Source code for pymatgen.io.gaussian
# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
"""
This module implements input and output processing from Gaussian.
"""
import re
import numpy as np
import warnings
from pymatgen.core.operations import SymmOp
from pymatgen import Element, Molecule, Composition
from monty.io import zopen
from pymatgen.core.units import Ha_to_eV
from pymatgen.util.coord import get_angle
import scipy.constants as cst
from pymatgen.electronic_structure.core import Spin
__author__ = 'Shyue Ping Ong, Germain Salvato-Vallverdu, Xin Chen'
__copyright__ = 'Copyright 2013, The Materials Virtual Lab'
__version__ = '0.1'
__maintainer__ = 'Shyue Ping Ong'
__email__ = 'ongsp@ucsd.edu'
__date__ = '8/1/15'
float_patt = re.compile(r"\s*([+-]?\d+\.\d+)")
[docs]def read_route_line(route):
"""
read route line in gaussian input/output and return functional basis_set
and a dictionary of other route parameters
Args:
route (str) : the route line
return
functional (str) : the method (HF, PBE ...)
basis_set (str) : the basis set
route (dict) : dictionary of parameters
"""
scrf_patt = re.compile(r"^([sS][cC][rR][fF])\s*=\s*(.+)")
multi_params_patt = re.compile(r"^([A-z]+[0-9]*)[\s=]+\((.*)\)$")
functional = None
basis_set = None
route_params = {}
dieze_tag = None
if route:
if "/" in route:
tok = route.split("/")
functional = tok[0].split()[-1]
basis_set = tok[1].split()[0]
for tok in [functional, basis_set, "/"]:
route = route.replace(tok, "")
for tok in route.split():
if scrf_patt.match(tok):
m = scrf_patt.match(tok)
route_params[m.group(1)] = m.group(2)
elif tok.upper() in ["#", "#N", "#P", "#T"]:
# does not store # in route to avoid error in input
if tok == "#":
dieze_tag = "#N"
else:
dieze_tag = tok
continue
else:
m = re.match(multi_params_patt, tok.strip("#"))
if m:
pars = {}
for par in m.group(2).split(","):
p = par.split("=")
pars[p[0]] = None if len(p) == 1 else p[1]
route_params[m.group(1)] = pars
else:
d = tok.strip("#").split("=")
route_params[d[0]] = None if len(d) == 1 else d[1]
return functional, basis_set, route_params, dieze_tag
[docs]class GaussianInput:
"""
An object representing a Gaussian input file.
"""
# Commonly used regex patterns
_zmat_patt = re.compile(r"^(\w+)*([\s,]+(\w+)[\s,]+(\w+))*[\-\.\s,\w]*$")
_xyz_patt = re.compile(r"^(\w+)[\s,]+([\d\.eE\-]+)[\s,]+([\d\.eE\-]+)[\s,]+"
r"([\d\.eE\-]+)[\-\.\s,\w.]*$")
def __init__(self, mol, charge=None, spin_multiplicity=None, title=None,
functional="HF", basis_set="6-31G(d)", route_parameters=None,
input_parameters=None, link0_parameters=None, dieze_tag="#P",
gen_basis=None):
"""
Args:
mol: Input molecule. It can either be a Molecule object,
a string giving the geometry in a format supported by Guassian,
or ``None``. If the molecule is ``None``, you will need to use
read it in from a checkpoint. Consider adding ``CHK`` to the
``link0_parameters``.
charge: Charge of the molecule. If None, charge on molecule is used.
Defaults to None. This allows the input file to be set a
charge independently from the molecule itself.
If ``mol`` is not a Molecule object, then you must specify a charge.
spin_multiplicity: Spin multiplicity of molecule. Defaults to None,
which means that the spin multiplicity is set to 1 if the
molecule has no unpaired electrons and to 2 if there are
unpaired electrons. If ``mol`` is not a Molecule object, then you
must specify the multiplicity
title: Title for run. Defaults to formula of molecule if None.
functional: Functional for run.
basis_set: Basis set for run.
route_parameters: Additional route parameters as a dict. For example,
{'SP':"", "SCF":"Tight"}
input_parameters: Additional input parameters for run as a dict. Used
for example, in PCM calculations. E.g., {"EPS":12}
link0_parameters: Link0 parameters as a dict. E.g., {"%mem": "1000MW"}
dieze_tag: # preceding the route line. E.g. "#p"
gen_basis: allows a user-specified basis set to be used in a Gaussian
calculation. If this is not None, the attribute ``basis_set`` will
be set to "Gen".
"""
self._mol = mol
# Determine multiplicity and charge settings
if isinstance(mol, Molecule):
self.charge = charge if charge is not None else mol.charge
nelectrons = mol.charge + mol.nelectrons - self.charge
if spin_multiplicity is not None:
self.spin_multiplicity = spin_multiplicity
if (nelectrons + spin_multiplicity) % 2 != 1:
raise ValueError(
"Charge of {} and spin multiplicity of {} is"
" not possible for this molecule".format(
self.charge, spin_multiplicity))
else:
self.spin_multiplicity = 1 if nelectrons % 2 == 0 else 2
# Get a title from the molecule name
self.title = title if title else self._mol.composition.formula
else:
if charge is None or spin_multiplicity is None:
raise ValueError('`charge` and `spin_multiplicity` must be specified')
self.charge = charge
self.spin_multiplicity = spin_multiplicity
# Set a title
self.title = title if title else 'Restart'
# Store the remaining settings
self.functional = functional
self.basis_set = basis_set
self.link0_parameters = link0_parameters if link0_parameters else {}
self.route_parameters = route_parameters if route_parameters else {}
self.input_parameters = input_parameters if input_parameters else {}
self.dieze_tag = dieze_tag if dieze_tag[0] == "#" else "#" + dieze_tag
self.gen_basis = gen_basis
if gen_basis is not None:
self.basis_set = "Gen"
@property
def molecule(self):
"""
Returns molecule associated with this GaussianInput.
