referred to as Clock below)
offer these two static members:

* std::time t Clock::to_time t(Clock::time point const &tp)
a std::time _t value (the same type as returned by C’s time(2) function) representing the same
point in time as timePoint.

* Clock::time point Clock::from _time t(std::time t seconds)
a time_point representing the same point in time as time_t.

The example illustrates how these functions can be called:

system _clock::from_time t(
system _clock::to _time t(
system _ clock:from time t(
time(0);

4.2.4 Points in time: std::chrono::time_point

Single moments in time can be specified through objects of the class std::chrono::time_ point.
Before using the class time point the <chrono> header file must be included.

Like duration the class time point requires two template arguments: A clock type and a duration
type. Usually system__clock is used as the clock’s type using nanoseconds as the default duration type
(it may be omitted if nanoseconds is the intended duration type). Otherwise specify the duration type
as the time point’s second template argument. The following two time point definitions therefore
use identifcal time point types:

time point<standard clock, nanoseconds> tpl;
time point<standard clock> tp2;

The class time_point supports three constructors:

* time point():
the default constructor is initialized to the beginning of the clock’s epoch. For system clock it
is January, 1, 1970, 00:00h, but notice that filesystem:: _ file clock uses a different epoch (see
section 4.3.1 below);

* time point(time point<Clock, Duration> const &other):
the copy constructor (cf. chapter 9) initializes a time point object using the time point defined
by other. If other’s resolution uses a larger period than the period of the constructed object
then other’s point in time is represented in the constructed object’s resolution (an illustration
is provided below, at the description of the member time since epoch);

4.2. THE STD::CHRONO NAMESPACE (HANDLING TIME) 79

* time point(time point<Clock, Duration> const &&tmp):
the move constructor (cf. chapter 9) acts comparably to the copy constructor, converting tmp’s
resolution to the constructed object while moving tmp to the constructed object.

The following operators and members are available:

* time_ point &operator+=(duration const &amount):
The amount of time represented by amount is added to the current time point object. This op-
erator is also available as binary arithmetic operator using a time point const & and a duration
const & operand (in any order). Example:

system_ clock::now() + seconds{ 5 };

* time_point &operator-=(duration const &amount):
The amount of time represented by amount is subtracted from the current time point object.
This operator is also available as binary arithmetic operator using a time point const & and a
duration const & operand (in any order). Example:

time point<system clock> point = system clock::mow();
point -= seconds{ 5 };

* duration time_since epoch() const:
duration is the duration type used by the time point object for which this member is called. It
returns the amount of time since the epoch that’s represented by the object.

* time point min() const:
a static member returning the time point’s duration::min value. Example:

cout <<
time point<system _clock>::min().time_ since epoch().count() << "\n';
// shows -9223372036854775808

* time point max() const:
a static member returning the time point’s duration::max value.

All predefined clocks use nanoseconds as their time resolution. To express the time in a less pre-
cise resolution take one unit of time of the less precise resolution (e.g., hours(1)) and convert it to
nanoseconds. Then divide the value returned by the time point’s time since epoch().count() member
by count member of the less precise resolution converted to nanoseconds. Using this procedure the
number of hours passed since the beginning of the epoch can be determined:

cout << system_ clock::now().time _since_epoch().count() /
nanoseconds(hours(1)).count() <<
" hours since the epoch\n";

Time point objects based on the system clock or on the high resolution clock can be converted to
std::time_t (or the equivalent type time t) values. Such time t values are used when converting
time to text. For such conversions the manipulator put _time (cf. section 6.3.2) is commonly used,
but put_time must be provided with the address of a std::tm object, which in turn can be obtained
from a std::time_t value. The whole process is fairly complex, and the core elements are visualized
in figure 4.1.

The essential step eventually leading to the insertion of a time point’s value into a std::ostream con-
sists of using system _clock::to_time t(time point<system clock> const &tp) to convert a time point
to a time_t value (instead of using system clock the high resolution clock can also be used). How a
time point can be inserted into a std::ostream is described in section 6.4.4.

80

Time: namespace,

CHAPTER 4. NAMESPACES

std
type89 namespace
functions. . . type
duration clocktype function

(e.g., seconds)
A

co{mt()

Ratios:
nano, milli, centi, ...

(e.g., system_clock)

addition etc.: OK

>

::now()

Y

deca, kilo, mega, ...

