Ipopt 3.11.9
Loading...
Searching...
No Matches
IpIpoptCalculatedQuantities.hpp
Go to the documentation of this file.
1// Copyright (C) 2004, 2011 International Business Machines and others.
2// All Rights Reserved.
3// This code is published under the Eclipse Public License.
4//
5// $Id: IpIpoptCalculatedQuantities.hpp 2020 2011-06-16 20:46:16Z andreasw $
6//
7// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
8
9#ifndef __IPIPOPTCALCULATEDQUANTITIES_HPP__
10#define __IPIPOPTCALCULATEDQUANTITIES_HPP__
11
12#include "IpSmartPtr.hpp"
13#include "IpCachedResults.hpp"
14
15#include <string>
16
17namespace Ipopt
18{
19 class IpoptNLP;
20 class IpoptData;
21 class Vector;
22 class Matrix;
23 class SymMatrix;
24 class Journalist;
25 class OptionsList;
26 class RegisteredOptions;
27
34
41 {
42 public:
48
51 {}
53
57 virtual bool Initialize(const Journalist& jnlst,
58 const OptionsList& options,
59 const std::string& prefix) = 0;
60
61 private:
72
76 };
77
82 {
83 public:
84
89 const SmartPtr<IpoptData>& ip_data);
93
97 {
99 add_cq_ = add_cq;
100 }
101
105 {
106 return IsValid(add_cq_);
107 }
108
112 bool Initialize(const Journalist& jnlst,
113 const OptionsList& options,
114 const std::string& prefix);
115
139
143 virtual Number curr_f();
147 virtual Number trial_f();
155
166
173
181
261
267
308
313
320
330
333 const Vector& compl_x_U,
334 const Vector& compl_s_L,
335 const Vector& compl_s_U);
338
349
353
369
375 const Vector& delta_x,
376 const Vector& delta_s);
383 const Vector& delta_z_L,
384 const Vector& delta_z_U,
385 const Vector& delta_v_L,
386 const Vector& delta_v_U);
390 const Vector& delta_z_L,
391 const Vector& delta_z_U,
392 const Vector& delta_v_L,
393 const Vector& delta_v_U);
405 const Vector& delta_x_L,
406 const Vector& delta_x_U,
407 const Vector& delta_s_L,
408 const Vector& delta_s_U);
410
416
421
425
427 Number
429 std::vector<SmartPtr<const Vector> > vecs);
430
432 Number
434 const Vector& vec1, const Vector& vec2);
435
438 {
440 }
441
443 bool IsSquareProblem() const;
444
448 {
449 return ip_nlp_;
450 }
451
457
463
464 private:
475
478
482
492
513
529
537
547
572
575
610
616
622
627
630
647
660
671
675
682 const Vector& x,
683 const Vector& x_bound);
688 const Vector& x,
689 const Vector& x_bound);
694 const Vector& slack_x_L,
695 const Vector& slack_x_U,
696 const Vector& slack_s_L,
697 const Vector& slack_s_U);
698
701 const Vector& mult);
702
705 Vector& tmp_L,
706 const Matrix& P_L,
707 const Vector& slack_U,
708 Vector& tmp_U,
709 const Matrix& P_U,
710 const Vector& delta,
711 Number tau);
712
714 void ComputeOptimalityErrorScaling(const Vector& y_c, const Vector& y_d,
715 const Vector& z_L, const Vector& z_U,
716 const Vector& v_L, const Vector& v_U,
717 Number s_max,
718 Number& s_d, Number& s_c);
719
724 const SmartPtr<const Vector>& bound,
725 const SmartPtr<const Vector>& curr_point,
726 const SmartPtr<const Vector>& multiplier);
727
734 SmartPtr<const Vector>& dampind_x_U,
735 SmartPtr<const Vector>& dampind_s_L,
736 SmartPtr<const Vector>& dampind_s_U);
737
745
747 };
748
749} // namespace Ipopt
750
751#endif
#define DBG_ASSERT(test)
Definition IpDebug.hpp:38
Number * x
Input: Starting point Output: Optimal solution.
Templated class for Cached Results.
Base class for additional calculated quantities that is special to a particular type of algorithm,...
void operator=(const IpoptAdditionalCq &)
Overloaded Equals Operator.
virtual bool Initialize(const Journalist &jnlst, const OptionsList &options, const std::string &prefix)=0
This method is called to initialize the global algorithmic parameters.
