
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

20 Redirecting Channels: A Self Monitoring Process Ring
In Chapter 18 it was shown how Mobile Agents can be constructed using serializable CSProcesses. In

Chapter 10 a solution was developed to the problem of a ring of processes that circulated messages

around themselves. No consideration was given to the problems that might happen if messages were not

taken from the ring immediately. In this chapter we explore a solution to the problem that utilises two

mobile agents that dynamically manage the ring connections in response to a node of the ring detecting

that incoming messages are not being processed sufficiently quickly.

The solution as presented does not require any form of central control to initiate the corrective action.

The agents are invoked by the node when it is determined that the processing of incoming messages has

stopped. The solution essentially builds an Active Network [,] at the application layer, rather than the

usual normal network layer. The solution also utilises the Queue and Prompter processes developed in

Chapter 5. These provide a means of providing a finite buffer between the ring node process and the

process receiving the messages. Additionally, a console interface has been added to the message receiver

process so that users can manipulate its behaviour and more easily observer the effect that the agents have

on the overall system operation.

20.1 Architectural Overview

Figure 20-1 shows the process structure of one node and also its relationship to its adjoining nodes. It is

presumed that there are other nodes on the ring all with the same structure. It shows the state of the

system once it has been detected that RingElement-n has stopped receiving messages. The net channel

connections joining RingElement –n to the ring have been removed and replaced by the connection that

goes between RingElement n-1 and RingElement n+1.

The figure also shows the additional processes used to provide the required management. The

RingElement outputs messages into the Queue process, instead of directly into the Receiver process.

The Prompt process requests messages from the Queue which it passes on to the Receiver process.

Whenever the Queue process is accessed, either for putting a new message or getting a message in

response to a Prompt request, the number of messages in the Queue is output to the StateManager

process. The StateManager process is able to determine how full the Queue is and depending on pre-

defined limits will inform the RingElement that the Receiver has stopped inputting messages or has

resumed. This will be the trigger to send either the StopAgent or the RestartAgent around the network.

The Queue contains sufficient message slots to hold two messages from each node. The signal to indicate

that the receiver has stopped inputting messages is generated by the StateManager when the Queue is

half full. A naive solution would just create an infinite queue to deal with the problem and not worry

about the fact that the messages were no longer being processed by the Receiver. However, this is not

sensible because were the situation to be sustained over a long period the processor would run out of

memory and would fail in a disastrous manner. It is thus much better to deal with the situation rather than

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

ignore it. The Sender process has been modified in as much that a delay has been introduced so that

there is a pause between the sending of a message and the next. This was done so that the operation of

the revised system could be more easily observed.

Figure 20-1 The Architecture of the Self Monitoring Ring Structure

20.2 The Receiver process

Listing 32-1 shows the modified Receiver process, the behaviour of which is modified by the Console

process. The channel fromElement {2} is the input channel from the Prompt process. The remaining

channel properties connect the Receiver process to the Console process. The channel outChannel {3}

is used to display messages on the Console and the channel fromChannel {5} is used to input messages

from the Console The clear channel {4} is used to reset the input area of the Console.

The process can receive inputs on either the fromConsole or fromElement channel and an ALT is

constructed to this effect {8}. The main loop {11-28} waits for the enabling of an alternative {12,13}

and then deals with that input. The expected input from the Console {15-24} is either any string to stop

the Receiver process, typically “stop”, followed by “go” to restart the Receiver process. If the input is

from the ring element then a message is sent to the Console writing the content of the data received in the

Console’s output area. The Console process is implemented using the GEclipseConsole process.