"""
return self._mol
@staticmethod
def _parse_coords(coord_lines):
"""
Helper method to parse coordinates.
"""
paras = {}
var_pattern = re.compile(r"^([A-Za-z]+\S*)[\s=,]+([\d\-\.]+)$")
for l in coord_lines:
m = var_pattern.match(l.strip())
if m:
paras[m.group(1).strip("=")] = float(m.group(2))
species = []
coords = []
# Stores whether a Zmatrix format is detected. Once a zmatrix format
# is detected, it is assumed for the remaining of the parsing.
zmode = False
for l in coord_lines:
l = l.strip()
if not l:
break
if (not zmode) and GaussianInput._xyz_patt.match(l):
m = GaussianInput._xyz_patt.match(l)
species.append(m.group(1))
toks = re.split(r"[,\s]+", l.strip())
if len(toks) > 4:
coords.append([float(i) for i in toks[2:5]])
else:
coords.append([float(i) for i in toks[1:4]])
elif GaussianInput._zmat_patt.match(l):
zmode = True
toks = re.split(r"[,\s]+", l.strip())
species.append(toks[0])
toks.pop(0)
if len(toks) == 0:
coords.append(np.array([0, 0, 0]))
else:
nn = []
parameters = []
while len(toks) > 1:
ind = toks.pop(0)
data = toks.pop(0)
try:
nn.append(int(ind))
except ValueError:
nn.append(species.index(ind) + 1)
try:
val = float(data)
parameters.append(val)
except ValueError:
if data.startswith("-"):
parameters.append(-paras[data[1:]])
else:
parameters.append(paras[data])
if len(nn) == 1:
coords.append(np.array([0, 0, parameters[0]]))
elif len(nn) == 2:
coords1 = coords[nn[0] - 1]
coords2 = coords[nn[1] - 1]
bl = parameters[0]
angle = parameters[1]
axis = [0, 1, 0]
op = SymmOp.from_origin_axis_angle(coords1, axis,
angle, False)
coord = op.operate(coords2)
vec = coord - coords1
coord = vec * bl / np.linalg.norm(vec) + coords1
coords.append(coord)
elif len(nn) == 3:
coords1 = coords[nn[0] - 1]
coords2 = coords[nn[1] - 1]
coords3 = coords[nn[2] - 1]
bl = parameters[0]
angle = parameters[1]
dih = parameters[2]
v1 = coords3 - coords2
v2 = coords1 - coords2
axis = np.cross(v1, v2)
op = SymmOp.from_origin_axis_angle(
coords1, axis, angle, False)
coord = op.operate(coords2)
v1 = coord - coords1
v2 = coords1 - coords2
v3 = np.cross(v1, v2)
adj = get_angle(v3, axis)
axis = coords1 - coords2
op = SymmOp.from_origin_axis_angle(
coords1, axis, dih - adj, False)
coord = op.operate(coord)
vec = coord - coords1
coord = vec * bl / np.linalg.norm(vec) + coords1
coords.append(coord)
def _parse_species(sp_str):
"""
The species specification can take many forms. E.g.,
simple integers representing atomic numbers ("8"),
actual species string ("C") or a labelled species ("C1").
Sometimes, the species string is also not properly capitalized,
e.g, ("c1"). This method should take care of these known formats.
"""
try:
return int(sp_str)
except ValueError:
sp = re.sub(r"\d", "", sp_str)
return sp.capitalize()
species = [_parse_species(sp) for sp in species]
return Molecule(species, coords)
[docs] @staticmethod
def from_string(contents):
"""
Creates GaussianInput from a string.
Args:
contents: String representing an Gaussian input file.
Returns:
GaussianInput object
"""
lines = [l.strip() for l in contents.split("\n")]
link0_patt = re.compile(r"^(%.+)\s*=\s*(.+)")
link0_dict = {}
for i, l in enumerate(lines):
if link0_patt.match(l):
m = link0_patt.match(l)
link0_dict[m.group(1).strip("=")] = m.group(2)
route_patt = re.compile(r"^#[sSpPnN]*.*")
route = ""
route_index = None
for i, l in enumerate(lines):
if route_patt.match(l):
route += " " + l
route_index = i
# This condition allows for route cards spanning multiple lines
elif (l == "" or l.isspace()) and route_index:
break
functional, basis_set, route_paras, dieze_tag = read_route_line(route)
ind = 2
title = []
while lines[route_index + ind].strip():
title.append(lines[route_index + ind].strip())
ind += 1
title = ' '.join(title)
ind += 1
toks = re.split(r"[,\s]+", lines[route_index + ind])
charge = int(float(toks[0]))
spin_mult = int(toks[1])
coord_lines = []
spaces = 0
input_paras = {}
ind += 1
for i in range(route_index + ind, len(lines)):
if lines[i].strip() == "":
spaces += 1
if spaces >= 2:
d = lines[i].split("=")
if len(d) == 2:
input_paras[d[0]] = d[1]
else:
coord_lines.append(lines[i].strip())
mol = GaussianInput._parse_coords(coord_lines)
mol.set_charge_and_spin(charge, spin_mult)
return GaussianInput(mol, charge=charge, spin_multiplicity=spin_mult,
title=title, functional=functional,
basis_set=basis_set,
route_parameters=route_paras,
input_parameters=input_paras,
link0_parameters=link0_dict,
dieze_tag=dieze_tag)
[docs] @staticmethod
def from_file(filename):
"""
Creates GaussianInput from a file.