IpoptAdditionalCq(const IpoptAdditionalCq &)
Copy Constructor.
virtual ~IpoptAdditionalCq()
Default destructor.
Class for all IPOPT specific calculated quantities.
CachedResults< SmartPtr< const Vector > > curr_compl_s_U_cache_
SmartPtr< const Vector > trial_grad_lag_s()
s-part of gradient of Lagrangian function (at trial point)
SmartPtr< const Vector > curr_grad_f()
Gradient of objective function (at current point)
CachedResults< SmartPtr< const Matrix > > curr_jac_d_cache_
CachedResults< SmartPtr< const Vector > > curr_compl_x_U_cache_
SmartPtr< IpoptData > ip_data_
Ipopt Data object.
CachedResults< SmartPtr< const Vector > > curr_jac_c_times_vec_cache_
CachedResults< SmartPtr< Vector > > curr_slack_x_L_cache_
CachedResults< SmartPtr< const SymMatrix > > curr_exact_hessian_cache_
Cache for the exact Hessian.
CachedResults< SmartPtr< const Vector > > curr_grad_lag_s_cache_
Number curr_primal_frac_to_the_bound(Number tau)
Fraction to the boundary from (current) primal variables x and s for internal (current) step.
virtual Number curr_nlp_constraint_violation(ENormType NormType)
Real constraint violation in a given norm (at current iterate).
CachedResults< SmartPtr< const Matrix > > trial_jac_c_cache_
virtual Number unscaled_curr_nlp_constraint_violation(ENormType NormType)
Unscaled real constraint violation in a given norm (at current iterate).
SmartPtr< const Vector > curr_relaxed_compl_x_L()
Relaxed complementarity for x_L (for current iterate and current mu)
SmartPtr< const Vector > curr_jac_cT_times_curr_y_c()
Product of Jacobian (evaluated at current point) of C transpose with current y_c.
SmartPtr< Vector > CalcSlack_U(const Matrix &P, const Vector &x, const Vector &x_bound)
Compute new vector containing the slack to a upper bound (uncached)
CachedResults< SmartPtr< const Vector > > grad_kappa_times_damping_x_cache_
IpoptCalculatedQuantities()
Default Constructor.
ENormType constr_viol_normtype_
Norm type to be used when calculating the constraint violation.
SmartPtr< const Matrix > trial_jac_d()
Jacobian of d (at trial point)
CachedResults< SmartPtr< const Vector > > curr_jac_cT_times_vec_cache_
CachedResults< SmartPtr< const Vector > > curr_grad_barrier_obj_x_cache_
virtual Number curr_centrality_measure()
Centrality measure at current point.
CachedResults< SmartPtr< const Vector > > curr_jac_d_times_vec_cache_
SmartPtr< const Matrix > curr_jac_c()
Jacobian of c (at current point)
SmartPtr< const Vector > curr_compl_x_L()
Complementarity for x_L (for current iterate)
bool Initialize(const Journalist &jnlst, const OptionsList &options, const std::string &prefix)
This method must be called to initialize the global algorithmic parameters.
SmartPtr< const Vector > trial_d_minus_s()
d(x) - s (at trial point)
virtual Number unscaled_curr_dual_infeasibility(ENormType NormType)
Unscaled dual infeasibility in a given norm (at current iterate)
SmartPtr< const Vector > curr_compl_s_U()
Complementarity for s_U (for current iterate)
CachedResults< SmartPtr< const Vector > > curr_grad_barrier_obj_s_cache_
bool IsSquareProblem() const
Method returning true if this is a square problem.
CachedResults< Number > unscaled_trial_nlp_constraint_violation_cache_
SmartPtr< const Vector > curr_relaxed_compl_s_L()
Relaxed complementarity for s_L (for current iterate and current mu)
SmartPtr< const Vector > unscaled_curr_c()
unscaled c(x) (at current point)
CachedResults< SmartPtr< const Vector > > trial_grad_f_cache_
Number curr_dual_frac_to_the_bound(Number tau)
Fraction to the boundary from (current) dual variables z and v for internal (current) step.
Number dual_frac_to_the_bound(Number tau, const Vector &delta_z_L, const Vector &delta_z_U, const Vector &delta_v_L, const Vector &delta_v_U)
Fraction to the boundary from (current) dual variables z and v for a given step.
