Source code for bmtk.simulator.pointnet.modules.spikes_inputs

# Copyright 2023. Allen Institute. All rights reserved
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
# following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
# disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os
from bmtk.simulator.pointnet.modules.sim_module import SimulatorMod
from bmtk.simulator.pointnet.io_tools import io
from bmtk.utils.reports.spike_trains import SpikeTrains
from bmtk.simulator.pointnet.pyfunction_cache import py_modules


[docs] class SpikesInputsMod(SimulatorMod): def __init__(self, name, input_type, module, **kwargs): self._name = name self._input_type = input_type self._module = module self._params = kwargs self._spike_trains = None
[docs] def initialize(self, sim): io.log_info('Build virtual cell stimulations for {}'.format(self._name)) node_set = sim.net.get_node_set(self._params['node_set']) if self._module == 'function': if 'spikes_function' not in self._params: io.log_exception('missing parameter "spikes_function" for input {self._name}, module {self._module}') spikes_generator = self._params['spikes_function'] if spikes_generator not in py_modules.spikes_generators: io.log_exception(f'Could not find @spikes_generator function "{spikes_generator}" required for {self._name} inputs.') spikes_func = py_modules.spikes_generator(name=spikes_generator) self._spike_trains = SpikeTrains(cache_to_disk=False) for node in node_set.fetch_nodes(): timestamps = spikes_func(node, sim) self._spike_trains.add_spikes( node_ids=node.node_id, timestamps=timestamps, population=node.population_name ) else: self._spike_trains = SpikeTrains.load( path=self._params['input_file'], file_type=self._module, **self._params ) sim.net.add_spike_trains(self._spike_trains, node_set, sim.get_spike_generator_params())