\\-I' ' D-Sec

Code Review of the Go TUF Implementation
for OSTIF

Final Report and Management Summary

2023-05-31

X41 D-SEC GmbH
Krefelderstr. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989

https://x41-dsec.de/
info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Code Review of the Go TUF Implementation OSTIF

Revision Date Change Author(s)

1 2023-03-17 Final Report and Management L. Gommans, M. Vervier, N. Abel
Summary

2 2023-05-31 Public Release L. Gommans

X41 D-Sec GmbH Page 1 of 28

Code Review of the Go TUF Implementation OSTIF

Contents

1 Executive Summary 4
2 Introduction 6
2.1 Methodology e 6
2.2 Findings Overview e e 7
2.3 SCOPE . . . e 7
24 COVEIAgE . . o o o i i e e e e e e e 8
2.5 Recommended Further Tests 9
3 Rating Methodology for Security Vulnerabilities 10
3.1 Common Weakness Enumeration 11
4 Results 12
4.1 Findings e e 12
4.2 FuzzTesting e 18
4.3 Informational Notes 22
5 About X41 D-Sec GmbH 27

X41 D-Sec GmbH Page 2 of 28

Code Review of the Go TUF Implementation

OSTIF

Dashboard

Target
Customer
Name
Type
Version

Engagement
Type
Consultants

Engagement Effort

Total issues found

X41 D-Sec GmbH

OSTIF

go-tuf

Command Line Application
Commit fab805a8e00b5520

Code Review
3: Luc Gommans, Markus Vervier and Niklas Abel

12 person-days, 2023-02-27 to 2023-03-10
2
1

None - 4

Figure 1: Issue Overview (I: Severity, r: CWE Distribution)

PUBLIC

Page 3 of 28

mailto:luc.gommans@x41-dsec.de
mailto:markus.vervier@x41-dsec.de
mailto:niklas.abel@x41-dsec.de

Code Review of the Go TUF Implementation OSTIF

1 Executive Summary

In March 2023, X41 D-Sec GmbH performed a source code audit against go-tuf to identify vul-
nerabilities and weaknesses in the application. go-tuf is a Go implementation of The Update
Framework which allows developers to securely manage updates of software and to minimize
the impact on users in the event that update distribution servers or mirrors are compromised.

Two vulnerability were discovered during the test by X41, rated as a medium and a low severity.
A further four issues without a direct security impact were identified. An analysis of fuzz testing
for the project was additionally performed.

The test was performed by three experienced security experts between 2023-02-27 and 2023-
03-10. In a source code audit, all information about the system is made available, although pos-
sible environmental and setup specifics might still lead to weaknesses that are not visible in the
source code.

One discovered issue allows an attacker to provide erroneous updates under certain circum-
stances. The update files are not malicious themselves, but due to not being the expected files,
this likely still leads to the system not functioning anymore after an update or, again depending
on circumstances, could lead to a compromise of the target system.

Specifically, files can be taken from one repository and provided as updates in another. The
main prerequisite is using the same signing keys, which could happen if both TUF repositories
are managed by the same individual. The attack can be technically mitigated by tying versions to
each other (a consecutive update would not be valid because it would link to a different preceding
file) or by making root metadata specific to a project such as by including a random value that
would not be present in the other project. Stating in the documentation that unique keys are
required would be an organizational solution, but might be missed by a maintainer.

Another issue might allow an attacker to overwrite files on the local system of a committer by
placing symbolic links into a compromised repository. This might happen due to a compromise
in transit of files on which go-tuf then operates. Whether the files are already signed by other
functionaries does not matter because such signatures are currently not validated.

X41 D-Sec GmbH Page 4 of 28

Code Review of the Go TUF Implementation OSTIF

Among informational notes, it was noticed that keys/ directory permissions are set to be world-
readable. This does not allow a local attacker to read the key files themselves, but it is best
practice to assign only the minimum permissions necessary.

Overall, the project shows a high maturity in terms of security. X41 recommends to resolve the
identified issues and continue to apply best practices and hardening to the application.

X41 D-Sec GmbH Page 5 of 28

Code Review of the Go TUF Implementation OSTIF

2 Introduction

X41 reviewed the Go implementation of The Update Framework. The system allows developers
to securely manage updates of software and to minimize the impact on users in the event that
update distribution servers or mirrors are compromised.