SmartPtr< const Vector > curr_jac_cT_times_vec(const Vector &vec)
Product of Jacobian (evaluated at current point) of C transpose with general vector.
SmartPtr< const Vector > curr_jac_c_times_vec(const Vector &vec)
Product of Jacobian (evaluated at current point) of C with general vector.
CachedResults< SmartPtr< const Vector > > curr_grad_lag_with_damping_s_cache_
CachedResults< SmartPtr< const Vector > > curr_grad_lag_with_damping_x_cache_
Number CalcNormOfType(ENormType NormType, const Vector &vec1, const Vector &vec2)
Compute the norm of a specific type of two vectors (uncached)
virtual Number trial_constraint_violation()
Constraint Violation (at trial point).
bool warm_start_same_structure_
Flag indicating whether the TNLP with identical structure has already been solved before.
CachedResults< SmartPtr< const Vector > > curr_d_cache_
CachedResults< SmartPtr< const Matrix > > curr_jac_c_cache_
CachedResults< SmartPtr< const Vector > > trial_d_cache_
CachedResults< SmartPtr< Vector > > curr_slack_s_L_cache_
SmartPtr< const Vector > trial_jac_dT_times_trial_y_d()
Product of Jacobian (evaluated at trial point) of D transpose with trial y_d.
CachedResults< Number > curr_primal_dual_system_error_cache_
bool initialize_called_
flag indicating if Initialize method has been called (for debugging)
SmartPtr< const Matrix > trial_jac_c()
Jacobian of c (at trial point)
CachedResults< SmartPtr< Vector > > curr_slack_x_U_cache_
CachedResults< Number > curr_gradBarrTDelta_cache_
Cache for grad barrier obj.
CachedResults< SmartPtr< Vector > > trial_slack_x_L_cache_
IpoptCalculatedQuantities(const IpoptCalculatedQuantities &)
Copy Constructor.
virtual Number curr_primal_infeasibility(ENormType NormType)
Primal infeasibility in a given norm (at current iterate).
SmartPtr< Vector > dampind_s_L_
Indicator vector for selecting the elements in s that have only lower bounds.
SmartPtr< Vector > CalcSlack_L(const Matrix &P, const Vector &x, const Vector &x_bound)
Compute new vector containing the slack to a lower bound (uncached)
SmartPtr< const Vector > trial_grad_f()
Gradient of objective function (at trial point)
SmartPtr< const Vector > trial_slack_x_U()
Slacks for x_U (at trial point)
CachedResults< SmartPtr< const Vector > > trial_grad_lag_s_cache_
CachedResults< SmartPtr< const Vector > > trial_compl_s_U_cache_
Number uncached_dual_frac_to_the_bound(Number tau, const Vector &delta_z_L, const Vector &delta_z_U, const Vector &delta_v_L, const Vector &delta_v_U)
Fraction to the boundary from (current) dual variables z and v for a given step, without caching.
virtual Number curr_constraint_violation()
Constraint Violation (at current iterate).
CachedResults< SmartPtr< const Vector > > curr_sigma_x_cache_
virtual Number trial_complementarity(Number mu, ENormType NormType)
Complementarity (for all complementarity conditions together) in a given norm (at trial iterate)
SmartPtr< const Vector > unscaled_curr_d()
unscaled d(x) (at current point)
virtual Number trial_f()
Value of objective function (at trial point)
SmartPtr< const Vector > curr_compl_s_L()
Complementarity for s_L (for current iterate)
virtual Number unscaled_trial_f()
Unscaled value of the objective function (at the trial point)
SmartPtr< Vector > dampind_x_U_
Indicator vector for selecting the elements in x that have only upper bounds.
SmartPtr< const Vector > grad_kappa_times_damping_x()
Gradient of the damping term with respect to x (times kappa_d)
void ComputeDampingIndicators(SmartPtr< const Vector > &dampind_x_L, SmartPtr< const Vector > &dampind_x_U, SmartPtr< const Vector > &dampind_s_L, SmartPtr< const Vector > &dampind_s_U)
Computes the indicator vectors that can be used to filter out those entries in the slack_....
SmartPtr< Vector > dampind_s_U_
Indicator vector for selecting the elements in s that have only upper bounds.
