# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
This module provides core classes needed by all define electronic structure,
such as the Spin, Orbital, etc.
"""
from monty.json import MSONable
from enum import Enum, unique
import numpy as np
__author__ = "Shyue Ping Ong"
__copyright__ = "Copyright 2011, The Materials Project"
__version__ = "1.0"
__maintainer__ = "Shyue Ping Ong"
__email__ = "shyuep@gmail.com"
__status__ = "Production"
__date__ = "Sep 23, 2011"
[docs]@unique
class Spin(Enum):
"""
Enum type for Spin. Only up and down.
Usage: Spin.up, Spin.down.
"""
up, down = (1, -1)
def __int__(self):
return self.value
def __float__(self):
return float(self.value)
def __str__(self):
return str(self.value)
[docs]@unique
class OrbitalType(Enum):
"""
Enum type for orbital type. Indices are basically the azimuthal quantum
number, l.
"""
s = 0
p = 1
d = 2
f = 3
def __str__(self):
return self.name
[docs]@unique
class Orbital(Enum):
"""
Enum type for specific orbitals. The indices are basically the order in
which the orbitals are reported in VASP and has no special meaning.
"""
s = 0
py = 1
pz = 2
px = 3
dxy = 4
dyz = 5
dz2 = 6
dxz = 7
dx2 = 8
f_3 = 9
f_2 = 10
f_1 = 11
f0 = 12
f1 = 13
f2 = 14
f3 = 15
def __int__(self):
return self.value
def __str__(self):
return self.name
@property
def orbital_type(self):
"""
Returns OrbitalType of an orbital.
"""
return OrbitalType[self.name[0]]
[docs]class Magmom(MSONable):
"""
New class in active development. Use with caution, feedback is
appreciated.
Class to handle magnetic moments. Defines the magnetic moment of a
site or species relative to a spin quantization axis. Designed for
use in electronic structure calculations.
* For the general case, Magmom can be specified by a vector,
e.g. m = Magmom([1.0, 1.0, 2.0]), and subscripts will work as
expected, e.g. m[0] gives 1.0
* For collinear calculations, Magmom can assumed to be scalar-like,
e.g. m = Magmom(5.0) will work as expected, e.g. float(m) gives 5.0
Both of these cases should be safe and shouldn't give any surprises,
but more advanced functionality is available if required.
There also exist useful static methods for lists of magmoms:
* Magmom.are_collinear(magmoms) - if true, a collinear electronic
structure calculation can be safely initialized, with float(Magmom)
giving the expected scalar magnetic moment value
* Magmom.get_consistent_set_and_saxis(magmoms) - for non-collinear
electronic structure calculations, a global, consistent spin axis
has to be used. This method returns a list of Magmoms which all
share a common spin axis, along with the global spin axis.
All methods that take lists of magmoms will accept magmoms either as
Magmom objects or as scalars/lists and will automatically convert to
a Magmom representation internally.
The following methods are also particularly useful in the context of
VASP calculations:
* Magmom.get_xyz_magmom_with_001_saxis()
* Magmom.get_00t_magmom_with_xyz_saxis()
See VASP documentation for more information:
https://cms.mpi.univie.ac.at/wiki/index.php/SAXIS
"""
def __init__(self, moment, saxis=(0, 0, 1)):
"""
:param moment: magnetic moment, supplied as float or list/np.ndarray
:param saxis: spin axis, supplied as list/np.ndarray, parameter will
be converted to unit vector (default is [0, 0, 1])
:return: Magmom object
"""
# to init from another Magmom instance
if isinstance(moment, Magmom):
saxis = moment.saxis
moment = moment.moment
moment = np.array(moment, dtype='d')
if moment.ndim == 0:
moment = moment * [0, 0, 1]
self.moment = moment
saxis = np.array(saxis, dtype='d')
self.saxis = saxis / np.linalg.norm(saxis)
[docs] @classmethod
def from_global_moment_and_saxis(cls, global_moment, saxis):
"""
Convenience method to initialize Magmom from a given global
magnetic moment, i.e. magnetic moment with saxis=(0,0,1), and
provided saxis.
Method is useful if you do not know the components of your
magnetic moment in frame of your desired saxis.