Args:
filename: Gaussian input filename
Returns:
GaussianInput object
"""
with zopen(filename, "r") as f:
return GaussianInput.from_string(f.read())
def _find_nn_pos_before_site(self, siteindex):
"""
Returns index of nearest neighbor atoms.
"""
alldist = [(self._mol.get_distance(siteindex, i), i)
for i in range(siteindex)]
alldist = sorted(alldist, key=lambda x: x[0])
return [d[1] for d in alldist]
[docs] def get_zmatrix(self):
"""
Returns a z-matrix representation of the molecule.
"""
output = []
outputvar = []
for i, site in enumerate(self._mol):
if i == 0:
output.append("{}".format(site.specie))
elif i == 1:
nn = self._find_nn_pos_before_site(i)
bondlength = self._mol.get_distance(i, nn[0])
output.append("{} {} B{}".format(self._mol[i].specie,
nn[0] + 1, i))
outputvar.append("B{}={:.6f}".format(i, bondlength))
elif i == 2:
nn = self._find_nn_pos_before_site(i)
bondlength = self._mol.get_distance(i, nn[0])
angle = self._mol.get_angle(i, nn[0], nn[1])
output.append("{} {} B{} {} A{}".format(self._mol[i].specie,
nn[0] + 1, i,
nn[1] + 1, i))
outputvar.append("B{}={:.6f}".format(i, bondlength))
outputvar.append("A{}={:.6f}".format(i, angle))
else:
nn = self._find_nn_pos_before_site(i)
bondlength = self._mol.get_distance(i, nn[0])
angle = self._mol.get_angle(i, nn[0], nn[1])
dih = self._mol.get_dihedral(i, nn[0], nn[1], nn[2])
output.append("{} {} B{} {} A{} {} D{}"
.format(self._mol[i].specie, nn[0] + 1, i,
nn[1] + 1, i, nn[2] + 1, i))
outputvar.append("B{}={:.6f}".format(i, bondlength))
outputvar.append("A{}={:.6f}".format(i, angle))
outputvar.append("D{}={:.6f}".format(i, dih))
return "\n".join(output) + "\n\n" + "\n".join(outputvar)
[docs] def get_cart_coords(self):
"""
Return the cartesian coordinates of the molecule
"""
def to_s(x):
return "%0.6f" % x
outs = []
for i, site in enumerate(self._mol):
outs.append(" ".join([site.species_string,
" ".join([to_s(j) for j in site.coords])]))
return "\n".join(outs)
def __str__(self):
return self.to_string()
[docs] def to_string(self, cart_coords=False):
"""
Return GaussianInput string
Option: whe cart_coords sets to True return the cartesian coordinates
instead of the z-matrix
"""
def para_dict_to_string(para, joiner=" "):
para_str = []
# sorted is only done to make unittests work reliably
for par, val in sorted(para.items()):
if val is None or val == "":
para_str.append(par)
elif isinstance(val, dict):
val_str = para_dict_to_string(val, joiner=",")
para_str.append("{}=({})".format(par, val_str))
else:
para_str.append("{}={}".format(par, val))
return joiner.join(para_str)
output = []
if self.link0_parameters:
output.append(para_dict_to_string(self.link0_parameters, "\n"))
output.append("{diez} {func}/{bset} {route}"
.format(diez=self.dieze_tag, func=self.functional,
bset=self.basis_set,
route=para_dict_to_string(self.route_parameters))
)
output.append("")
output.append(self.title)
output.append("")
output.append("%d %d" % (self.charge, self.spin_multiplicity))
if isinstance(self._mol, Molecule):
if cart_coords is True:
output.append(self.get_cart_coords())
else:
output.append(self.get_zmatrix())
elif self._mol is not None:
output.append(str(self._mol))
output.append("")
if self.gen_basis is not None:
output.append("{:s}\n".format(self.gen_basis))
output.append(para_dict_to_string(self.input_parameters, "\n"))
output.append("\n")
return "\n".join(output)
[docs] def write_file(self, filename, cart_coords=False):
"""
Write the input string into a file
Option: see __str__ method
"""
with zopen(filename, "w") as f:
f.write(self.to_string(cart_coords))
[docs] def as_dict(self):
"""
:return: MSONable dict
"""
return {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"molecule": self.molecule.as_dict(),
"functional": self.functional,
"basis_set": self.basis_set,
"route_parameters": self.route_parameters,
"title": self.title,
"charge": self.charge,
"spin_multiplicity": self.spin_multiplicity,
"input_parameters": self.input_parameters,
"link0_parameters": self.link0_parameters,
"dieze_tag": self.dieze_tag}
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: dict
:return: GaussianInput
"""
return GaussianInput(mol=Molecule.from_dict(d["molecule"]),
functional=d["functional"],
basis_set=d["basis_set"],
route_parameters=d["route_parameters"],
title=d["title"],
charge=d["charge"],
spin_multiplicity=d["spin_multiplicity"],
input_parameters=d["input_parameters"],
link0_parameters=d["link0_parameters"])
[docs]class GaussianOutput:
"""
Parser for Gaussian output files.
.. note::
Still in early beta.
Attributes:
.. attribute:: structures
All structures from the calculation in the standard orientation. If the
symmetry is not considered, the standard orientation is not printed out
and the input orientation is used instead. Check the `standard_orientation`
attribute.
.. attribute:: structures_input_orientation
All structures from the calculation in the input orientation or the
Z-matrix orientation (if an opt=z-matrix was requested).
.. attribute:: opt_structures
All optimized structures from the calculation in the input orientation
or the Z-matrix orientation.
