
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

17 More Testing: Non-terminating Process Networks
Chapter 6 showed it is possible to use the GroovyTestCase capability to test networks of processes,

provided each of the processes in the network terminates. Most of the processes used in this book do not

terminate and so a means of testing such non-terminating process networks has to be developed.

First, however, we need to reflect on the operation of PAR. A PAR only terminates when all the process in

the list of processes passed to it terminate. Thus, if only one of the processes does not terminate then the

PAR will never terminate. However, if the assertion testing commonly used in JUnit and

GroovyTestCase is to be undertaken then at least some of the test environment has to terminate. Figure

10-1 shows a generic architecture that allows a process network under test (PNUT) to run without

terminating, while the Test-Network does terminate, which then allows the assertion testing to take place

in the normal manner.

Figure 17-1 Generic Testing Architecture

The separation of the PNUT from the Test-Network by means of a TCP/IP communications network

means that the two process networks run independently of each other and it does not matter if the PNUT

Process-Network-Under-Test

(PNUT)

TCP/IP Network

Test-Network

Input-Generator Output-Gatherer

Assertion-Testing

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

does not terminate, provided the Test-Network does. We can assume that the PNUT requires input and

also that it outputs results in some format. This data is communicated by means of the network channels

shown. Both the Input-Generator and Output-Gatherer processes must run as a PAR within the process

Test-Network, then terminate; after which their internal data structures can be tested within Assertion-

Testing. This demonstrates the generic nature of the architecture in that the only part that has to be

specifically written is the processes that implement the Input-Generator and Output-Gatherer respectively.

The architecture will now be demonstrated using the Scaling Device example described previously in

Chapter 6. The Scaling Device takes a stream of input numbers and outputs an equivalent stream of

scaled numbers, while monitoring the operation of a Scale process by modifying the applied scaling

factor.

17.1 The Test-Network

The class RunTestPart, shown in Listing 17-1, implements the Test-Network {1} and simply extends the

class GroovyTestCase. The method testSomething {2} creates the Test-Network as a process running

in a node on a TCP/IP network. The node is initialized in the normal manner within the JCSP framework

{3}. Two NetChannels, ordinaryInput {4}and scaledOutput {5} are defined and recorded within an

instance of TCPIPCNSServer that is presumed to be running on the network prior to the invocation of

both the PNUT and Test-Network. The processes are created {6, 7} and then invoked {8, 9}. Once the

PAR has terminated, the properties generatedList, collectedList and scaledList can be obtained

from the processes {10-12} using the Groovy dot notation for accessing class properties. In this case we

know that the original generated set of values should equal the unscaled output from the collector and

this is tested in an assertion {13}. In this case we also know that each modified output from the PNUT

should be greater than or equal to the corresponding input value. This is implemented by a method

contained in a package TestUtilities called list1GEList2, which is used in a second assertion {14}.

01 class RunTestPart extends GroovyTestCase {

02 void testSomething() {

03 Node.getInstance().init(new TCPIPNodeFactory ())

04 NetChannelOutput ordinaryInput = CNS.createOne2Net("ordinaryInput")
05 NetChannelInput scaledOutput = CNS.createNet2One("scaledOutput")

06 def collector = new CollectNumbers (inChannel: scaledOutput)
07 def generator = new GenerateNumbers (outChannel: ordinaryInput)

08 def testList = [collector, generator]

09 new PAR(testList).run()

10 def original = generator.generatedList
11 def unscaled = collector.collectedList
12 def scaled = collector.scaledList
13 assertTrue (original == unscaled)
14 assertTrue (TestUtilities.list1GEList2(scaled, original))
15 }
16 }

Listing 17-1 The Extended GroovyTestCase Class to Run The Test Network

The benefit of this approach is that we are guaranteed that the Test-Network will terminate, provided the

CollectNumbers and GenerateNumbers processes terminate and thus values derived from these

processes can be tested in assertions. The fact that the PNUT continues running is made disjoint by the

use of the TCP/IP network. This could not be achieved if all the processes were run in a single JVM as

the assertions could not be tested because the PAR would never terminate. The process network

comprising the PNUT and the Test-Network can be run on a single processor with each running in a

separate JVM, as is the TCPIPCNSServer. RunTestPart will write its output to a console window

indicating whether or not the test has passed. The console window associated with PNUT will continue

to produce any outputs associated with the network being tested.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

17.1.1 The Generate Numbers Process

Listing 17-2 shows the coding of the GenerateNumbers process. Recall from Chapter 6 that the Scaling

Device expects to receive numbers at regular intervals, which it then processes. The property delay {18}

is used to specify the time between the generation of an output of numbers to the PNUT. The length of

the generated sequence is specified in iterations {19}. The channel outChannel {20} is used to

communicate the generated numbers to the PNUT. The list generatedList {21} is used to hold the

sequence of generated numbers for subsequent testing in an assertion {10}.