Attackers could try to attack the various components of the system which each have to work
correctly, including the parsing of downloaded data, the download mechanism itself, and the
signatures of the metadata and target files.

2.1 Methodology

The review consisted of a source code audit.

A manual approach for penetration testing and for code review is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools?.

X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding? standards and the Study - A Penetration Testing Model®
of the German Federal Office for Information Security.

Ihttps://portswigger.net/burp

2https://wiki.sei.cmu.edu/confluence/di splay/seccode/SEI+CERT+Coding+Standards

Shttps://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH Page 6 of 28

https://portswigger.net/burp
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Code Review of the Go TUF Implementation OSTIF

Initial Design Threat Code
Workshop Modelling Review

GAP / Performance
Analysis

Fixing and

Qt‘igaﬁon

~<—— Documentation

Figure 2.1: Code Review Methodology

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF

Key Reuse Allows Cut-And-Paste Attack LOW GOTUF-CR-23-01 411
Symbolic Link Attacks Possible During Commit Operation MEDIUM GOTUF-CR-23-02 4.1.2
Key Folder Permissions NONE GOTUF-CR-23-100 431
Hint About Insecure Passwords NONE GOTUF-CR-23-101 4.3.2
Unhandled Errors NONE GOTUF-CR-23-102 4.3.3
Suboptimal Scrypt Parameters NONE GOTUF-CR-23-103 434

Table 2.1: Security-Relevant Findings

2.3 Scope

The scope consists of the source code in the following repository. As target version, the untagged
commit ID* fab805a8e00b5520c09855385b32761F41b67a6f is used, which was the latest com-
mit at the start of the audit.

https://github.com/theupdateframework/go-tuf

4 |dentifier

X41 D-Sec GmbH Page 7 of 28

https://github.com/theupdateframework/go-tuf

Code Review of the Go TUF Implementation OSTIF

A repository server implementation is also contained, but the focus of the audit should be on the
client code. The specification to which the code will be compared can be found here:

https://theupdateframework.github.io/specification/latest/

The specification itself is not part of the scope as it was already audited with the reference Python
implementation®. Dependencies of go-tuf are also not part of the scope.

2.4 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.

The time allocated to X41 for this assessment yielded a decent coverage of the given scope.
Direct dependencies could not be investigated in the time given.

The nature of the project (no interface to present user data using, e.g., HTML?) and the use of
Go excludes various bug classes such as most memory corruption vulnerabilities. The use of a
key-value database which does not use SQL’ excludes the bug class of query language injections.
The key generation mechanism was reviewed for weaknesses. Sensible cryptographic primitives
are used throughout the code, ruling out various cryptographic attacks. Client commands such
as init are robust, removing old state (i.e.: key material) if it was accidentally issued twice with
different repositories.

In addition to manual review, static code analysis was performed using gosec, which yielded only
false positives.

As requested, good targets for fuzzing were investigated but few could be found. Parsing happens
in third-party components such as LevelDB and the Go core JSONS parser. It is deemed more
promising to use fuzzing for identifying differences between implementations that might lead to
security-relevant issues.

Shttps://theupdateframework. github.io/python-tuf/2022/10/21/python-tuf-security-assessment.html
¢ HyperText Markup Language

7 Structured Query Language

8 JavaScript Object Notation

X41 D-Sec GmbH Page 8 of 28

https://theupdateframework.github.io/specification/latest/
https://theupdateframework.github.io/python-tuf/2022/10/21/python-tuf-security-assessment.html

Code Review of the Go TUF Implementation OSTIF

2.5 Recommended Further Tests

X41 recommends to mitigate the issues described in this report. Afterwards, CVE? IDs should
be requested and users be informed (e.g., via a changelog) to ensure that they can make an in-
formed decision about upgrading or other possible mitigations. Dependencies, if not previously
audited, should also be subjected to a security source code review. Testing any deployments is
recommended to uncover environmental issues in a specific setup.

9 Common Vulnerabilities and Exposures

X41 D-Sec GmbH Page 9 of 28

Code Review of the Go TUF Implementation OSTIF

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for OSTIF are beyond the scope of a pene-
tration test which focuses entirely on technical factors. Yet technical results from a penetration
test may be an integral part of a general risk assessment. A penetration test is based on a limited
time frame and only covers vulnerabilities and security issues which have been found in the given
time, there is no claim for full coverage.