.. attribute:: energies
All energies from the calculation.
.. attribute:: eigenvalues
List of eigenvalues for the last geometry
.. attribute:: MO_coefficients
Matrix of MO coefficients for the last geometry
.. attribute:: cart_forces
All cartesian forces from the calculation.
.. attribute:: frequencies
A list for each freq calculation and for each mode of a dict with
{
"frequency": freq in cm-1,
"symmetry": symmetry tag
"r_mass": Reduce mass,
"f_constant": force constant,
"IR_intensity": IR Intensity,
"mode": normal mode
}
The normal mode is a 1D vector of dx, dy dz of each atom.
.. attribute:: hessian
Matrix of second derivatives of the energy with respect to cartesian
coordinates in the **input orientation** frame. Need #P in the
route section in order to be in the output.
.. attribute:: properly_terminated
True if run has properly terminated
.. attribute:: is_pcm
True if run is a PCM run.
.. attribute:: is_spin
True if it is an unrestricted run
.. attribute:: stationary_type
If it is a relaxation run, indicates whether it is a minimum (Minimum)
or a saddle point ("Saddle").
.. attribute:: corrections
Thermochemical corrections if this run is a Freq run as a dict. Keys
are "Zero-point", "Thermal", "Enthalpy" and "Gibbs Free Energy"
.. attribute:: functional
Functional used in the run.
.. attribute:: basis_set
Basis set used in the run
.. attribute:: route
Additional route parameters as a dict. For example,
{'SP':"", "SCF":"Tight"}
.. attribute:: dieze_tag
# preceding the route line, e.g. "#P"
.. attribute:: link0
Link0 parameters as a dict. E.g., {"%mem": "1000MW"}
.. attribute:: charge
Charge for structure
.. attribute:: spin_multiplicity
Spin multiplicity for structure
.. attribute:: num_basis_func
Number of basis functions in the run.
.. attribute:: electrons
number of alpha and beta electrons as (N alpha, N beta)
.. attribute:: pcm
PCM parameters and output if available.
.. attribute:: errors
error if not properly terminated (list to be completed in error_defs)
.. attribute:: Mulliken_charges
Mulliken atomic charges
.. attribute:: eigenvectors
Matrix of shape (num_basis_func, num_basis_func). Each column is an
eigenvectors and contains AO coefficients of an MO.
eigenvectors[Spin] = mat(num_basis_func, num_basis_func)
.. attribute:: molecular_orbital
MO development coefficients on AO in a more convenient array dict
for each atom and basis set label.
mo[Spin][OM j][atom i] = {AO_k: coeff, AO_k: coeff ... }
.. attribute:: atom_basis_labels
Labels of AO for each atoms. These labels are those used in the output
of molecular orbital coefficients (POP=Full) and in the
molecular_orbital array dict.
atom_basis_labels[iatom] = [AO_k, AO_k, ...]
.. attribute:: resumes
List of gaussian data resume given at the end of the output file before
the quotation. The resumes are given as string.
.. attribute:: title
Title of the gaussian run.
.. attribute:: standard_orientation
If True, the geometries stored in the structures are in the standard
orientation. Else, the geometries are in the input orientation.
.. attribute:: bond_orders
Dict of bond order values read in the output file such as:
{(0, 1): 0.8709, (1, 6): 1.234, ...}
The keys are the atom indexes and the values are the Wiberg bond indexes
that are printed using `pop=NBOREAD` and `$nbo bndidx $end`.
Methods:
.. method:: to_input()
Return a GaussianInput object using the last geometry and the same
calculation parameters.
.. method:: read_scan()
Read a potential energy surface from a gaussian scan calculation.
.. method:: get_scan_plot()
Get a matplotlib plot of the potential energy surface
.. method:: save_scan_plot()
Save a matplotlib plot of the potential energy surface to a file
"""
def __init__(self, filename):
"""
Args:
filename: Filename of Gaussian output file.
"""
self.filename = filename
self._parse(filename)
@property
def final_energy(self):
"""
:return: Final energy in Gaussian output.
"""
return self.energies[-1]
@property
def final_structure(self):
"""
:return: Final structure in Gaussian output.