:param global_moment:
:param saxis: desired saxis
:return:
"""
magmom = Magmom(global_moment)
return cls(magmom.get_moment(saxis=saxis), saxis=saxis)
def _get_transformation_matrix(self, saxis):
saxis = saxis / np.linalg.norm(saxis)
alpha = np.arctan2(saxis[1], saxis[0])
beta = np.arctan2(np.sqrt(saxis[0] ** 2 + saxis[1] ** 2), saxis[2])
cos_a = np.cos(alpha)
cos_b = np.cos(beta)
sin_a = np.sin(alpha)
sin_b = np.sin(beta)
m = [[cos_b * cos_a, -sin_a, sin_b * cos_a],
[cos_b * sin_a, cos_a, sin_b * sin_a],
[-sin_b, 0, cos_b]]
return m
def _get_transformation_matrix_inv(self, saxis):
saxis = saxis / np.linalg.norm(saxis)
alpha = np.arctan2(saxis[1], saxis[0])
beta = np.arctan2(np.sqrt(saxis[0] ** 2 + saxis[1] ** 2), saxis[2])
cos_a = np.cos(alpha)
cos_b = np.cos(beta)
sin_a = np.sin(alpha)
sin_b = np.sin(beta)
m = [[cos_b * cos_a, cos_b * sin_a, -sin_b],
[-sin_a, cos_a, 0],
[sin_b * cos_a, sin_b * sin_a, cos_b]]
return m
[docs] def get_moment(self, saxis=(0, 0, 1)):
"""
Get magnetic moment relative to a given spin quantization axis.
If no axis is provided, moment will be given relative to the
Magmom's internal spin quantization axis, i.e. equivalent to
Magmom.moment
:param axis: (list/numpy array) spin quantization axis
:return: np.ndarray of length 3
"""
# transform back to moment with spin axis [0, 0, 1]
m_inv = self._get_transformation_matrix_inv(self.saxis)
moment = np.matmul(self.moment, m_inv)
# transform to new saxis
m = self._get_transformation_matrix(saxis)
moment = np.matmul(moment, m)
# round small values to zero
moment[np.abs(moment) < 1e-8] = 0
return moment
@property
def global_moment(self):
"""
Get the magnetic moment defined in an arbitrary global reference frame.
:return: np.ndarray of length 3
"""
return self.get_moment()
@property
def projection(self):
"""
Projects moment along spin quantisation axis. Useful for obtaining
collinear approximation for slightly non-collinear magmoms.
:return: float
"""
return np.dot(self.moment, self.saxis)
[docs] def get_xyz_magmom_with_001_saxis(self):
"""
Returns a Magmom in the default setting of saxis = [0, 0, 1] and
the magnetic moment rotated as required.
:return: Magmom
"""
return Magmom(self.get_moment())
[docs] def get_00t_magmom_with_xyz_saxis(self):
"""
For internal implementation reasons, in non-collinear calculations
VASP prefers:
MAGMOM = 0 0 total_magnetic_moment
SAXIS = x y z
to an equivalent:
MAGMOM = x y z
SAXIS = 0 0 1
This method returns a Magmom object with magnetic moment [0, 0, t],
where t is the total magnetic moment, and saxis rotated as required.
A consistent direction of saxis is applied such that t might be positive
or negative depending on the direction of the initial moment. This is useful
in the case of collinear structures, rather than constraining assuming
t is always positive.
:return: Magmom
"""
# reference direction gives sign of moment
# entirely arbitrary, there will always be a pathological case
# where a consistent sign is not possible if the magnetic moments
# are aligned along the reference direction, but in practice this
# is unlikely to happen
ref_direction = np.array([1.01, 1.02, 1.03])
t = abs(self)
if t != 0:
new_saxis = self.moment / np.linalg.norm(self.moment)
if np.dot(ref_direction, new_saxis) < 0:
t = -t
new_saxis = -new_saxis
return Magmom([0, 0, t], saxis=new_saxis)
else:
return Magmom(self)
[docs] @staticmethod
def have_consistent_saxis(magmoms):
"""
This method checks that all Magmom objects in a list have a
consistent spin quantization axis. To write MAGMOM tags to a
VASP INCAR, a global SAXIS value for all magmoms has to be used.
If saxis are inconsistent, can create consistent set with:
Magmom.get_consistent_set(magmoms)
:param magmoms: list of magmoms (Magmoms, scalars or vectors)
:return: bool
"""
magmoms = [Magmom(magmom) for magmom in magmoms]
ref_saxis = magmoms[0].saxis
match_ref = [magmom.saxis == ref_saxis for magmom in magmoms]
if np.all(match_ref):
return True
else:
return False
[docs] @staticmethod
def get_consistent_set_and_saxis(magmoms, saxis=None):
"""
Method to ensure a list of magmoms use the same spin axis.
Returns a tuple of a list of Magmoms and their global spin axis.
:param magmoms: list of magmoms (Magmoms, scalars or vectors)
:param saxis: can provide a specific global spin axis
:return: (list of Magmoms, global spin axis) tuple
"""
magmoms = [Magmom(magmom) for magmom in magmoms]
if saxis is None:
saxis = Magmom.get_suggested_saxis(magmoms)
else:
saxis = saxis / np.linalg.norm(saxis)
magmoms = [magmom.get_moment(saxis=saxis) for magmom in magmoms]
return (magmoms, saxis)
[docs] @staticmethod
def get_suggested_saxis(magmoms):
"""
This method returns a suggested spin axis for a set of magmoms,
taking the largest magnetic moment as the reference. For calculations
with collinear spins, this would give a sensible saxis for a ncl
calculation.
