Ipopt 3.11.9
Loading...
Searching...
No Matches
MittelmannBndryCntrlDiri3Dsin.hpp
Go to the documentation of this file.
1// Copyright (C) 2005, 2007 International Business Machines and others.
2// All Rights Reserved.
3// This code is published under the Eclipse Public License.
4//
5// $Id: MittelmannBndryCntrlDiri3Dsin.hpp 2005 2011-06-06 12:55:16Z stefan $
6//
7// Authors: Andreas Waechter IBM 2005-10-18
8// Olaf Schenk (Univ. of Basel) 2007-08-01
9// modified MittelmannBndryCntrlDiri.hpp for 3-dim problem
10
11#ifndef __MITTELMANNBNDRYCNTRLDIRI3DSIN_HPP__
12#define __MITTELMANNBNDRYCNTRLDIRI3DSIN_HPP__
13
14#include "RegisteredTNLP.hpp"
15
16#ifdef HAVE_CONFIG_H
17#include "config.h"
18#else
19#include "configall_system.h"
20#endif
21
22#ifdef HAVE_CMATH
23# include <cmath>
24#else
25# ifdef HAVE_MATH_H
26# include <math.h>
27# else
28# error "don't have header file for math"
29# endif
30#endif
31
32#ifdef HAVE_CSTDIO
33# include <cstdio>
34#else
35# ifdef HAVE_STDIO_H
36# include <stdio.h>
37# else
38# error "don't have header file for stdio"
39# endif
40#endif
41
42using namespace Ipopt;
43
54{
55public:
58
61
65 virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
66 Index& nnz_h_lag, IndexStyleEnum& index_style);
67
69 virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
70 Index m, Number* g_l, Number* g_u);
71
73 virtual bool get_starting_point(Index n, bool init_x, Number* x,
74 bool init_z, Number* z_L, Number* z_U,
75 Index m, bool init_lambda,
76 Number* lambda);
77
79 virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
80
82 virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
83
85 virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
86
91 virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
92 Index m, Index nele_jac, Index* iRow, Index *jCol,
93 Number* values);
94
99 virtual bool eval_h(Index n, const Number* x, bool new_x,
100 Number obj_factor, Index m, const Number* lambda,
101 bool new_lambda, Index nele_hess, Index* iRow,
102 Index* jCol, Number* values);
103
105
108 bool& use_x_scaling, Index n,
110 bool& use_g_scaling, Index m,
112
117 virtual void finalize_solution(SolverReturn status,
118 Index n, const Number* x, const Number* z_L, const Number* z_U,
119 Index m, const Number* g, const Number* lambda,
120 Number obj_valu,
121 const IpoptData* ip_data,
124
125protected:
130 Number ub_y, Number lb_u, Number ub_u,
131 Number d_const);
132
136 virtual Number y_d_cont(Number x1, Number x2, Number x3) const =0;
138
139private:
154
179
184 inline Index y_index(Index i, Index j, Index k) const
185 {
186 return k + (N_+2)*j + (N_+2)*(N_+2)*i;
187 }
190 inline Index pde_index(Index i, Index j, Index k) const
191 {
192 return (k-1) + N_*(j-1) + N_*N_*(i-1);
193 }
195 inline Number x1_grid(Index i) const
196 {
197 return h_*(Number)i;
198 }
200 inline Number x2_grid(Index i) const
201 {
202 return h_*(Number)i;
203 }
205 inline Number x3_grid(Index i) const
206 {
207 return h_*(Number)i;
208 }
210};
211
214{
215public:
218
221
222 virtual bool InitializeProblem(Index N)
223 {
224 if (N<1) {
225 printf("N has to be at least 1.");
226 return false;
227 }
228 printf("olaf N %d has to be at least 1.", N);
229 Number alpha = 0.1;
230 Number lb_y = -1e20;
231 Number ub_y = 3.5;
232 Number lb_u = 0.;
233 Number ub_u = 10.;
234 Number d_const = -20.;
235 SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const);
236 return true;
237 }
238protected:
240 virtual Number y_d_cont(Number x1, Number x2, Number x3) const
241 {
242 return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.)*x3*(x3-1.));
243 }
244private:
250
251};
252
253
254#endif
Number * x
Input: Starting point Output: Optimal solution.