Ring

Element n -1

Ring

Element n

Sender

Receiver

Ring

Element n +1

Queue Prompt

State Manager

Extra

Element

Console

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

01 class Receiver implements CSProcess {

02 def ChannelInput fromElement
03 def ChannelOutput outChannel
04 def ChannelOutput clear
05 def ChannelInput fromConsole
06
07 def void run() {
08 def recAlt = new ALT ([fromConsole, fromElement])
09 def CONSOLE = 0
10 def ELEMENT = 1

11 while (true) {
12 def index = recAlt.priSelect()
13 switch (index) {

14 case CONSOLE:
15 def state = fromConsole.read()
16 outChannel.write("\n go to restart")
17 clear.write("\n")
18 while (state != "\ngo") {
19 state = fromConsole.read()
20 outChannel.write("\n go to restart")
21 clear.write("\n")
22 }
23 outChannel.write("\nresuming ...\n")
24 break

25 case ELEMENT:
26 def packet = fromElement.read()
27 outChannel.write ("Received: " + packet.toString() + "\n")
28 break
29 }
30 }
31 }
32 }

Listing 20-1The Receiver Process

20.3 The Prompter Process

The Prompter process, shown in Listing 20-2 has channels that communicate with the Queue process as

follows. The channel toQueue {34} is used by the Prompter to signal {39} that it ready to read an item

from the Queue. The channel fromQueue {35} is used to input an item from the Queue, which is

immediately written to the Receiver process {40} using the toReceiver channel {36}.

33 class Prompter implements CSProcess{

34 def ChannelOutput toQueue
35 def ChannelInput fromQueue
36 def ChannelOutput toReceiver

37 void run() {
38 while (true) {
39 toQueue.write(1)
40 toReceiver.write (fromQueue.read())
41 }
42 }
43 }

Listing 20-2 The Prompter Process

20.4 The Queue Process

The Queue process shown in Listing 20-3, is very similar to that described in Chapter 6 except that an

additional output channel toStateManager has been added {47} to the properties. The property slots

{49} is used to specify the number of items that can be held in the queue. The channels fromPrompter

and toPrompter {46, 48} are the respective channel ends of the Queue’s toQueue and fromQueue

channels {34, 35}. The channel fromElement {45} is used to receive inputs from the ring element

process.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

44 class Queue implements CSProcess {

45 def ChannelInput fromElement
46 def ChannelInput fromPrompter
47 def ChannelOutput toStateManager
48 def ChannelOutput toPrompter
49 def int slots

50 void run() {
51 def qAlt = new ALT ([fromElement, fromPrompter])
52 def preCon = new boolean[2]
53 def ELEMENT = 0
54 def PROMPT = 1
55 preCon[ELEMENT] = true
56 preCon[PROMPT] = false
57 def data = []
58 def counter = 0
59 def front = 0
60 def rear = 0

61 while (true) {
62 def index = qAlt.priSelect(preCon)
63 switch (index) {

64 case ELEMENT:
65 data[front] = fromElement.read()
66 front = (front + 1) % slots
67 counter = counter + 1
68 toStateManager.write(counter)
69 Break

70 case PROMPT:
71 fromPrompter.read()
72 toPrompter.write(data[rear])
73 rear = (rear + 1) % slots
74 counter = counter - 1
75 toStateManager.write(counter)
76 break
77 }
78 preCon[ELEMENT] = (counter < slots)
79 preCon[PROMPT] = (counter > 0)
80 }
81 }
82 }

Listing 20-3 The Queue Process

Each time an item is either put into or removed from the queue, depending on the enabled case, the value

of the counter, which holds the number of items stored in the Queue is output to the StateManager

process using the channel toStateManager {68, 75}.

20.5 The State Manager Process

The role of the StateManager process, shown in Listing 20-4, is to determine how full the Queue has

become. It inputs the number of items in the Queue as the variable usedSlots {91} from Queue using

the channel fromQueue {84}. It does this every time the Queue process either adds or removes an item.

The variable limit {88} is half the maximum number of items that can be held in the Queue, which is

available by means of the property queueSlots {86}. The Boolean variable aboveLimit determines

whether the number of items in the Queue is greater than or equal to the limit value {92}. The variable

state {89} indicates the current state of the relationship between usedSlots and limit and is initially

“NORMAL”.