:num, ::den

time_since_epoch()

<— time_point

!

std::time t

<—| to_time t()

std::localtime(")

J

std::gmtime(")

—>

std::tm

data members

E.g.: cout <<

put_time(')

Figure 4.1: Time according to C++

4.3. THE STD::FILESYSTEM NAMESPACE 81

4.3 The std:filesystem namespace

Computers commonly store information that must survive reboots in their file systems. Tradition-
ally, to manipulate the file system the C programming language offers functions performing the
required system calls. Such functions (like rename(2), truncate(2), opendir(2), and realpath(3))
are of course also available in C++, but their signatures and way of use are often less attractive as
they usually expect char const * parameters and may use static buffers or memory allocation based
on malloc(3) and free(3).

Since 2003 the Boost library! offers wrappers around these functions, offering interfaces to those
system calls that are more C++-like.

Currently C++ directly supports these functions in the std::filesystem namespace. These facilities can
be used after including the <filesystem> header file.

The filesystem namespace is extensive: it contains more than 10 different classes, and more than 30
free functions. To refer to the identifiers defined in the std::filesystem namespace their fully qual-
ified names (e.g., std::filesystem::path) can be used. Alternatively, after specifying ‘using namespace
std::filesystem;” the identifiers can be used without further qualifications. Namespace specifications
like ‘namespace fs = std::filesystem;” are also encountered, allowing specifications like fs::path.

Functions in the filesystem namespace may fail. When functions cannot perform their assigned tasks
they may throw exceptions (cf. chapter 10) or they may assign values to error _code objects that are
passed as arguments to those functions (see section 4.3.2 below).

4.3.1 the’__file_clock’ type

In section 4.2.3 it was stated that various predefined clocks are available, of which the system clock
refers to the clock used by the computer itself. The filesystem namespace uses a different clock: the
std::filesystem:: __ file clock. Time points obtained using the __file clock differ from the time points
obtained using the system clock: time points using the _ file clock are based on an epoch that
(currently) lies well beyond the epoch Jan 1, 00:00:00 1970 that is used by the system clock: Fri Dec
31 23:59:59 2173. The two epochs can be positioned on a time scale with the present somewhere in
between:

<o | |-
system _clock's -------- > present <-------—- __file clock's
epoch starts positive negative epoch starts
count count

The file clock has its own peculiarities: the static member now is available, as are some non-
static members: additions and subtractions of durations and the member time since epoch can all
be used, and . The other members (to_time_t, from time t, min and max) aren’t available.

Since to_time_t is not available for __ file clock how can we show the time or obtain the time’s
components of a time_point<___file clock> object?

Currently, there are two ways to accomplish that: compute the correction by hand’ or use the static
__file_clock::to_sys function converting a __file clock time point to a time point as used by sys-
tem _clock, steady clock, and high resolution _clock.

Computing the difference between the epochs we find 6'437°663’999 seconds, which we can add to
the obtained time since the __file clock’s epoch to obtain the time since the system clock’s epoch. If
timePt holds the duration since the __file clock epoch then

Lhttp:/www.boost.org/doc/libs/1_65_1/libs/filesystem/doc/index.htm

82 CHAPTER 4. NAMESPACES

6'437'663'999 + system clock::to_time t(
time point<system _clock>{ nanoseconds(timePt) })

equals the number of seconds since the system clock’s epoch.

The potential drawback of this procedure is that, as __file clock’s name starts with underscores, the
begin of its epoch might change. By using the now members of both clocks this drawback is avoided:

auto systemNow = system clock::now().time since epoch();
auto fileNow = _file clock:mow().time since epoch();
time t diff = (systemNow - fileNow) / 1'000'000'000;

time t seconds = diff + system clock::to time t(
time point<system _clock>{ nanoseconds(timePt) });

Although being able to compute the time-shifts yourself is attractive from an understanding
point of view, it’s maybe also a bit (too) cumbersome for daily practices. The static function
__file_clock::to_sys can be used to convert _ file clock::time points to system clock:::time points.
The file clock:to_sys function is covered in section 4.3.3.2.

4.3.2 The class ’error_code’

Objects of the class std::error code (note: not std:filesystem::error code!) encapsulate error val-
ues, and associated error categories (cf. section 10.9; error code can be used after including the
<system__error> header, but it is also available after including the <filesystem> header file). Tradi-
tionally error values are available as values assigned to the global int errno variable. By convention,
when errno’s value equals zero there’s no error. This convention was adopted by error_code.

Error codes can be defined for many conceptually different situations. Those situations are charac-
terized by their own error categories.

Error categories are used to associate error _code objects with the errors that are defined by those
categories. Default available error categories may use values like EADDRINUSE (or the equivalent
enum class errc value address _in_use) but new types of error categories, tailored to other contexts,
can also be defined. Defining error categories is covered near the end of the C++ Annotations (section
23.7.1). At this point two error _category members are briefly introduced:

* std::string message(int err) returning a textual description of error err (like address already in
use when err equals address _in_use).