In total, five different ratings exist, which are as follows:

Severity Rating

None
Low
Medium
High

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.

Findings with the rating ‘none’ are called informational findings and are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH Page 10 of 28

Code Review of the Go TUF Implementation OSTIF

3.1 Common Weakness Enumeration

The CWE! is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.

CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed by MITREZ. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration
2nttps://www.mitre.org

X41 D-Sec GmbH Page 11 of 28

https://cwe.mitre.org/
https://www.mitre.org

Code Review of the Go TUF Implementation OSTIF

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. The fuzz testing analysis is described in Section 4.2. Additionally, findings without a
direct security impact are documented in Section 4.3.

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 GOTUF-CR-23-01: Key Reuse Allows Cut-And-Paste Attack

Severity: LOW
CWE: 1025 - Comparison Using Wrong Factors
Affected Component: Architectural

4.1.1.1 Description

Updates do not tie to previous versions and metadata does not tie to a specific root metadata. In
a scenario where the same developer maintains multiple TUF repositories with the same crypto-
graphic keys, an attacker can take files from one repository and provide them as an update in the
other. No key compromise needs to occur for the client to accept the other repository’s files as a
legitimate update, but the filename (e.g.: stable/updater.exe.bz2) needs to match for it to be
accepted and the metadata version number needs to be greater to not trigger the rollback attack
prevention.

One could imagine that different TUF repositories are provided for programs such as gzip and

X41 D-Sec GmbH Page 12 of 28

https://cwe.mitre.org/data/definitions/1025.html

Code Review of the Go TUF Implementation OSTIF

bash. The TUF specification does not require using unique keys per repository. The repository
maintainer could reason that it is safer to have only one set of keys: that way, users need to
do only one correct key exchange for all their software rather than creating the opportunity for
MITM? with every new piece of software they want to use. (Another option is to use a single
repository, but one might not go that route.)

By using the same keys in root. json, a client can be sent an update which contains a bash bi-
nary when they were trying to obtain a new gzip binary. go-tuf will see update as legitimate,
providing it to the updater which would install it on the system. The most likely result is that the
program behaves unexpectedly (bash will not produce compressed data) and causes a simple de-
nial of service. However, because many programs have command execution as a feature?, there
is also the potential for gaining arbitrary command execution. User-controlled data being sent to
gzip is no problem, but (partially) user-controlled data finding its way into the standard input of
bash allows arbitrary command execution (also because it proceeds after unknown commands,
eventually executing the attacker’s input so long as no syntax errors are found up until that point).

4.1.1.2 Solution Advice

There are different solutions possible:

¢ Including a notice in the documentation that TUF repositories do not provide all security
guarantees unless fresh keys are used for every repository. This is the most risky option
because that notice might go unnoticed.

e Including a NONCE? field in the root. json which has to be matched by other metadata
files, making it impossible to cut and paste files from another repository. This effectively
works in the same manner as the previous option, but keeps key management separate from
repository management. Here, too, users may not realize that the root . json is supposed to
be unique and must not be reused, though the presence of a nonce field with accompanying
documentation is deemed less error-prone than a documentation notice alone.

e Linking updates by some mechanism that will not occur across repositories. The current
version numbers have a ~50% chance of being ‘compatible’ to perform this attack. Re-
placing the version with a hash of the previous version would mitigate this attack: only
identical repositories could still be swapped out, because target file hashes are included in
targets. json, which is of no use to an attacker.

X41 recommends to implement one of the proposed solutions.

1 Machine-in-the-middle Attack
2nttp://0x90909090.blogspot . com/2015/07/no-one-expect- command- execution.html
3 Number only used once

X41 D-Sec GmbH Page 13 of 28

http://0x90909090.blogspot.com/2015/07/no-one-expect-command-execution.html

Code Review of the Go TUF Implementation OSTIF

4.1.2 GOTUF-CR-23-02: Symbolic Link Attacks Possible During Commit Op-
eration

Severity: MEDIUM
CWE: 59 - Improper Link Resolution Before File Access ('Link Following’)
Affected Component: local_store.go

4.1.2.1 Description

It was discovered that the commit operation does not check if the repository contains POSIX?-
compliant symbolic links. Should the committer use a repository located at an untrustworthy
storage location, such as a remotely mounted NFS® or SSHFS®, an attacker could have placed
symbolic links into it.