There are two cases of interest; first, when the number of items in the Queue is increasing and goes above

the limit {93-96}, which means the Queue is now half full because the Receiver has stopped processing

items. In this case we need to inform the ring element process of this situation by outputting the

“ABOVE_LIMIT” state on the toElement channel. The other case {97-99} is when the Queue has been

above the limit and is now emptying, because the Receiver has resumed processing. In this case we

reset state to “NORMAL” and write it to the toElement channel.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

83 class StateManager implements CSProcess{

84 def ChannelInput fromQueue
85 def ChannelOutput toElement
86 def int queueSlots

87 void run() {
88 def limit = queueSlots / 2
89 def state = "NORMAL"

90 while (true) {
91 def usedSlots = fromQueue.read()
92 def aboveLimit = (usedSlots >= limit)

93 if ((state == "NORMAL") && (aboveLimit)) {
94 state = "ABOVE_LIMIT"
95 toElement.write("STOP")
96 }

97 if ((state == "ABOVE_LIMIT") && (!aboveLimit)) {
98 state = "NORMAL"
99 toElement.write("RESTART")
100 }
101 }
102 }
103 }

Listing 20-4 The State Manager Process

20.6 The Stop Agent

The StopAgent, shown in Listing 20-5, is constructed within the RingAgentElement process Listing 20-

7. It is activated whenever a RingAgentElement process receives an “ABOVE_LIMIT” message from its

StateManager process.

The channel properties toLocal {105} and fromLocal {106} will be used to connect the StopAgent to a

host process when it arrives at a new RingAgentElement process. As such these properties are not

initialised in its constructor. The property homeNode {107} is used to hold the node identity of the

RingAgentElement that has detected the fault The property previousNode {108} is used to hold the

node identity of the RingAgentElement that precedes the node that has detected the fault condition. This

is the node that will be required to redirect its output channel to the one following the faulty node. The

Boolean property initialised {109} is used to indicate whether the property nextNodeInputEnd {110}

has been set. The nextNodeInputEnd holds the net channel input end of the channel to which the

previous node’s net channel output has to be redirected. This can only be obtained once the StopAgent

has moved from the faulty node to the next node.

The methods connect {111-115} and disconnect {116-119} are used to initialise and then remove the

channel connections between the StopAgent and the host process. The run method {120-132} initially

outputs the properties homeNode, previousNode and initialised to the host process using the channel

toLocal. If the StopAgent has not been initialised it reads the nextNodeInputEnd from the host

process using the channel fromLocal. The host process then sends the StopAgent a Boolean gotThere

indicating whether or not the StopAgent has arrived at the node identified by previousNode. If the

StopAgent has arrived then the value of nextNodeInputEnd is written to the host process.

An implication of this design is that a network must consist of at least two RingAgentElements and an

AgentExtraElement process otherwise there would be no possibility of undertaking the redirection.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

104 class StopAgent implements MobileAgent {

105 def ChannelOutput toLocal
106 def ChannelInput fromLocal
107 def int homeNode
108 def int previousNode
109 def boolean initialised
110 def NetChannelLocation nextNodeInputEnd

111 def connect (List c) {
112 this.toLocal = c[0]
113 this.fromLocal = c[1]
114
115 }

116 def disconnect () {
117 this.toLocal = null
118 this.fromLocal = null
119 }

120 void run() {
121 toLocal.write(homeNode)
122 toLocal.write(previousNode)
123 toLocal.write(initialised)

124 if (! initialised) {
125 nextNodeInputEnd = fromLocal.read()
126 initialised = true
127 }

128 def gotThere = fromLocal.read()
129 if (gotThere) {
130 toLocal.write(nextNodeInputEnd)
131 }
132 }
133 }

Listing 20-5 The Stop Agent

20.7 The Restart Agent

The RestartAgent shown in Listing 20-6 undoes the effect of the StopAgent once the faulty node

detects that the fault has been removed. Its properties are very similar and are used in the same way as

those with similar names in the StopAgent. The firstHop {140} property is used to indicate whether

the RestartAgent has arrived at the node that succeeds the node that was faulty. This has to be dealt

with especially if deadlock is not to occur in the system as will be explained in 21.8.2.2 and 21.8.2.3.