:param magmoms: list of magmoms (Magmoms, scalars or vectors)
:return: np.ndarray of length 3
"""
# heuristic, will pick largest magmom as reference
# useful for creating collinear approximations of
# e.g. slightly canted magnetic structures
# for fully collinear structures, will return expected
# result
magmoms = [Magmom(magmom) for magmom in magmoms]
# filter only non-zero magmoms
magmoms = [magmom for magmom in magmoms if abs(magmom)]
magmoms.sort(reverse=True)
if len(magmoms) > 0:
return magmoms[0].get_00t_magmom_with_xyz_saxis().saxis
else:
return np.array([0, 0, 1], dtype="d")
[docs] @staticmethod
def are_collinear(magmoms):
"""
Method checks to see if a set of magnetic moments are collinear
with each other.
:param magmoms: list of magmoms (Magmoms, scalars or vectors)
:return: bool
"""
magmoms = [Magmom(magmom) for magmom in magmoms]
if not Magmom.have_consistent_saxis(magmoms):
magmoms = Magmom.get_consistent_set(magmoms)
# convert to numpy array for convenience
magmoms = np.array([list(magmom) for magmom in magmoms])
magmoms = magmoms[np.any(magmoms, axis=1)] # remove zero magmoms
if len(magmoms) == 0:
return True
# use first moment as reference to compare against
ref_magmom = magmoms[0]
# magnitude of cross products != 0 if non-collinear with reference
num_ncl = np.count_nonzero(np.linalg.norm(np.cross(ref_magmom, magmoms), axis=1))
if num_ncl > 0:
return False
else:
return True
[docs] @classmethod
def from_moment_relative_to_crystal_axes(cls, moment, lattice):
"""
Obtaining a Magmom object from a magnetic moment provided
relative to crystal axes.
Used for obtaining moments from magCIF file.
:param magmom: list of floats specifying vector magmom
:param lattice: Lattice
:return: Magmom
"""
# get matrix representing unit lattice vectors
unit_m = lattice.matrix / np.linalg.norm(lattice.matrix, axis=1)[:, None]
moment = np.matmul(list(moment), unit_m)
# round small values to zero
moment[np.abs(moment) < 1e-8] = 0
return cls(moment)
[docs] def get_moment_relative_to_crystal_axes(self, lattice):
"""
If scalar magmoms, moments will be given arbitrarily along z.
Used for writing moments to magCIF file.
:param magmom: Magmom
:param lattice: Lattice
:return: vector as list of floats
"""
# get matrix representing unit lattice vectors
unit_m = lattice.matrix / np.linalg.norm(lattice.matrix, axis=1)[:, None]
# note np.matmul() requires numpy version >= 1.10
moment = np.matmul(self.global_moment, np.linalg.inv(unit_m))
# round small values to zero
moment[np.abs(moment) < 1e-8] = 0
return moment
def __getitem__(self, key):
return self.moment[key]
def __iter__(self):
return iter(self.moment)
def __abs__(self):
return np.linalg.norm(self.moment)
def __eq__(self, other):
"""
Equal if 'global' magnetic moments are the same, saxis can differ.
"""
other = Magmom(other)
return np.allclose(self.global_moment, other.global_moment)
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
return abs(self) < abs(other)
def __neg__(self):
return Magmom(-self.moment, saxis=self.saxis)
def __hash__(self):
return (tuple(self.moment) + tuple(self.saxis)).__hash__()
def __float__(self):
"""
Returns magnitude of magnetic moment with a sign with respect to
an arbitrary direction.
Should give unsurprising output if Magmom is treated like a
scalar or if a set of Magmoms describes a collinear structure.
Implemented this way rather than simpler abs(self) so that
moments will have a consistent sign in case of e.g.
antiferromagnetic collinear structures without additional
user intervention.
However, should be used with caution for non-collinear
structures and might give non-sensical results except in the case
of only slightly non-collinear structures (e.g. small canting).
This approach is also used to obtain "diff" VolumetricDensity
in pymatgen.io.vasp.outputs.VolumetricDensity when processing
Chgcars from SOC calculations.
"""
return float(self.get_00t_magmom_with_xyz_saxis()[2])
def __str__(self):
return str(float(self))
def __repr__(self):
if np.allclose(self.saxis, (0, 0, 1)):
return 'Magnetic moment {0}'.format(self.moment)
else:
return 'Magnetic moment {0} (spin axis = {1})'.format(self.moment,
self.saxis)