Two attack scenarios were discovered and verified:

1. An attacker replaces the directory targets/ in the repository with a symbolic link to an-
other directory. The symbolic link will be resolved locally on the committer’s system and
the committed files will be written into this directory. The name of these files is not con-
trolled by the attacker.

2. An attacker replaces a file in directory targets/ with a symbolic link to another file. Since
the name of the committed files inside the repository contains a SHA-5127 hash and the
original name of the file, an attacker needs to know the name of the added and committed
file and their exact contents in advance. Then they can place a malicious symbolic link into
the repository to a local file, which will be overwritten when the commit is performed.

As an example, consider the scenario where an attacker knows that an empty file with the name
myfile is going to be committed to the repository by a developer and the attacker can modify
the compromised repository:

user@cr-go-tuf:~/testdevel/repository/targets$ 1In -s /home/user/sekret

— 'c£83e1357e¢efb8bdf15642850d66d8007d620e4050b5715dc83£4a921d36ce9ce47d0d13c5d85£2b0££8318d2877e |
— ec2f63b931bd47417a81a538327af927da3e.myfile’

user@cr-go-tuf:~/testdevel/repository/targets$ 1ls -1

total 4

4 Portable Operating System Interface
5 Network File System

6 SSH File System

7 Secure Hashing Algorithm 2, 512-bit

X41 D-Sec GmbH Page 14 of 28

https://cwe.mitre.org/data/definitions/59.html

10

11

12

13

14

15

16

18

Code Review of the Go TUF Implementation OSTIF

lrwxrwxrwx 1 user user 17 Mar 17 15:17 ‘cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921dJ
— 36ce9ced7d0d13cbd85£2b0f£8318d2877eec2f63b931bd47417a81ab38327af927dal3e . myfile' ->

< /home/user/sekret

-rw-r--r-- 1 user user 14 Mar 17 15:07 £fe7£13440694fc8ba856££92b658277ba639da395db730d3bc98323d5 |
— ¢c7al017cabfb620324318677bda87a3156dbadcb6ce8e7944e23802dea0243cbl16a2f43a.foo.txt

Listing 4.1: Attacker Backdoors The Repository

Now, when a developer is committing the file, the local file (/home/user/sekret) will be over-
written by the committed file’s contents:

user@cr-go-tuf:~/testdevel/repository/targets$ cat /home/user/sekret

valid

user@cr-go-tuf:~/testdevel/repository/targets$ # the sekret file contains the data as expected
user@cr-go-tuf:~/testdevel$ touch staged/targets/myfile
userQcr-go-tuf:~/testdevel$ tuf add myfile

user@cr-go-tuf:~/testdevel$ tuf snapshot

Staged snapshot.json metadata with expiration date: 2023-03-24 14:17:31 +0000 UTC
userQcr-go-tuf:~/testdevel$ tuf timestamp

Staged timestamp.json metadata with expiration date: 2023-03-18 14:17:34 +0000 UTC
user@cr-go-tuf:~/testdevel$ tuf sign snapshot.json

Signed snapshot.json with 1 key(s)

user@cr-go-tuf:~/testdevel$ tuf sign timestamp.json

Signed timestamp.json with 2 key(s)

user@cr-go-tuf:~/testdevel$ sudo sshfs repo@server:repository repository
user@cr-go-tuf:~/testdevel$ tuf commit

Committed successfully

user@cr-go-tuf:~/testdevel/repository/targets$ cat /home/user/sekret

user@cr-go-tuf:~/testdevel/repository/targets$ # the sekret file was overwritten

Listing 4.2: Developer Commit and File Overwrite

This would result in a potential compromise of the developer’s machine, depending on the pre-
conditions described above.

The affected code lacking a check for symbolic links was identified to be present in file local_
store.go shown in listing 4.3 on the next page.