"""
return self.structures[-1]
def _parse(self, filename):
start_patt = re.compile(r" \(Enter \S+l101\.exe\)")
route_patt = re.compile(r" #[pPnNtT]*.*")
link0_patt = re.compile(r"^\s(%.+)\s*=\s*(.+)")
charge_mul_patt = re.compile(r"Charge\s+=\s*([-\d]+)\s+"
r"Multiplicity\s+=\s*(\d+)")
num_basis_func_patt = re.compile(r"([0-9]+)\s+basis functions")
num_elec_patt = re.compile(r"(\d+)\s+alpha electrons\s+(\d+)\s+beta electrons")
pcm_patt = re.compile(r"Polarizable Continuum Model")
stat_type_patt = re.compile(r"imaginary frequencies")
scf_patt = re.compile(r"E\(.*\)\s*=\s*([-\.\d]+)\s+")
mp2_patt = re.compile(r"EUMP2\s*=\s*(.*)")
oniom_patt = re.compile(r"ONIOM:\s+extrapolated energy\s*=\s*(.*)")
termination_patt = re.compile(r"(Normal|Error) termination")
error_patt = re.compile(
r"(! Non-Optimized Parameters !|Convergence failure)")
mulliken_patt = re.compile(
r"^\s*(Mulliken charges|Mulliken atomic charges)")
mulliken_charge_patt = re.compile(
r'^\s+(\d+)\s+([A-Z][a-z]?)\s*(\S*)')
end_mulliken_patt = re.compile(
r'(Sum of Mulliken )(.*)(charges)\s*=\s*(\D)')
std_orientation_patt = re.compile(r"Standard orientation")
input_orientation_patt = re.compile(r"Input orientation|Z-Matrix orientation")
orbital_patt = re.compile(r"(Alpha|Beta)\s*\S+\s*eigenvalues --(.*)")
thermo_patt = re.compile(r"(Zero-point|Thermal) correction(.*)="
r"\s+([\d\.-]+)")
forces_on_patt = re.compile(
r"Center\s+Atomic\s+Forces\s+\(Hartrees/Bohr\)")
forces_off_patt = re.compile(r"Cartesian\s+Forces:\s+Max.*RMS.*")
forces_patt = re.compile(
r"\s+(\d+)\s+(\d+)\s+([0-9\.-]+)\s+([0-9\.-]+)\s+([0-9\.-]+)")
freq_on_patt = re.compile(
r"Harmonic\sfrequencies\s+\(cm\*\*-1\),\sIR\sintensities.*Raman.*")
normal_mode_patt = re.compile(
r"\s+(\d+)\s+(\d+)\s+([0-9\.-]{4,5})\s+([0-9\.-]{4,5}).*")
mo_coeff_patt = re.compile(r"Molecular Orbital Coefficients:")
mo_coeff_name_patt = re.compile(r"\d+\s((\d+|\s+)\s+([a-zA-Z]{1,2}|\s+))\s+(\d+\S+)")
hessian_patt = re.compile(r"Force constants in Cartesian coordinates:")
resume_patt = re.compile(r"^\s1\\1\\GINC-\S*")
resume_end_patt = re.compile(r"^\s.*\\\\@")
bond_order_patt = re.compile(r"Wiberg bond index matrix in the NAO basis:")
self.properly_terminated = False
self.is_pcm = False
self.stationary_type = "Minimum"
self.corrections = {}
self.energies = []
self.pcm = None
self.errors = []
self.Mulliken_charges = {}
self.link0 = {}
self.cart_forces = []
self.frequencies = []
self.eigenvalues = []
self.is_spin = False
self.hessian = None
self.resumes = []
self.title = None
self.bond_orders = {}
read_coord = 0
read_mulliken = False
read_eigen = False
eigen_txt = []
parse_stage = 0
num_basis_found = False
terminated = False
parse_forces = False
forces = []
parse_freq = False
frequencies = []
read_mo = False
parse_hessian = False
routeline = ""
standard_orientation = False
parse_bond_order = False
input_structures = list()
std_structures = list()
geom_orientation = None
opt_structures = list()
with zopen(filename) as f:
for line in f:
if parse_stage == 0:
if start_patt.search(line):
parse_stage = 1
elif link0_patt.match(line):
m = link0_patt.match(line)
self.link0[m.group(1)] = m.group(2)
elif route_patt.search(line) or routeline != "":
if set(line.strip()) == {"-"}:
params = read_route_line(routeline)
self.functional = params[0]
self.basis_set = params[1]
self.route_parameters = params[2]
route_lower = {k.lower(): v
for k, v in
self.route_parameters.items()}
self.dieze_tag = params[3]
parse_stage = 1
else:
routeline += line.strip()
elif parse_stage == 1:
if set(line.strip()) == {"-"} and self.title is None:
self.title = ""
elif self.title == "":
self.title = line.strip()
elif charge_mul_patt.search(line):
m = charge_mul_patt.search(line)
self.charge = int(m.group(1))
self.spin_multiplicity = int(m.group(2))
parse_stage = 2
elif parse_stage == 2:
if self.is_pcm:
self._check_pcm(line)
if "freq" in route_lower and thermo_patt.search(line):
m = thermo_patt.search(line)
if m.group(1) == "Zero-point":
self.corrections["Zero-point"] = float(m.group(3))
else:
key = m.group(2).strip(" to ")
self.corrections[key] = float(m.group(3))
if read_coord:
[f.readline() for i in range(3)]
line = f.readline()
sp = []
coords = []
while set(line.strip()) != {"-"}:
toks = line.split()
sp.append(Element.from_Z(int(toks[1])))
coords.append([float(x) for x in toks[3:6]])
line = f.readline()
read_coord = False
if geom_orientation == "input":
input_structures.append(Molecule(sp, coords))
elif geom_orientation == "standard":
std_structures.append(Molecule(sp, coords))
if parse_forces:
m = forces_patt.search(line)
if m:
forces.extend([float(_v)
for _v in m.groups()[2:5]])
elif forces_off_patt.search(line):
self.cart_forces.append(forces)
forces = []
parse_forces = False
# read molecular orbital eigenvalues
if read_eigen:
m = orbital_patt.search(line)
if m:
eigen_txt.append(line)
else:
read_eigen = False
self.eigenvalues = {Spin.up: []}
for eigenline in eigen_txt:
if "Alpha" in eigenline:
self.eigenvalues[Spin.up] += [float(e) for e in float_patt.findall(eigenline)]
elif "Beta" in eigenline:
if Spin.down not in self.eigenvalues:
self.eigenvalues[Spin.down] = []
self.eigenvalues[Spin.down] += [float(e) for e in float_patt.findall(eigenline)]
eigen_txt = []
# read molecular orbital coefficients
if (not num_basis_found) and num_basis_func_patt.search(line):
m = num_basis_func_patt.search(line)
self.num_basis_func = int(m.group(1))
num_basis_found = True
elif read_mo:
# build a matrix with all coefficients
all_spin = [Spin.up]
if self.is_spin:
all_spin.append(Spin.down)
mat_mo = {}
for spin in all_spin:
mat_mo[spin] = np.zeros((self.num_basis_func,
self.num_basis_func))
nMO = 0
end_mo = False
while nMO < self.num_basis_func and not end_mo:
f.readline()
f.readline()
self.atom_basis_labels = []
for i in range(self.num_basis_func):
line = f.readline()
# identify atom and OA labels
m = mo_coeff_name_patt.search(line)
if m.group(1).strip() != "":
iat = int(m.group(2)) - 1
# atname = m.group(3)
self.atom_basis_labels.append([m.group(4)])
else:
self.atom_basis_labels[iat].append(m.group(4))
# MO coefficients
coeffs = [float(c) for c in
float_patt.findall(line)]
for j in range(len(coeffs)):
mat_mo[spin][i, nMO + j] = coeffs[j]
nMO += len(coeffs)
line = f.readline()
# manage pop=regular case (not all MO)
if nMO < self.num_basis_func and \
("Density Matrix:" in line or
mo_coeff_patt.search(line)):
end_mo = True
warnings.warn("POP=regular case, matrix "
"coefficients not complete")
f.readline()