* char const *name() returning the name of the error category (like generic for the generic cate-
gory);

Error category classes are singleton classes: only one object exists of each error category. In the
context of the filesystem namespace the standard category system category is used, and a reference
to the system category object is returned by the free function std::system category, expecting no
arguments. The public interface of the class error _code declares these construtors and members:

Constructors:
e error_code() noexcept:

the object is initialized with error value 0 and the system category error category. Value 0 is
not considered an error;

* Copy- and move-constructors are available;

4.3. THE STD::FILESYSTEM NAMESPACE 83

e error_code(int ec, error _category const &cat) noexcept:
the object is initialized from error value ec (e.g., errno, set by a failing function), and a
const reference to the applicable error category (provided by, e.g., std::system category() or
std::generic_category()). Here is an example defining an error _code object:

error_code ec{ 5, system _category() };

¢ error_code(ErrorCodeEnum value) noexcept:
this is a member template (cf. section 22.1.3), using template header template <class
ErrorCodeEnum>. It initializes the object with the return value of make_error_ code(value) (see
below). In section 23.7 defining ErrorCodeEnums is covered. Note: ErrorCodeEnum as such does
not exist. It is a mere placeholder for existing ErrorCodeEnum enumerations;

Members:

* The overloaded assignment operator and an assignment operator accepting an ErrorCodeEnum
are available;

* void assign(int val, error category const &cat):
assigns new values to the object’s error value and category. E.g, ec.assign(0, generic__category());

* error_category const &category() const noexcept:
returns a reference to the object’s error category;

* void clear() noexcept:
sets the error _code’s value to 0 and its error category to system category;

¢ error_condition default error condition() const noexcept:
returns the current category’s default error condition initialized with the current object’s error
value and error category (see section 10.9.2 for details about the class error condition);

* string message() const:
the message that is associated with the current object’s error value is returned (equivalent to
category().message(ec.value()));

* explicit operator bool() const noexcept:
returns true if the object’s error value is unequal O (i.e., it represents and error)

* int value() const noexcept:
returns the object’s error value.

Free functions:

* Two error _code objects can be compared for (in) equality and can be ordered (using operator<).

Ordering error _codes associated with different error categories has no meaning. But when the
error categories are identical then they are compared by their error code values (cf. this SG14
discussion summary?);

* error__code make error code(errc value) noexcept:
returns an error_code object initialized with static cast<int>(value) and generic_category().
This function converts an enum class errc value to an error__code.

Other error related enums may also be defined with which tailored make error code functions
can be associated (cf. section 23.7;)

2http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0824r1.html

84 CHAPTER 4. NAMESPACES

* std::ostream &operator<<(std::ostream & os, error_code const &ec):
executes the following statement:

return os << ec.category().name() << ":' << ec.value();

Several functions introduced below define an optional last error _code &ec parameter. Those functions
have noexcept specifications. If those functions cannot complete their tasks, then ec is set to the
appropriate error code, calling ec.clear() if no error was encountered. If no ec argument is provided
then those functions throw a filesystem error exception if they cannot complete their tasks.

4.3.3 Names of file system entries: path

Objects of the class filesysten::path hold names of file system entries. The class path is a value class:
a default constructor (empty path) as well as standard copy/move construction/assignment facilities
are available. In addition, the following constructors can be used:

* path(string &&tmp);

* path(Type const &source):
any acceptable type that provides the characters of the path (e.g., source is a NTBS);

* path(Inputlter begin, Inputlter end):
the characters from begin to end define the path’s name.

A thus constructed path doesn’t have to refer to an existing file system entry.

Path constructors expect character sequences (including NTBSs) that may consist of various (all
optional) elements:

* aroot-name, e.g., a disk-name (like E:) or device indicator (like //nfs);

* a root-directory, present if it is the first character after the (optional) root-name;

filename characters (not containing directory separators). In addition the ‘single dot filename’
(.) represents the current directory and the ‘double dot filename’ (..) represents the current
directory’s parent directory;

directory separators (by default the forward slash). Multiple consecutive separators are auto-
matically merged into one separator.

The constructors also define a last format ftmp = auto format parameter, for which in practice almost
never an argument has to be provided (for its details see cppreference3.)

Many functions expect path arguments which can usually be created from NTBSs or std::string objects
as path allows promotions (cf. section 11.5). E.g., the filesystem function absolute expects a const
&path argument. It can be called like this: absolute("tmp /filename").