X41 D-Sec GmbH Page 15 of 28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

Code Review of the Go TUF Implementation OSTIF

func (f *fileSystemStore) createRepoFile(path string) (*os.File, error) {
dst := filepath.Join(f.repoDir(), path)
if err := os.MkdirAll(filepath.Dir(dst), 0755); err != nil {
return nil, err
¥
return os.Create(dst) // MWARK 1: Default os.Create will follow symbolic links

func (f *fileSystemStore) Commit(consistentSnapshot bool, versions map[string]lint64, hashes
< map[string]data.Hashes) error {
isTarget := func(path string) bool {
return strings.HasPrefix(path, "targets/")
}
copyToRepo := func(fpath string, info os.FileInfo, err error) error {
if err != nil {
return err
}
if info.IsDir() || !info.Mode().IsRegular() {
return nil
}
rel, err := filepath.Rel(f.stagedDir(), fpath)
if err != nil {
return err
}
relpath := filepath.ToSlash(rel)

var paths [Istring
if isTarget(relpath) {
paths = computeTargetPaths(consistentSnapshot, relpath, hashes)
} else {
paths = computeMetadataPaths(consistentSnapshot, relpath, versions)
}
var files [Jio.Writer
for _, path := range paths {
file, err := f.createRepoFile(path)

Listing 4.3: Code Writing Files To The Repository

As one example scenario, when signature thresholds are used, the two key holders need to ex-
change the partially signed file as well as the material to verify and sign. There does not seem
to be documentation on the requirements for this procedure or exchange. The attack is possible
also when one functionary already signed the data because there is no procedure to check the
signature.

Since this attack is not feasible in all situations, the severity has been reduced to MEDIUM.

X41 D-Sec GmbH Page 16 of 28

Code Review of the Go TUF Implementation OSTIF

4.1.2.2 Solution Advice

X41 recommends to not follow symbolic links for directories and files in the repository. To pre-
vent race conditions during verification, a workaround could be to copy the repository contents
to a secure storage location, verify them, and then perform the update of the repository.

Alternatively, using a different file access API® than os.Create can prevent following symbolic
links. For example, the following call to os.OpenFile specifies to never follow symbolic links:

file, err := os.OpenFile("my_logs", os.0_RDWR|syscall.O_NOFOLLOW, 0644)

Listing 4.4: Opening With No Symlink Follow

8 Application Programming Interface

X41 D-Sec GmbH Page 17 of 28

Code Review of the Go TUF Implementation OSTIF

4.2 Fuzz Testing

During the project, X41 investigated suitable attack surface for fuzz testing the go-tuf project.

4.2.1 Fuzzing Overview

Fuzz testing’ is a method for automated software testing. It is used to test for security vulnera-
bilities and other implementation errors. Classically a fuzzer or fuzzing harness is a program that
generates input for another software with the hopes of triggering bugs. While classically used
as a black box analysis method, fuzzing is nowadays often used with instrumentation and cov-
erage analysis techniques, either by compiling instrumented binaries or by using dynamic binary
instrumentation techniques.

With all fuzzing approaches, the goals for a successful fuzzing operation are:

e Speed: A high number of iterations per second
e Accuracy: A high number of relevant inputs that provide a high coverage of the target code

e High Signal-to-Noise Ratio: Fuzzing results should be valid bugs

4.2.2 Fuzzing go-tuf

X41 investigated methods used to fuzz test go-tuf in a time boxed fashion. Due to the main
focus of the work being the review of the source code for vulnerabilities, the fuzzing investigation
should be seen as preliminary exploration only.

The scope of this work excludes dependencies such as the JSON parser, therefore the fuzzing

attack surface is limited to the following vectors:

¢ Differential fuzzing (investigating differences between different implementations of TUF,
e.g.: python-tuf vs go-tuf)

e Fuzzing targeted at internal processing of go-tuf: Fuzzing data processed after the file and

format parsing happened

Additionally, a full scope fuzzing approach can always be applied (end-to-end fuzzing) to find
vulnerabilities that are within the scope, but also ones outside.

? https://owasp.org/www- community/Fuzzing

X41 D-Sec GmbH Page 18 of 28

https://owasp.org/www-community/Fuzzing

Code Review of the Go TUF Implementation OSTIF

4.2.3 Differential Fuzzing

Differential fuzzing works by executing two different implementations of the specification on
the same input. The aim here is to identify differences in parsing and processing of that same
input. If such a difference is found, it will either represent a bug in one of the implementations
or something not well-defined in the specification.

Differential fuzzing can be described using the following steps:

1. Generate input
2. Run implementation A and B individually on the input generated in step 1
3. Compare the results

4. Crash or abort if the results differ

Due to the time available, a differential fuzzing approach could not be implemented. Such an
implementation would need to involve a program that is executing the two implementations in-
dividually on the same TUF repository and staging data and perform a comparison afterwards.
Such a comparison could be applied to the return value or by comparing the resulting repository
and staging directory contents. After each iteration the data has to be restored to a clean state.