The run method of the RestartAgent {149-153} simply writes firstHop to the host process and the

sets firstHop false if it is true. The values of homeNode and previousNode are then written to the

host process, which processes them accordingly.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

134 class RestartAgent implements MobileAgent {

135 def ChannelOutput toLocal
136 def ChannelInput fromLocal
137 def int homeNode
138 def int previousNode
139 def boolean firstHop

140 def connect (List c) {
141 this.toLocal = c[0]
142 this.fromLocal = c[1]
143
144 }

145 def disconnect () {
146 this.toLocal = null
147 this.fromLocal = null
148 }

149 void run() {
150 toLocal.write(firstHop)
151 if (firstHop) { firstHop = false }
152 toLocal.write(homeNode)
153 toLocal.write(previousNode)
154 }
155 }

Listing 20-6 The Restart Agent

20.8 The Ring Agent Element Process

The RingAgentElement process is somewhat lengthy and thus its description will be subdivided into the

sections it comprises. The structure is very similar to that described in Chapter 12 with the modifications

required to deal with the agent processing. It should be recalled that the deadlock free architecture

developed in Chapter 12 was optimised so that any node that had data to put onto the ring could do so

provided an empty packet had been received from the ring. Thus the number of packets circulating

around the ring was the same as the number of nodes, excluding the extra element used to overcome one

aspect of the deadlock profile of the network.

20.8.1 Properties and Initialisation

The properties and initialisation of the variables used in the operation of the AgentRingElement process

is shown in Listing 20-7. The channels fromRing {157} and toRing {158} are net channels used to

connect this node to the preceding and following nodes respectively. Messages are received from the

Sender process on the channel fromSender {159}. Similarly outputs of the state of the Queue are input

from StateManager on the fromStateManager channel {160}. In this revised version messages

received for this node are now output to the Queue process on the toQueue {161} channel rather than

directly to the Receiver process. The element {162} property holds the identity of this node as an

integer. The nodes are numbered from 1 upwards, in sequence, with the AgentExtraElement given the

identity 0.

The run method {163}, initially defines the channels and channel ends used to connect this process to any

agent. The mechanism is exactly the same as that described previously in Chapter 19. The two agents are

then constructed {170-175} and the properties that need to be defined are initialised. It should be noted

that the preceding node to AgentRingElement with identity 1 will have its previous node as having

identity 0, which is the AgentExtraElement. Thus the AgentExtraElement has also had to be modified

to deal with the arrival of agents in a manner very similar to that to be presented. The precise changes for

the AgentExtraElement will not be described but can be determined from the accompanying web site.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

156 class RingAgentElement implements CSProcess {

157 def ChannelInput fromRing
158 def ChannelOutput toRing
159 def ChannelInput fromSender
160 def ChannelInput fromStateManager
161 def ChannelOutput toQueue
162 def int element

163 void run() {

164 def One2OneChannel N2A = Channel.createOne2One()
165 def One2OneChannel A2N = Channel.createOne2One()
166 def ChannelInput toAgentInEnd = N2A.in()
167 def ChannelInput fromAgentInEnd = A2N.in()
168 def ChannelOutput toAgentOutEnd = N2A.out()
169 def ChannelOutput fromAgentOutEnd = A2N.out()

170 def stopper = new StopAgent (homeNode: element,
171 previousNode: element - 1,
172 initialised: false)

173 def restarter = new RestartAgent (homeNode: element,
174 previousNode: element - 1,
175 firstHop: true)

176 def NetChannelLocation originalToRing = toRing.getChannelLocation()

177 def failedList = []

178 def RING = 0
179 def SENDER= 1
180 def MANAGER = 2
181 def ringAlt = new ALT ([fromRing, fromSender, fromStateManager])
182 def preCon = new boolean[3]
183 preCon[RING] = true
184 preCon[SENDER] = true
185 preCon[MANAGER] = true
186 def emptyPacket = new RingPacket (source: -1, destination: -1 ,
187 value: -1 , full: false)
188 def localBuffer = new RingPacket()
189 def localBufferFull = false