SmartPtr< const Vector > curr_sigma_x()
SmartPtr< const Vector > curr_slack_s_U()
Slacks for s_U (at current iterate)
CachedResults< SmartPtr< Vector > > trial_slack_s_L_cache_
SmartPtr< const Vector > trial_compl_x_U()
Complementarity for x_U (for trial iterate)
CachedResults< SmartPtr< const Vector > > curr_relaxed_compl_x_L_cache_
CachedResults< Number > curr_avrg_compl_cache_
Cache for average of current complementarity.
virtual Number curr_barrier_error()
Total optimality error for the barrier problem at the current iterate, using scaling factors based on...
CachedResults< SmartPtr< const Vector > > curr_relaxed_compl_s_U_cache_
virtual Number unscaled_curr_nlp_error()
Total optimality error for the original NLP at the current iterate, but using no scaling based on mul...
CachedResults< SmartPtr< const Vector > > curr_jac_dT_times_vec_cache_
Number kappa_d_
Weighting factor for the linear damping term added to the barrier objective funciton.
virtual Number trial_primal_infeasibility(ENormType NormType)
Primal infeasibility in a given norm (at trial point)
CachedResults< SmartPtr< const Vector > > curr_relaxed_compl_x_U_cache_
CachedResults< SmartPtr< const Vector > > curr_compl_s_L_cache_
SmartPtr< const Vector > CalcCompl(const Vector &slack, const Vector &mult)
Compute complementarity for slack / multiplier pair.
SmartPtr< const Vector > curr_d()
d(x) (at current point)
Index CalculateSafeSlack(SmartPtr< Vector > &slack, const SmartPtr< const Vector > &bound, const SmartPtr< const Vector > &curr_point, const SmartPtr< const Vector > &multiplier)
Check if slacks are becoming too small.
CachedResults< Number > trial_primal_dual_system_error_cache_
CachedResults< SmartPtr< Vector > > curr_slack_s_U_cache_
CachedResults< Number > unscaled_curr_dual_infeasibility_cache_
SmartPtr< const Vector > curr_sigma_s()
void SetAddCq(SmartPtr< IpoptAdditionalCq > add_cq)
Method for setting pointer for additional calculated quantities.
CachedResults< Number > trial_avrg_compl_cache_
Cache for average of trial complementarity.
SmartPtr< const Vector > grad_kappa_times_damping_s()
Gradient of the damping term with respect to s (times kappa_d)
Number s_max_
Parameter in formula for computing overall primal-dual optimality error.
CachedResults< SmartPtr< const Vector > > trial_c_cache_
SmartPtr< const Vector > curr_compl_x_U()
Complementarity for x_U (for current iterate)
void operator=(const IpoptCalculatedQuantities &)
Overloaded Equals Operator.
Vector & Tmp_x()
Accessor methods for the temporary vectors.
CachedResults< SmartPtr< const Vector > > trial_jac_dT_times_vec_cache_
CachedResults< SmartPtr< const Vector > > curr_grad_lag_x_cache_
Number curr_gradBarrTDelta()
inner_product of current barrier obj.
Number trial_avrg_compl()
average of trial values of the complementarities
virtual Number curr_f()
Value of objective function (at current point)
CachedResults< SmartPtr< const Vector > > trial_grad_lag_x_cache_
virtual Number trial_primal_dual_system_error(Number mu)
Norm of the primal-dual system for a given mu (at trial iterate).
CachedResults< Number > trial_primal_infeasibility_cache_
virtual Number trial_barrier_obj()
Barrier Objective Function Value (at trial point with current mu)
SmartPtr< const Vector > curr_jac_dT_times_curr_y_d()
Product of Jacobian (evaluated at current point) of D transpose with current y_d.
SmartPtr< const Vector > trial_slack_x_L()
Slacks for x_L (at trial point)
bool in_restoration_phase()
Check if we are in the restoration phase.
CachedResults< SmartPtr< const Vector > > curr_relaxed_compl_s_L_cache_
SmartPtr< const Vector > curr_slack_x_L()
Slacks for x_L (at current iterate)
CachedResults< SmartPtr< const Vector > > trial_compl_x_L_cache_
SmartPtr< const Vector > curr_slack_s_L()
Slacks for s_L (at current iterate)
Number CalcFracToBound(const Vector &slack_L, Vector &tmp_L, const Matrix &P_L, const Vector &slack_U, Vector &tmp_U, const Matrix &P_U, const Vector &delta, Number tau)
Compute fraction to the boundary parameter for lower and upper bounds.