4.2.4 Fuzzing Targeted At Internal Processing of go-tuf

It was investigated how fuzzing is currently done in go-tuf. A pull request!® exists which fuzzes
the cryptographic key handling code using the built-in Go Fuzzing!.

The fuzzers try to generate keys from the input fuzz data in the hope of triggering bugs in key
generation and handling. Since cryptographic primitives are not in scope for this project, because
they are handled by a third-party dependency, this approach was not further investigated. In
general, it is feasible to use Go's built-in fuzzing harness for specialized fuzzers.

Due to the time required to craft specialized fuzzers for certain parts of the internal processing,
it was decided to follow an end-to-end approach for fuzzing where a general-purpose fuzzer is
used to fuzz all parts of the processing.

DOnttps: //github.com/theupdateframework/go-tuf/pull/365/files
Whttps://go.dev/security/fuzz/

X41 D-Sec GmbH Page 19 of 28

https://github.com/theupdateframework/go-tuf/pull/365/files
https://go.dev/security/fuzz/

Code Review of the Go TUF Implementation OSTIF

4.2.5 End-to-End Fuzzing of go-tuf

X41 selected AFLplusplus'? (also called AFL++) as fuzzing framework since it is a proven tool
which provides flexibility and is considered to be one of the most performant fuzzing tools.

4.2.5.1 Fuzzing Setup

The following setup was chosen according to the documented best practice of AFL++ running
on a Debian 11 system with Go v1.20:

#!/bin/sh

sudo apt-get update

sudo apt-get install -y build-essential python3-dev automake cmake git flex bison libglib2.0-dev
— libpixman-1-dev python3-setuptools cargo libgtk-3-dev

try to install llum 12 and install the distro default ¢f that fails

sudo apt-get install -y 11d-12 1llvm-12 1lvm-12-dev clang-12 || sudo apt-get install -y 11ld 1llvm
— llvm-dev clang

sudo apt-get install -y gcc-$(gcc --version|head -nl|sed 's/\..*//'|sed 's/.* //')-plugin-dev

— libstdc++-$(gcc --versionlhead -nllsed 's/\..*//'|sed 's/.* //')-dev

sudo apt-get install -y ninja-build # for (ENU mode

export LLVM_CONFIG=/usr/bin/llvm-config-12

Listing 4.5: AFL++ Setup / Dependencies

4.2.5.2 Fuzzing go-tuf With AFL++

It was found that compatible coverage instrumentation was not available in Go v1.20, therefore
the efforts resorted to the use of no instrumentation (dumb fuzzing) and QEMU!® mode fuzzing.
A repository was created according to the examples provided in the go-tuf documentation?.

Then the following command was used to fuzz potentially untrustworthy files from the repository
such as the file repository/1.root. json:

12https://github.com/AFLplusplus/AFLplusplus
13 Quick EMUlator
14https://github.com/theupdateframework/go-tuf/tree/vO.5.2#examples

X41 D-Sec GmbH Page 20 of 28

https://github.com/AFLplusplus/AFLplusplus
https://github.com/theupdateframework/go-tuf/tree/v0.5.2#examples

Code Review of the Go TUF Implementation OSTIF

afl-fuzz -n -i corp-snapshot/ -o output-snapshot/ -f

< /home/user/AFLplusplus/t/repository/l.root.json -- /home/user/go/bin/tuf commit

Listing 4.6: AFL++ Dumb Fuzzing

As initial corpus, the original 1.root . json was used that resulted from the example workflow.
The non-instrumented fuzzing was running with a speed of ~300 iterations per second on a
modern Intel i7-12700H CPU?>, inside a Xen guest virtual machine.

Since the non-instrumented fuzzing approach was used, combined with the fact that the JSON
parsing was part of the fuzz attack surface, no results were expected and found during 12 hours
of fuzzing. To improve this approach, the black box binary fuzzing technigue QEMU mode was
used:

afl-fuzz -Q -i corp-snapshot/ -o output-snapshot/ -f
< /home/user/AFLplusplus/t/repository/l.root.json -- /home/user/go/bin/tuf commit

Listing 4.7: AFL++ QEMU Mode Fuzzing

This resulted in a tenfold slowdown, making the approach impractical.