4.3.3.1 Accessors, modifiers and operators

The class path provides the following operators and members:

Shttp:/en.cppreference.com/w/cpp/experimental/fs/path

4.3. THE STD::FILESYSTEM NAMESPACE 85

Operators:

* path &operator/=(Type const &arg):
the arguments that can be passed to the constructors can also be passed to this member. The
arg argument is separated from the path’s current content by a directory separator (unless the
path is initially empty as in cout << path{}.append("entry")). See also the members append and
concat, below. The free operator / accepts two path (promotable) arguments, returning a path
containing both paths separated by a directory separator (e.g., lhs / rhs returns a path object
containing lhs/rhs);

¢ path &operator+=(Type const &arg):
similar to /=, but no directory separator is used when adding arg to the current path;

* comparison operators: path objects can be compared using the (operators implied by the)
== and <=> operators. Path objects are compared by lexicographical comparing their ascii-
character content.

Accessors:
Accessors return specific path components. If a path doesn’t contain the requested component then
an empty path is returned.

® char const xc_str(): the path’s content as an NTBS is returned,;

* path extension() returns the dot-extension of the path’s last component (including the dot);

* path filename() returns the last path-content of the current path object. See also the stem)()
accessor, below;

* bool is_absolute(): returns true if the path object contains an absolute path specification;
* bool is_relative(): returns true if the path object contains a relative path specification;

* path parent path() returns the current path-content from which the last element has been
removed. Note that if the path object contains a filename’s path (like " /usr/bin/zip") then
parent path removes /zip and returns /usr/bin, so not zip’s parent directory, but its actual
directory;

* path relative path(): returns the path’s content beyond the path’s root-directory component
of the path object. E.g., if the path ulb{ "/usr/local/bin" } is defined then ulb.relative path()
returns a path containing "usr/local/bin";

* path root_ directory(): returns the root-directory component of the path object;
* path root name(): returns the root-name’s component of the path object;
* path root_path(): returns the root-path component of the path object;

¢ path stem() returns the last path-content of the current path object from which the dot-extension
hash been removed;

¢ string(): returns the path’s content as a std::string.
Similar accessors are available for the following string-types: wstring, uS8string,
ul6string, , u32string, generic_string, generic wstring, generic u8string, generic_ul6string, and
generic_u32string;

Except for the family of string() and the is_... accessors, there are also bool has ... members re-
turning true if the path contains the specified component (e.g., has _extension returns true if the path
contains an extension).

86 CHAPTER 4. NAMESPACES

Member functions:

* path &append(Type const &arg) acts like the /= operator;

* path:iterator begin() returns an iterator containing the first path component; Dereferencing a
path::iterator returns a path object.
When available root names and root directories are returned as initial components. When
incrementing path::iterators the individual directories and finally filename components are re-
turned. The directory separators themselves are not returned when dereferencing subsequent
path::iterators;

* void clear(): the path’s content is erased;

* int compare(Type const &other):
returns the result of lexicographically comparing the current path’s content with other. Other
can be a path, a string-type or an NTBS;

* path &concat(Type const &arg) acts like the += operator;

* ostream &operator<<(ostream &out, path const &path) (stream insertion) inserts path’s content,
surrounded by double quotes, into out;

* istream &operator>>(istream &in, path &path) extracts path’s content from in. The extracted
path name may optionally be surrounded by double quotes. When inserting a previously ex-
tracted path object only one set of surrounding quotes are shown.

* path &remove_filename():
removes the last component of the stored path. If only a root-directory is stored, then the root
directory is removed. Note that the last directory separator is kept, unless it is the only path
element;

* path &replace extension(path const &replacement = path{}):
replaces the extension of the last component of the stored path (including the extension’s dot)
with replacement. The extension is removed if replacement is empty. If the path calling re-
place _extension has no extension then replacement is added. The replacement may optionally
start with a dot. The path object’s extension receives only one dot;

* path &replace filename(path const &replacement):
replaces the last component of the stored path with replacement, which itself may contain mul-
tiple path elements. If only a root-directory is stored, then it is replaced by replacement. The
member’s behavior is undefined if the current path object is empty;

4.3.3.2 Free functions

In addition to the path member functions various free functions are available. Some of these copy
files. Those functions accept an optional std::filesystem::copy options argument. The enum class
copy _options defines symbolic constants that can be used to fine-tune the behavior of these functions.
The enumeration supports bitwise operators (the symbols’ values are shown between parentheses)
and defines these symbols:

* When copying files:

none (0): report an error (default behavior);

— skip_existing (1): keep the existing file, without reporting an error;

overwrite _existing (2): replace the existing file;

update _existing (4): replace the existing file only if it is older than the file being copied;