Number CalcNormOfType(ENormType NormType, std::vector< SmartPtr< const Vector > > vecs)
Compute the norm of a specific type of a set of vectors (uncached)
CachedResults< SmartPtr< const Vector > > curr_sigma_s_cache_
CachedResults< Number > curr_nlp_constraint_violation_cache_
virtual Number curr_barrier_obj()
Barrier Objective Function Value (at current iterate with current mu)
CachedResults< SmartPtr< const Vector > > curr_d_minus_s_cache_
SmartPtr< const Vector > trial_grad_lag_x()
x-part of gradient of Lagrangian function (at trial point)
SmartPtr< const Vector > trial_jac_cT_times_trial_y_c()
Product of Jacobian (evaluated at trial point) of C transpose with trial y_c.
SmartPtr< const Vector > curr_c()
c(x) (at current point)
SmartPtr< Vector > dampind_x_L_
Indicator vector for selecting the elements in x that have only lower bounds.
SmartPtr< const Vector > trial_d()
d(x) (at trial point)
Number CalcBarrierTerm(Number mu, const Vector &slack_x_L, const Vector &slack_x_U, const Vector &slack_s_L, const Vector &slack_s_U)
Compute barrier term at given point (uncached)
Number slack_move_
fractional movement allowed in bounds
virtual Number curr_primal_dual_system_error(Number mu)
Norm of the primal-dual system for a given mu (at current iterate).
SmartPtr< const Vector > trial_c()
c(x) (at trial point)
CachedResults< SmartPtr< Vector > > trial_slack_s_U_cache_
IpoptCalculatedQuantities(const SmartPtr< IpoptNLP > &ip_nlp, const SmartPtr< IpoptData > &ip_data)
Constructor.
Number primal_frac_to_the_bound(Number tau, const Vector &delta_x, const Vector &delta_s)
Fraction to the boundary from (current) primal variables x and s for a given step.
Number mu_target_
Desired value of the barrier parameter.
SmartPtr< const Vector > curr_grad_barrier_obj_s()
Gradient of barrier objective function with respect to s (at current point with current mu)
CachedResults< SmartPtr< const Vector > > trial_compl_x_U_cache_
virtual Number curr_nlp_error()
Total optimality error for the original NLP at the current iterate, using scaling factors based on mu...
SmartPtr< const Vector > curr_slack_x_U()
Slacks for x_U (at current iterate)
SmartPtr< const Vector > curr_grad_barrier_obj_x()
Gradient of barrier objective function with respect to x (at current point with current mu)
CachedResults< SmartPtr< const Vector > > curr_grad_f_cache_
CachedResults< SmartPtr< Vector > > trial_slack_x_U_cache_
CachedResults< SmartPtr< const Vector > > curr_c_cache_
Index AdjustedTrialSlacks()
Indicating whether or not we "fudged" the slacks.
SmartPtr< const Vector > curr_relaxed_compl_s_U()
Relaxed complementarity for s_U (for current iterate and current mu)
SmartPtr< const Vector > trial_jac_cT_times_vec(const Vector &vec)
Product of Jacobian (evaluated at trial point) of C transpose with general vector.
CachedResults< SmartPtr< const Matrix > > trial_jac_d_cache_
ENormType constr_viol_normtype() const
Norm type used for calculating constraint violation.
CachedResults< SmartPtr< const Vector > > trial_compl_s_L_cache_
SmartPtr< const Vector > trial_jac_dT_times_vec(const Vector &vec)
Product of Jacobian (evaluated at trial point) of D transpose with general vector.
SmartPtr< IpoptNLP > & GetIpoptNLP()
Method returning the IpoptNLP object.
bool HaveAddCq()
Method detecting if additional object for calculated quantities has already been set.
virtual Number unscaled_curr_complementarity(Number mu, ENormType NormType)
Complementarity (for all complementarity conditions together) in a given norm (at current iterate) wi...
SmartPtr< const Vector > curr_jac_dT_times_vec(const Vector &vec)
Product of Jacobian (evaluated at current point) of D transpose with general vector.
virtual Number unscaled_trial_nlp_constraint_violation(ENormType NormType)
Unscaled real constraint violation in a given norm (at trial iterate).