4.2.5.3 Fuzzing go-tuf Conclusion and Recommendation

As a conclusion it shows that fuzzing go-tuf effectively would require dedicated efforts to either
apply advanced techniques for general purpose fuzzing or to developed dedicated fuzzers that
aim at certain parts of the internal go-tuf processing.

To effectively fuzz go-tuf with AFL++, LLVM coverage instrumentation needs to be available at
compile time for Go binaries. This should be achievable, but will require further investigation and
potentially custom patches to the Go compiler and linker. Other approaches such as hypervisor-
based fuzzing are also promising, but require custom efforts as well, which could not be achieved
time given.

In the short term, X41 recommends to create more custom fuzzers using the Go Fuzzing built-in
framework.

15 Central Processing Unit

X41 D-Sec GmbH Page 21 of 28

I - N

Code Review of the Go TUF Implementation OSTIF

4.3 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

4.3.1 GOTUF-CR-23-100: Key Folder Permissions

Affected Component: local_store.go

4.3.1.1 Description

The keys/ folder which is generated during initialization in go-tuf/local_store.go lines 317-324
uses mode 0755, allowing anyone on the system to access and list the contents of the keys/
folder.

func (f *fileSystemStore) createDirs() error {
for _, dir := range []string{"keys", "repository", "staged/targets"} {
if err := os.MkdirAll(filepath.Join(f.dir, dir), 0755); err '= nil {

return err

}

return nil

Listing 4.8: Folder Permissions Can be Improved

An attacker can only see which keys exist and their metadata, such as modification times, because
the permissions of the key files are set such that only the owner can read and write them.

4.3.1.2 Solution Advice

X41 recommends to assign the minimum permissions necessary and set the mode of the keys/
folder to a more restrictive value such as 0750.

X41 D-Sec GmbH Page 22 of 28

Code Review of the Go TUF Implementation OSTIF

4.3.2 GOTUF-CR-23-101: Hint About Insecure Passwords

Affected Component: gen-key

4.3.2.1 Description

When setting key passwords with the tuf gen-key command it is allowed to use an insecure
passphrase including empty passwords. While this is the responsibility of the user, they may
not realize what the involved risks are.

4.3.2.2 Solution Advice

X41 recommends to show a warning to users when an obviously insecure password is entered for
the signing keys, such as any string below twelve characters, or a string below twenty characters
when no uppercase and digits are used (likely a passphrase which should consist of a sufficient
number of words).

X41 D-Sec GmbH Page 23 of 28

(S I N

Code Review of the Go TUF Implementation OSTIF

4.3.3 GOTUF-CR-23-102: Unhandled Errors

Affected Component: client/client.go
local_store.go
client/testdata/go-tuf/generator/generator.go

4.3.3.1 Description

When closing files as well as io streams, the Go defer method is used to ensure that files get
closed in multiple parts of the program.

When the Close() method produces an error, the error would not be handled by the program.

file, err := os.Open(fpath)
if err != nil {
return err
}
defer file.Close()

Listing 4.9: Unhandled Error When Closing Files in local_store.go:343

This happens in the following lines:

® local_store.go:343
® local_store.go:415
® local_store.go:422
e local_store.go:447
® local_store.go:660
e client/client.go:914
e client/client.go:687
e client/client.go:621

e client/testdata/go-tuf/generator/generator.go:57

4.3.3.2 Solution Advice

X41 recommends to improve the error handling and raise errors or warnings as applicable for the
operation that failed.

X41 D-Sec GmbH Page 24 of 28

Code Review of the Go TUF Implementation OSTIF

4.3.4 GOTUF-CR-23-103: Suboptimal Scrypt Parameters

Affected Component: encrypted/encrypted.go

4.3.4.1 Description

Scryptis used for strengthening user passwords. While it is good to consider that not all users may
have the fastest hardware, the parameters appear to be calibrated for being fast on decade-old
hardware®®. An attacker could perform a large amount of guesses using commodity hardware.

Automatic parameter detection might not be accurate if the system is busy with other tasks.

4.3.4.2 Solution Advice

X41 recommends to choose parameters for modern KDFs! in the following order of priorities:

1. increase parallelism
2. increase memory usage

3. increase repetitions

For parallelism, a common choice is the number of CPUs.

