
ARPES angle to k-space conversion

A typical ARPES geometry is depicted in figure
1. The manipulator allows rotations about three axes.
The first one is the rotation about the x axis, which is
independent of the other two and often called θ, though
conventions differ from beamline to beamline (cf. table
1). Here we will call it α. This means that, indepen-
dent of the state of the other two angles, we always
rotate around the original x axis, perpendicular to the
experimental mirror plane. The other two rotations are
dependent on α and each other. The rotation about
the current y′ axis is often called the tilt, here we’ll
call it β. In the horizontal analyzer slit geometry, this
is what we change in order to record a k-space map.
Finally, the rotation about the current z′ axis is often
called the azimuth or φ, while we’ll call it γ here. Ro-
tations about γ correspond to k-space rotations about
the same angle.
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Figure 1: The experimental geometry. The mirror
plane is defined by the incoming photon and the outgo-
ing electron with wave-vector ~k, which is the yz plane
in this example. The analyzer slit is oriented in this
plane, therefore this is the horizontal analyzer slit ge-
ometry.

The measurement produces data as a function of
the angle along the analyzer slit θk and the used tilt
β. In order to convert this to k-space, we first need
to convert these angles to the sample frame. This can
be done by first rotating the coordinate system by the
angle β around y (figure 2) and then rotating by α
around the original x axis (figure 3). Alternatively,
one could first rotate by α around x and then by β
around the new y′ axis, but mathematically this is the
same: Ry′Rx = RxRyR

−1
x Rx = RxRy. In order to

express ~k in the sample frame, we have to apply the
inverse transformation to ~k:

~k′′ =(Rx(α)Ry(β))−1~k = R−1y (β)R−1x (α)~k

=R−1y (β)

1 0 0
0 cosα sinα
0 − sinα cosα

 0
k0 sin θk
k0 cos θk



=k0

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

×

 0
sin θk cosα+ cos θk sinα
− sin θk sinα+ cos θk cosα



=k0

sinβ[cos θk cosα− sin θk sinα]
sin θk cosα+ cos θk sinα

cosβ[cos θk cosα− sin θk sinα]



=k0

sinβ cos(α+ θk)
sin(α+ θk)

cosβ cos(α+ θk)

 =

k′′xk′′y
k′′z


where we used the trigonometric identities:

2 sinα sinβ = cos(α− β) − cos(α+ β)

2 sinα cosβ = sin(α+ β) − sin(β − α)

2 cosα cosβ = cos(α− β) − cos(α− β)

Here, k′′z denotes the out-of-plane momentum com-
ponent, while k′′x and k′′y denote the in-plane momen-
tum components.
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Figure 2: The first rotation of β about the y axis.
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Figure 3: The second rotation of α about the original
x axis, leading to the sample coordinate system Σ′′ in
red.

If the analyzer slit lies in the xz plane, perpen-
dicular to the experimental mirror plane, the mea-
sured k-vectors are of the form (sin θk, 0, cos θk). Going
through the same calculations, one finds:

~k′′ = k0

 sin θk cosβ + cos θk cosα sinβ
cos θk sinα

− sin θk sinβ + cos θk cosα cosβ

 .

In this case, the data files come as a function of β, with
a different α for each slice of a map, as opposed to the
horizontal geometry.

Another useful relation is the shorthand for the cal-
culation of the absolute value of the photon momentum
k0 in inverse Angstrom (Å−1):

k0 = 0.5123 ·
√
hν − eφ− EB , (1)

where hν is the incoming photon energy, eφ > 0 the
work function and EB > 0 the binding energy, all of
them given in eV.

Beamline analyzer slit α β γ
SIS horiz. theta tilt phi
ADRESS horiz. theta tilt azimuth
I05 vert. polar tilt azimuth
CASSIOPEE vert. theta tilt phi
MAESTRO both alpha beta phi

Table 1: Naming conventions at different beamlines
(may be out of date or otherwise faulty – use at your
own risk).
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