SmartPtr< IpoptAdditionalCq > add_cq_
Chen-Goldfarb specific calculated quantities.
CachedResults< SmartPtr< const Vector > > trial_d_minus_s_cache_
SmartPtr< const Matrix > curr_jac_d()
Jacobian of d (at current point)
SmartPtr< const Vector > curr_relaxed_compl_x_U()
Relaxed complementarity for x_U (for current iterate and current mu)
CachedResults< Number > trial_constraint_violation_cache_
SmartPtr< IpoptNLP > ip_nlp_
Ipopt NLP object.
void ComputeOptimalityErrorScaling(const Vector &y_c, const Vector &y_d, const Vector &z_L, const Vector &z_U, const Vector &v_L, const Vector &v_U, Number s_max, Number &s_d, Number &s_c)
Compute the scaling factors for the optimality error.
SmartPtr< const Vector > curr_jac_d_times_vec(const Vector &vec)
Product of Jacobian (evaluated at current point) of D with general vector.
virtual ~IpoptCalculatedQuantities()
Default destructor.
SmartPtr< const SymMatrix > curr_exact_hessian()
exact Hessian at current iterate (uncached)
Number uncached_slack_frac_to_the_bound(Number tau, const Vector &delta_x_L, const Vector &delta_x_U, const Vector &delta_s_L, const Vector &delta_s_U)
Fraction to the boundary from (current) slacks for a given step in the slacks.
CachedResults< SmartPtr< const Vector > > curr_compl_x_L_cache_
SmartPtr< const Vector > curr_grad_lag_with_damping_x()
x-part of gradient of Lagrangian function (at current point) including linear damping term
SmartPtr< const Vector > curr_d_minus_s()
d(x) - s (at current point)
SmartPtr< const Vector > curr_grad_lag_x()
x-part of gradient of Lagrangian function (at current point)
Number CalcCentralityMeasure(const Vector &compl_x_L, const Vector &compl_x_U, const Vector &compl_s_L, const Vector &compl_s_U)
Centrality measure (in spirit of the -infinity-neighborhood.
SmartPtr< const Vector > trial_compl_s_U()
Complementarity for s_U (for trial iterate)
virtual Number unscaled_curr_f()
Unscaled value of the objective function (at the current point)
SmartPtr< const Vector > trial_compl_x_L()
Complementarity for x_L (for trial iterate)
virtual Number curr_dual_infeasibility(ENormType NormType)
Dual infeasibility in a given norm (at current iterate)
virtual Number trial_dual_infeasibility(ENormType NormType)
Dual infeasibility in a given norm (at trial iterate)
CachedResults< SmartPtr< const Vector > > grad_kappa_times_damping_s_cache_
SmartPtr< const Vector > trial_compl_s_L()
Complementarity for s_L (for trial iterate)
Number curr_avrg_compl()
average of current values of the complementarities
CachedResults< Number > unscaled_curr_nlp_constraint_violation_cache_
virtual Number curr_complementarity(Number mu, ENormType NormType)
Complementarity (for all complementarity conditions together) in a given norm (at current iterate)
SmartPtr< const Vector > unscaled_trial_c()
unscaled c(x) (at trial point)
SmartPtr< const Vector > curr_grad_lag_s()
s-part of gradient of Lagrangian function (at current point)
CachedResults< SmartPtr< const Vector > > trial_jac_cT_times_vec_cache_
SmartPtr< const Vector > trial_slack_s_U()
Slacks for s_U (at trial point)
SmartPtr< const Vector > trial_slack_s_L()
Slacks for s_L (at trial point)
static void RegisterOptions(SmartPtr< RegisteredOptions > roptions)
Methods for IpoptType.
SmartPtr< const Vector > curr_grad_lag_with_damping_s()
s-part of gradient of Lagrangian function (at current point) including linear damping term
void ResetAdjustedTrialSlacks()
Reset the flags for "fudged" slacks.
Class responsible for all message output.
Matrix Base Class.
Definition IpMatrix.hpp:28
This class stores a list of user set options.
ReferencedObject class.
Template class for Smart Pointers.
Vector Base Class.
Definition IpVector.hpp:48
bool IsValid(const SmartPtr< U > &smart_ptr)
int Index
Type of all indices of vectors, matrices etc.
Definition IpTypes.hpp:19
double Number
Type of all numbers.
Definition IpTypes.hpp:17