Memory usage will depend on the target audience. Considering modern cracking hardware, 128
MiB would be a good lower bound.

Finally, the repetitions can simply be increased until the desired amount of time is reached. Be-
cause a maintainer is unlikely to run key decryption operations many times per day, it could be
allowed to take a lot longer than the current 100 milliseconds.

In scrypt, there is unfortunately no way to set memory usage independently of repetitions?®.

Furthermore, most popular implementations of scrypt (including Go's) do not support parallelism.
The documentation suggests to increase p as CPU parallelism increases, but the code runs se-
quentially?. For Argon2, Go does implement parallelism?°, as also confirmed by practical testing
of both implementations.

o https: //github.com/theupdateframework/go-tuf/blob/master/encrypted/encrypted.go#L26-L33
17 Key Derivation Functions

8 https://words.filippo.io/the-scrypt-parameters/

9 nttps://cs.opensource.google/go/x/crypto/+/refs/tags/v0.7.0: scrypt/scrypt.go;1=207-209
2V yttps://cs.opensource.google/go/x/crypto/+/refs/tags/v0.7.0:argon2/argon2. go;1=182

X41 D-Sec GmbH Page 25 of 28

https://github.com/theupdateframework/go-tuf/blob/master/encrypted/encrypted.go#L26-L33
https://words.filippo.io/the-scrypt-parameters/
https://cs.opensource.google/go/x/crypto/+/refs/tags/v0.7.0:scrypt/scrypt.go;l=207-209
https://cs.opensource.google/go/x/crypto/+/refs/tags/v0.7.0:argon2/argon2.go;l=182

Code Review of the Go TUF Implementation OSTIF

Therefore, X41 recommends to use Argon2id, although Scrypt is not a bad second choice.

Regarding backwards compatibility as mentioned in GitHub issue 46721, the new KDF (settings)
should be applied when the old KDF (settings) are detected, be that the old scrypt parameters
or scrypt altogether. The 100 milliseconds that are cited as being the creator’'s recommendation
should be reevaluated based on the purpose. Waiting one second with every screen unlock is a
different user experience than waiting one second during a software release procedure.

2l yttps://github. com/theupdateframework/go- tuf/issues/467#issuecomment- 1453757578

X41 D-Sec GmbH Page 26 of 28

https://github.com/theupdateframework/go-tuf/issues/467#issuecomment-1453757578

Code Review of the Go TUF Implementation OSTIF

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.

X41 has the following references that show their experience in the field:

Source code audit of the Git source code version control system?
Review of the Mozilla Firefox updater?

X41 Browser Security White Paper®

Review of Cryptographic Protocols (Wire)*

Identification of flaws in Fax Machines>¢

Smartcard Stack Fuzzing’

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).

Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.

X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
2https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
Shttps://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
4nttps://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phasel-20170208.pdf
Shttps://www.x41-dsec.de/lab/blog/fax/
Snttps://2018.zeronights.ru/en/reports/zero-fax-given/

7 https://wuw.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH Page 27 of 28

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Code Review of the Go TUF Implementation OSTIF

Acronyms

API Application Programming Interface 17
CPU Central ProcessingUnit 21
CVE Common Vulnerabilities and Exposures 9
CWE Common Weakness Enumeration 11
HTML HyperText Markup Language i i i ittt et e e 8
ID Identifier e e e 7
JSON JavaScript Object Notation 8
KDF Key Derivation Function e 25
MITM Machine-in-the-middle Attack 13
NFS Network File System e 14
NONCE Numberonlyusedonce 13
POSIX Portable Operating System Interface 14
QEMU Quick EMUlator e e 20
SHA-512 Secure Hashing Algorithm 2, 512-bit 14
SQL Structured Query Language e 8
SSHFS SSH File System e 14

X41 D-Sec GmbH Page 28 of 28

	Executive Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	GOTUF-CR-23-01
	GOTUF-CR-23-02

	Fuzz Testing
	Fuzzing Overview
	Fuzzing go-tuf
	Differential Fuzzing
	Fuzzing Targeted At Internal Processing of go-tuf
	End-to-End Fuzzing of go-tuf

	Informational Notes
	GOTUF-CR-23-100
	GOTUF-CR-23-101
	GOTUF-CR-23-102
	GOTUF-CR-23-103

	About X41 D-Sec GmbH