self.eigenvectors = mat_mo
read_mo = False
# build a more convenient array dict with MO
# coefficient of each atom in each MO.
# mo[Spin][OM j][atom i] =
# {AO_k: coeff, AO_k: coeff ... }
mo = {}
for spin in all_spin:
mo[spin] = [[{} for iat in
range(len(self.atom_basis_labels))]
for j in range(self.num_basis_func)]
for j in range(self.num_basis_func):
i = 0
for iat in range(len(self.atom_basis_labels)):
for label in self.atom_basis_labels[iat]:
mo[spin][j][iat][label] = self.eigenvectors[spin][i, j]
i += 1
self.molecular_orbital = mo
elif parse_freq:
while line.strip() != "": # blank line
ifreqs = [int(val) - 1 for val in line.split()]
for ifreq in ifreqs:
frequencies.append({"frequency": None,
"r_mass": None,
"f_constant": None,
"IR_intensity": None,
"symmetry": None,
"mode": []})
# read freq, intensity, masses, symmetry ...
while "Atom AN" not in line:
if "Frequencies --" in line:
freqs = map(float,
float_patt.findall(line))
for ifreq, freq in zip(ifreqs, freqs):
frequencies[ifreq]["frequency"] = freq
elif "Red. masses --" in line:
r_masses = map(float,
float_patt.findall(line))
for ifreq, r_mass in zip(ifreqs, r_masses):
frequencies[ifreq]["r_mass"] = r_mass
elif "Frc consts --" in line:
f_consts = map(float,
float_patt.findall(line))
for ifreq, f_const in zip(ifreqs, f_consts):
frequencies[ifreq]["f_constant"] = f_const
elif "IR Inten --" in line:
IR_intens = map(float,
float_patt.findall(line))
for ifreq, intens in zip(ifreqs, IR_intens):
frequencies[ifreq]["IR_intensity"] = intens
else:
syms = line.split()[:3]
for ifreq, sym in zip(ifreqs, syms):
frequencies[ifreq]["symmetry"] = sym
line = f.readline()
# read normal modes
line = f.readline()
while normal_mode_patt.search(line):
values = list(map(float,
float_patt.findall(line)))
for i, ifreq in zip(range(0, len(values), 3),
ifreqs):
frequencies[ifreq]["mode"].extend(values[i:i+3])
line = f.readline()
parse_freq = False
self.frequencies.append(frequencies)
frequencies = []
elif parse_hessian:
# read Hessian matrix under "Force constants in Cartesian coordinates"
# Hessian matrix is in the input orientation framework
# WARNING : need #P in the route line
parse_hessian = False
ndf = 3 * len(input_structures[0])
self.hessian = np.zeros((ndf, ndf))
j_indices = range(5)
jndf = 0
while jndf < ndf:
for i in range(jndf, ndf):
line = f.readline()
vals = re.findall(r"\s*([+-]?\d+\.\d+[eEdD]?[+-]\d+)", line)
vals = [float(val.replace("D", "E"))
for val in vals]
for jval, val in enumerate(vals):
j = j_indices[jval]
self.hessian[i, j] = val
self.hessian[j, i] = val
jndf += len(vals)
line = f.readline()
j_indices = [j + 5 for j in j_indices]
elif parse_bond_order:
# parse Wiberg bond order
line = f.readline()
line = f.readline()
nat = len(input_structures[0])
matrix = list()
for iat in range(nat):
line = f.readline()
matrix.append([float(v) for v in line.split()[2:]])
self.bond_orders = dict()
for iat in range(nat):
for jat in range(iat + 1, nat):
self.bond_orders[(iat, jat)] = matrix[iat][jat]
parse_bond_order = False
elif termination_patt.search(line):
m = termination_patt.search(line)
if m.group(1) == "Normal":
self.properly_terminated = True
terminated = True
elif error_patt.search(line):
error_defs = {
"! Non-Optimized Parameters !": "Optimization "
"error",
"Convergence failure": "SCF convergence error"
}
m = error_patt.search(line)
self.errors.append(error_defs[m.group(1)])
elif num_elec_patt.search(line):
m = num_elec_patt.search(line)
self.electrons = (int(m.group(1)), int(m.group(2)))
elif (not self.is_pcm) and pcm_patt.search(line):
self.is_pcm = True
self.pcm = {}
elif "freq" in route_lower and "opt" in route_lower and \
stat_type_patt.search(line):
self.stationary_type = "Saddle"
elif mp2_patt.search(line):
m = mp2_patt.search(line)
self.energies.append(float(m.group(1).replace("D",
"E")))
elif oniom_patt.search(line):
m = oniom_patt.matcher(line)
self.energies.append(float(m.group(1)))
elif scf_patt.search(line):
m = scf_patt.search(line)
self.energies.append(float(m.group(1)))
elif std_orientation_patt.search(line):
standard_orientation = True
geom_orientation = "standard"
read_coord = True
elif input_orientation_patt.search(line):
geom_orientation = "input"
read_coord = True
elif "Optimization completed." in line:
line = f.readline()
if " -- Stationary point found." not in line:
warnings.warn("\n" + self.filename +
": Optimization complete but this is not a stationary point")
opt_structures.append(input_structures[-1])
elif not read_eigen and orbital_patt.search(line):
eigen_txt.append(line)
read_eigen = True
elif mulliken_patt.search(line):
mulliken_txt = []
read_mulliken = True
elif not parse_forces and forces_on_patt.search(line):
parse_forces = True
elif freq_on_patt.search(line):
parse_freq = True
[f.readline() for i in range(3)]
elif mo_coeff_patt.search(line):
if "Alpha" in line:
self.is_spin = True
read_mo = True
elif hessian_patt.search(line):
parse_hessian = True
elif resume_patt.search(line):
resume = []
while not resume_end_patt.search(line):
resume.append(line)
line = f.readline()