4.3. THE STD::FILESYSTEM NAMESPACE 87

* When copying subdirectories:

- none (0): skip subdirectories (default behavior);

— recursive (8): recursively copy subdirectories and their content;
* When copying symlinks:

— none (0): follow symlinks (default behavior);
— copy _symlinks (16): copy symlinks as symlinks, not as the files they point to;
— skip__symlinks (32): ignore symlinks;

* To control copy’s behavior itself:

- none (0): copy file content (default behavior);
— directories _only (64): copy the directory structure, but do not copy any non-directory files;

— create_symlinks (128): instead of creating copies of files, create symlinks pointing to the
originals (the source path must be an absolute path unless the destination path is in the
current directory);

- create_hard_links (256): instead of creating copies of files, create hardlinks that resolve to
the same files as the originals.

The following functions expect path arguments:

* path absolute(path const &sre, [, error _code &ec]):
a copy of src specified as an absolute path (i.e., starting at the filesystem’s root (and maybe disk)
name). It can be called like this: absolute("tmp/filename"), returning the (absolute) current
working directory to which absolute’s argument is appended as a final element, separated by
a directory separator. Relative path indicators (like ../ and ./) are kept. The returned path
merely is an absolute path. If relative path indicators should be removed, then use the next
function;

* path canonical(path const &src [, error _code &ec]):
returns src’s canonical path. The argument src must refer to an existing directory entry. Exam-
ple:

path man{ "/usr/local/bin/../../share/man" };
cout << canonical(man) << "\n'; // shows: "/usr/share/man"

* void copy(path const &src, path const &dest [, copy _options opts [, error_code &ec]]):
src must exist. Copies src to dest if the cp program would also succeed.

If src is a directory, and dest does not exist, dest is created. Directories are recursively copied if
copy options recursive or none were specified;

* bool copy_file(path const &src, path const &dest [, copy _options opts [, error _code &ec]]):
src must exist. Copies src to dest if the cp program would also succeed. Symbolic links are
followed. The value true is returned if copying succeeded;

* void copy _symlink(path const &src, path const &dest [, error _code &ec]):
creates the symlink dest as a copy of the symlink src;

* bool create_directories(path const &dest [, error code &ec]):
creates each component of dest, unless already existing. The value true is returned if dest was
actually created. If false is returned ec contains an error-code, which is zero (ec.value() == 0) if
dest already existed. See also create _directory below;

88

CHAPTER 4. NAMESPACES

bool create_directory(path const &dest [, path const &existing] [, error_code &ec]):

dest’s parent directory must exist. This function creates directory dest if it does not yet exist.
The value true is returned if dest was actually created. If false is returned ec contains an error-
code, which is zero (ec.value() == 0) if dest already existed. If existing is specified, then dest
receives the same attributes as existing;

void create directory _symlink(path const &dir, path const &link [, error _code &ec]):
like create symlink (see below), but is used to create a symbolic link to a directory;

void create hardlink(path const &dest, path const &link [, error _code &ec]):
creates a hard link from link to dest. Dest must exist;

void create symlink(path const &dest, path const &link [, error _code &ec]):
creates a symbolic (soft) link from link to dest; dest does not have to exist;

path current path([error _code &ec]), void current path(path const &toPath [, error code &ec]):
the former function returns the current working directory (cwd), the latter changes the cwd to
toPath. The returned path’s last character is not a slash, unless called from the root-directory;

bool equivalent(path const &pathl, path const &path2 [, error code &ec]):
true is returned if path1 and path2 refer to the same file or directory, and have identical statuses.
Both paths must exist;

bool exists(path const &dest [, error _code &ec]), exists(file status status):

true is returned if dest exists (actually: if status(dest|, ec]) (see below) returns true). Note: when
iterating over directories, the iterator usually provides the entries’ statuses. In those cases
calling exists(iterator->status()) is more efficient than calling exists(*iterator). When dest is the
path to a symbolic reference then exists returns whether the link’s destination exists or not (see
also the functions status and symlink _status in section 4.3.4);

std::unintmax_t file size(path const &dest [, error _code &ec]):
returns the size in bytes of a regular file (or symlink destination);

std::uintmax_t hard _link count(path const &dest [, error_code &ec]):
returns the number of hard links associated with dest;

time point< file clock> last write time(path const &dest [, error code &ec]), void
last _write time(path const &dest, time point< _file clock> newTime [, error_code &ec]):

the former function returns dest’s last modification time; the latter function changes dest’s
last modification time to newTime. last write time’s return type is defined through a us-
ing alias for chrono::time point (cf. section 4.2.4). The returned time point is guaranteed to
cover all file time values that may be encountered in the curre