17 class GenerateNumbers implements CSProcess{

18 def delay = 1000
19 def iterations = 20
20 def ChannelOutput outChannel

21 def generatedList = []

22 void run() {
23 println "Numbers started"
24 def timer = new CSTimer()
25 for (i in 1 .. iterations) {
26 outChannel.write(i)
27 generatedList << i
28 timer.sleep(delay)
29 }
30 println "Numbers finished"
31 }
32 }

Listing 17-2 The GenerateNumbers Process

The run method {22} outputs a start message {23} and then defines a timer {24}. Each number is then

generated using a for loop {25}, limited by the value of iterations. The next number in sequence is

output {26} and then appended (<<) to generatedList {27}. The process then sleeps for the defined

delay period {28}. Finally, a finished message is output {30}.

17.1.2 The Collect Numbers Process

Listing 17-3 shows the CollectNumbers process. The inChannel {34} is used to input data from the

PNUT. The output from the Scaling Device is in the form of objects comprising two properties; the

original value and the scaled value (See 6.1.3). The original, unmodified values are appended {42}

to the property collectedList {35} and the scaled values are appended {43} to the property

scaledList {36}. The number of iterations {37} is required to ensure that the process terminates

after it has read the expected number of outputs from the PNUT. The run method simply iterates over the

expected outputs, inputting ScaledData from the PNUT {41} and placing the data into the respective

lists {42, 43}. The method also indicates, by console messages, when the process starts {40} and finishes

{45}.

33 class CollectNumbers implements CSProcess {

34 def ChannelInput inChannel
35 def collectedList = []
36 def scaledList = []
37 def iterations = 20

38 void run() {
39 println "Collector Started"
40 for (i in 1 .. iterations) {
41 def result = (ScaledData) inChannel.read()
42 collectedList << result.original
43 scaledList << result.scaled
44 }
45 println "Collector Finished"
46 }
47 }

Listing 17-3 The CollectNumbers Process

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

17.2 The Process Network Under Test

The Process Network Under Test (PNUT) is the ScalingDevice described in Chapter 6 and can be

represented by the CSProcess shown in Listing 17-4.

48 class ScalingDevice implements CSProcess {

49 def ChannelInput inChannel
50 def ChannelOutput outChannel

51 void run() {
52 def oldScale = Channel.createOne2One()
53 def newScale = Channel.createOne2One()
54 def pause = Channel.createOne2One()

55 def scaler = new Scale (inChannel: inChannel,
56 outChannel: outChannel,
57 factor: oldScale.out(),
58 suspend: pause.in(),
59 injector: newScale.in(),
60 multiplier: 2,
61 scaling: 2)

62 def control = new Controller (testInterval: 7000,
63 computeInterval: 700,
64 addition: 1,
65 factor: oldScale.in(),
66 suspend: pause.out(),
67 injector: newScale.out())

68 def testList = [scaler, control]
69 new PAR(testList).run()
70 }
71 }

Listing 17-4 The Scaling Device Process Definition

The ScalingDevice has an inChannel property {49} from which input numbers are read and an

outChannel property {50} to which objects of ScaledData are written. The run method is simply the

parallel instantiation {68, 69} of a Scale {55} and a Controller {62} process. These processes are

connected by means of the channels oldScale {52}, newScale {53} and pause {54} as described in 6.1

and 6.1.4.

17.3 Running The Test

The test requires that the two parts, PNUT and TestNetwork execute as nodes of a network and therefore

the processes have to be executed in conjunction with the CNSServer. The script to run the

ScalingDevice node is shown in Listing 17-5. Prior to creating the Node {73} a call {72} is made to a

static method of Node, setDevice() on a property info, which has the effect of eliminating the

CNSServer generated output concerning the creating of network channels. This makes it easier to read

the console output. Two network channels are created, ordinaryInput {74} and scaledOutput {75}

that connect the ScalingDevice to the Test Network. The ScalingDevice process is then invoked

within a PAR {76, 77}.

72 Node.info.setDevice(null)

73 Node.getInstance().init(new TCPIPNodeFactory ())

74 NetChannelInput ordinaryInput = CNS.createNet2One("ordinaryInput")
75 NetChannelOutput scaledOutput = CNS.createOne2Net("scaledOutput")

76 new PAR(new ScalingDevice (inChannel: ordinaryInput,
77 outChannel: scaledOutput)).run()

Listing 17-5 The ScalingDevice Node Script

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

The node that runs the TestNetwork is created as part of the class RunTestPart, Listing 17-1, where it

can be seen that the corresponding ends of the channels, ordinaryInput {4} and scaledOutput {5} are

created.

Typical output that appears on the console window associated with the RunTestPart node is shown in

Output 17-1. The initial dot indicates that a test has been run and is generated automatically by the

GroovyTestCase. The starting messages from both the collectNumbers and generateNumbers

processes then appear. At some time later the corresponding finishing messages appear. The time the test

took is then printed together with the result of the test signified by OK in this case.

.Collector Started
Numbers started
Collector Finished
Numbers finished

Time: 32.949

OK (1 test)

Output 17-1 Test Output

17.4 Summary

This chapter has shown that it is possible to test a system that is intended to run in parallel using an

existing technology JUnit [] and GroovyTestCase formulation. The formulation described is somewhat

limited in that only one test can be undertaken against the system under test, which is not the normal

mode of operation within the JUnit framework.