# security if \\@ not in one line !
if line == "\n":
break
resume.append(line)
resume = "".join([r.strip() for r in resume])
self.resumes.append(resume)
elif bond_order_patt.search(line):
parse_bond_order = True
if read_mulliken:
if not end_mulliken_patt.search(line):
mulliken_txt.append(line)
else:
m = end_mulliken_patt.search(line)
mulliken_charges = {}
for line in mulliken_txt:
if mulliken_charge_patt.search(line):
m = mulliken_charge_patt.search(line)
dic = {int(m.group(1)):
[m.group(2), float(m.group(3))]}
mulliken_charges.update(dic)
read_mulliken = False
self.Mulliken_charges = mulliken_charges
# store the structures. If symmetry is considered, the standard orientation
# is used. Else the input orientation is used.
if standard_orientation:
self.structures = std_structures
self.structures_input_orientation = input_structures
else:
self.structures = input_structures
self.structures_input_orientation = input_structures
# store optimized structure in input orientation
self.opt_structures = opt_structures
if not terminated:
warnings.warn("\n" + self.filename +
": Termination error or bad Gaussian output file !")
def _check_pcm(self, line):
energy_patt = re.compile(r"(Dispersion|Cavitation|Repulsion) energy"
r"\s+\S+\s+=\s+(\S*)")
total_patt = re.compile(r"with all non electrostatic terms\s+\S+\s+"
r"=\s+(\S*)")
parameter_patt = re.compile(r"(Eps|Numeral density|RSolv|Eps"
r"\(inf[inity]*\))\s+=\s*(\S*)")
if energy_patt.search(line):
m = energy_patt.search(line)
self.pcm['{} energy'.format(m.group(1))] = float(m.group(2))
elif total_patt.search(line):
m = total_patt.search(line)
self.pcm['Total energy'] = float(m.group(1))
elif parameter_patt.search(line):
m = parameter_patt.search(line)
self.pcm[m.group(1)] = float(m.group(2))
[docs] def as_dict(self):
"""
Json-serializable dict representation.
"""
structure = self.final_structure
d = {"has_gaussian_completed": self.properly_terminated,
"nsites": len(structure)}
comp = structure.composition
d["unit_cell_formula"] = comp.as_dict()
d["reduced_cell_formula"] = Composition(comp.reduced_formula).as_dict()
d["pretty_formula"] = comp.reduced_formula
d["is_pcm"] = self.is_pcm
d["errors"] = self.errors
d["Mulliken_charges"] = self.Mulliken_charges
unique_symbols = sorted(list(d["unit_cell_formula"].keys()))
d["elements"] = unique_symbols
d["nelements"] = len(unique_symbols)
d["charge"] = self.charge
d["spin_multiplicity"] = self.spin_multiplicity
vin = {"route": self.route_parameters, "functional": self.functional,
"basis_set": self.basis_set,
"nbasisfunctions": self.num_basis_func,
"pcm_parameters": self.pcm}
d["input"] = vin
nsites = len(self.final_structure)
vout = {
"energies": self.energies,
"final_energy": self.final_energy,
"final_energy_per_atom": self.final_energy / nsites,
"molecule": structure.as_dict(),
"stationary_type": self.stationary_type,
"corrections": self.corrections
}
d['output'] = vout
d["@module"] = self.__class__.__module__
d["@class"] = self.__class__.__name__
return d
[docs] def read_scan(self):
"""
Read a potential energy surface from a gaussian scan calculation.
Returns:
A dict: {"energies": [ values ],
"coords": {"d1": [ values ], "A2", [ values ], ... }}
"energies" are the energies of all points of the potential energy
surface. "coords" are the internal coordinates used to compute the
potential energy surface and the internal coordinates optimized,
labelled by their name as defined in the calculation.