Number Number Index Number Number Index Index nele_hess
Number of non-zero elements in Hessian of Lagrangian.
Number Number * g
Values of constraint at final point (output only - ignored if set to NULL)
Number Number Index Number Number Index nele_jac
Number of non-zero elements in constraint Jacobian.
Number Number * x_scaling
Number obj_scaling
Number Number Number * g_scaling
Number Number Index m
Number of constraints.
Number Number Index Number Number Index Index Index index_style
indexing style for iRow & jCol, 0 for C style, 1 for Fortran style
Class for all IPOPT specific calculated quantities.
Class to organize all the data required by the algorithm.
IndexStyleEnum
overload this method to return the number of variables and constraints, and the number of non-zeros i...
Definition IpTNLP.hpp:80
MittelmannBndryCntrlDiri3Dsin(const MittelmannBndryCntrlDiri3Dsin &)
virtual Number y_d_cont(Number x1, Number x2, Number x3) const
Target profile function for y.
MittelmannBndryCntrlDiri3Dsin & operator=(const MittelmannBndryCntrlDiri3Dsin &)
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
Base class for boundary control problems with Dirichlet boundary conditions, as formulated by Hans Mi...
MittelmannBndryCntrlDiriBase3Dsin()
Constructor.
virtual ~MittelmannBndryCntrlDiriBase3Dsin()
Default destructor.
Index N_
Number of mesh points in one dimension (excluding boundary)
virtual Number y_d_cont(Number x1, Number x2, Number x3) const =0
Target profile function for y.
void SetBaseParameters(Index N, Number alpha, Number lb_y, Number ub_y, Number lb_u, Number ub_u, Number d_const)
Method for setting the internal parameters that define the problem.
Number x1_grid(Index i) const
Compute the grid coordinate for given index in x1 direction.
virtual bool get_starting_point(Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda)
Method to return the starting point for the algorithm.
virtual bool eval_f(Index n, const Number *x, bool new_x, Number &obj_value)
Method to return the objective value.
virtual bool eval_jac_g(Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values)
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobia...
virtual bool get_bounds_info(Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u)
Method to return the bounds for my problem.
virtual void finalize_solution(SolverReturn status, Index n, const Number *x, const Number *z_L, const Number *z_U, Index m, const Number *g, const Number *lambda, Number obj_valu, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called after the optimization, and could write an output file with the optimal profile...
virtual bool eval_h(Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values)
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The valu...
Number * y_d_
Array for the target profile for y.
virtual bool eval_grad_f(Index n, const Number *x, bool new_x, Number *grad_f)
Method to return the gradient of the objective.
Number x2_grid(Index i) const
Compute the grid coordinate for given index in x2 direction.
MittelmannBndryCntrlDiriBase3Dsin(const MittelmannBndryCntrlDiriBase3Dsin &)
MittelmannBndryCntrlDiriBase3Dsin & operator=(const MittelmannBndryCntrlDiriBase3Dsin &)
Index pde_index(Index i, Index j, Index k) const
Translation of interior mesh point indices to the corresponding PDE constraint number.
virtual bool eval_g(Index n, const Number *x, bool new_x, Index m, Number *g)
Method to return the constraint residuals.
virtual bool get_nlp_info(Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, IndexStyleEnum &index_style)
Method to return some info about the nlp.
virtual bool get_scaling_parameters(Number &obj_scaling, bool &use_x_scaling, Index n, Number *x_scaling, bool &use_g_scaling, Index m, Number *g_scaling)
Method for returning scaling parameters.
Number d_const_
Constant value of d appearing in elliptical equation.
Number x3_grid(Index i) const
Compute the grid coordinate for given index in x3 direction.
Number alpha_
Weighting parameter for the control target deviation functional in the objective.
Index y_index(Index i, Index j, Index k) const
Translation of mesh point indices to NLP variable indices for y(x_ijk)
Class implemented the NLP discretization of.
SolverReturn
enum for the return from the optimize algorithm (obviously we need to add more)
int Index
Type of all indices of vectors, matrices etc.
Definition IpTypes.hpp:19
double Number
Type of all numbers.
Definition IpTypes.hpp:17