"""
def floatList(l):
""" return a list of float from a list of string """
return [float(v) for v in l]
scan_patt = re.compile(r"^\sSummary of the potential surface scan:")
optscan_patt = re.compile(r"^\sSummary of Optimized Potential Surface Scan")
coord_patt = re.compile(r"^\s*(\w+)((\s*[+-]?\d+\.\d+)+)")
# data dict return
data = {"energies": list(), "coords": dict()}
# read in file
with zopen(self.filename, "r") as f:
line = f.readline()
while line != "":
if optscan_patt.match(line):
f.readline()
line = f.readline()
endScan = False
while not endScan:
data["energies"] += floatList(float_patt.findall(line))
line = f.readline()
while coord_patt.match(line):
icname = line.split()[0].strip()
if icname in data["coords"]:
data["coords"][icname] += floatList(float_patt.findall(line))
else:
data["coords"][icname] = floatList(float_patt.findall(line))
line = f.readline()
if not re.search(r"^\s+((\s*\d+)+)", line):
endScan = True
else:
line = f.readline()
elif scan_patt.match(line):
line = f.readline()
data["coords"] = {icname: list()
for icname in line.split()[1:-1]}
f.readline()
line = f.readline()
while not re.search(r"^\s-+", line):
values = floatList(line.split())
data["energies"].append(values[-1])
for i, icname in enumerate(data["coords"]):
data["coords"][icname].append(values[i+1])
line = f.readline()
else:
line = f.readline()
return data
[docs] def get_scan_plot(self, coords=None):
"""
Get a matplotlib plot of the potential energy surface.
Args:
coords: internal coordinate name to use as abcissa.
"""
from pymatgen.util.plotting import pretty_plot
plt = pretty_plot(12, 8)
d = self.read_scan()
if coords and coords in d["coords"]:
x = d["coords"][coords]
plt.xlabel(coords)
else:
x = range(len(d["energies"]))
plt.xlabel("points")
plt.ylabel("Energy (eV)")
e_min = min(d["energies"])
y = [(e - e_min) * Ha_to_eV for e in d["energies"]]
plt.plot(x, y, "ro--")
return plt
[docs] def save_scan_plot(self, filename="scan.pdf",
img_format="pdf", coords=None):
"""
Save matplotlib plot of the potential energy surface to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS.
coords: internal coordinate name to use as abcissa.
"""
plt = self.get_scan_plot(coords)
plt.savefig(filename, format=img_format)
[docs] def read_excitation_energies(self):
"""
Read a excitation energies after a TD-DFT calculation.
Returns:
A list: A list of tuple for each transition such as
[(energie (eV), lambda (nm), oscillatory strength), ... ]
"""
transitions = list()
# read in file
with zopen(self.filename, "r") as f:
line = f.readline()
td = False
while line != "":
if re.search(r"^\sExcitation energies and oscillator strengths:", line):
td = True
if td:
if re.search(r"^\sExcited State\s*\d", line):
val = [float(v) for v in float_patt.findall(line)]
transitions.append(tuple(val[0:3]))
line = f.readline()
return transitions
[docs] def get_spectre_plot(self, sigma=0.05, step=0.01):
"""
Get a matplotlib plot of the UV-visible xas. Transition are plotted
as vertical lines and as a sum of normal functions with sigma with. The
broadening is applied in energy and the xas is plotted as a function
of the wavelength.
Args:
sigma: Full width at half maximum in eV for normal functions.
step: bin interval in eV
Returns:
A dict: {"energies": values, "lambda": values, "xas": values}
where values are lists of abscissa (energies, lamba) and
the sum of gaussian functions (xas).
A matplotlib plot.
"""
from pymatgen.util.plotting import pretty_plot
from scipy.stats import norm
plt = pretty_plot(12, 8)
transitions = self.read_excitation_energies()
minval = min([val[0] for val in transitions]) - 5.0 * sigma
maxval = max([val[0] for val in transitions]) + 5.0 * sigma
npts = int((maxval - minval) / step) + 1
eneval = np.linspace(minval, maxval, npts) # in eV
lambdaval = [cst.h * cst.c / (val * cst.e) * 1.e9
for val in eneval] # in nm
# sum of gaussian functions
spectre = np.zeros(npts)
for trans in transitions:
spectre += trans[2] * norm(eneval, trans[0], sigma)
spectre /= spectre.max()
plt.plot(lambdaval, spectre, "r-", label="spectre")
data = {"energies": eneval, "lambda": lambdaval, "xas": spectre}
# plot transitions as vlines
plt.vlines([val[1] for val in transitions],
0.,
[val[2] for val in transitions],
color="blue",
label="transitions",
linewidth=2)
plt.xlabel("$\\lambda$ (nm)")
plt.ylabel("Arbitrary unit")
plt.legend()
return data, plt
[docs] def save_spectre_plot(self, filename="spectre.pdf", img_format="pdf",
sigma=0.05, step=0.01):
"""
Save matplotlib plot of the spectre to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS.
sigma: Full width at half maximum in eV for normal functions.
step: bin interval in eV
"""
d, plt = self.get_spectre_plot(sigma, step)
plt.savefig(filename, format=img_format)
[docs] def to_input(self, mol=None, charge=None,
spin_multiplicity=None, title=None, functional=None,
basis_set=None, route_parameters=None, input_parameters=None,
link0_parameters=None, dieze_tag=None, cart_coords=False):
"""
Create a new input object using by default the last geometry read in
the output file and with the same calculation parameters. Arguments
are the same as GaussianInput class.
Returns
gaunip (GaussianInput) : the gaussian input object
"""
if not mol:
mol = self.final_structure
if charge is None:
charge = self.charge
if spin_multiplicity is None:
spin_multiplicity = self.spin_multiplicity
if not title:
title = self.title
if not functional:
functional = self.functional
if not basis_set:
basis_set = self.basis_set
if not route_parameters:
route_parameters = self.route_parameters
if not link0_parameters:
link0_parameters = self.link0
if not dieze_tag:
dieze_tag = self.dieze_tag
return GaussianInput(mol=mol,
charge=charge,
spin_multiplicity=spin_multiplicity,
title=title,
functional=functional,
basis_set=basis_set,
route_parameters=route_parameters,
input_parameters=input_parameters,
link0_parameters=link0_parameters,
dieze_tag=dieze_tag)