190 def restartBuffer = null
191 def restarting = false
192 def stopping = false

193 toRing.write (emptyPacket)

194 while (true) {
195 def index = ringAlt.select(preCon)
196 switch (index) {

Listing 20-7 The Properties and Initialisation of the Ring Element Process

The variable originalToRing {176} is initialised to the NetChannelLocation of the toRing channel

when the process is initialised. If this channel were to be redirected then it is easier to have a record of

the original value pre-stored in the process when it comes to reinstating the original connection. The list

variable failedList {177} will be modified by interaction with the agent to indicate the node(s) that

have become faulty. This means that messages destined for a faulty node can be stopped from being sent.

The alternative ringAlt {181} has been extended to include the channel fromStateManager, so that

inputs from the StateManager are considered. The related preCon element preCon[MANAGER] is always

true {185} as such inputs must always be processed. The variable restartBuffer is used when a

RestartAgent is received {190} and the Boolean variables restarting and stopping {191, 192} are

also used to manage agent processing and their use will be described later.

20.8.2 Dealing With Inputs From The Ring

The main loop of the process essentially deals with incoming packets from the ring, the Sender process

and the StateManager process as indicated by the first part of the loop which selects the enabled

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

alternative from these inputs. The incoming packets from the ring are of three types; data packets,

StopAgents and RestartAgents. Each of these cases will be dealt with separately.

20.8.2.1 Ring Packet Processing

Listing 20-8 shows how RingPackets are dealt with.

197 case RING:
198 def ringBuffer = fromRing.read()
199 if (ringBuffer instanceof RingPacket) {
200 if (ringBuffer.destination == element) {
201 toQueue.write(ringBuffer)
202 if (stopping) {
203 stopping = false
204 toRing.write(stopper)
205 }
206 else {
207 if (restarting) {
208 restarting = false
209 toRing.write(restartBuffer)
210 }
211 else {
212 if (localBufferFull) {
213 toRing.write (localBuffer)
214 preCon[SENDER] = true
215 localBufferFull = false
216 }
217 else {
218 toRing.write (emptyPacket)
219 }
220 }
221 }
222 }
223 else {
224 if (ringBuffer.full) {
225 toRing.write (ringBuffer)
226 }
227 else {
228 if (stopping) {
229 stopping = false
230 toRing.write(stopper)
231 }
232 else {
233 if (restarting) {
234 restarting = false
235 toRing.write(restartBuffer)
236 }
237 else {
238 if (localBufferFull) {
239 toRing.write (localBuffer)
240 preCon[SENDER] = true
241 localBufferFull = false
242 }
243 else {
244 toRing.write (emptyPacket)
245 }
246 }
247 }
248 }
249 }
250 }

Listing 20-8 RingPacket Processing

If ringBuffer {200} contains a message destined for this node then it is written to the Queue process

using the toQueue channel {201}. The subsequent action taken depends on the state of various Boolean

variables. If stopping is true indicating that the StateManager has detected a fault then the StopAgent

stopper is written to the ring {204}. This action is given the highest priority. If restarting is true

indicating that a RestartAgent has been received then the instance saved in restartBuffer is written to

the ring {209}. If a message has been received from the Sender process then it is written to the ring and

the preCon and variable values are modified so that another message can be received from Sender {213}.

If none of the above conditions are true then an empty packet is written to the ring {218}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

If ringBuffer {200} contains a message that is intended for another node then the message is simply

written to the ring {224}. The only other possible case is that a message has been received that is the

emptyPacket {227} and thus the processing required is governed, as before, by the state of the variables

associated with, stopping, restarting and the state of the buffer that holds messages from the Sender

process. If none of these requires any action then an emptyPacket is written to the ring.

20.8.2.2 Stop Agent Processing

The coding associated with StopAgent processing is shown in Listing 20-9. The previously read

ringBuffer {198} is placed in the variable theAgent {252}. The agent is then connected to this process

and executed {253-255} in the same manner as described in Chapter 19. The interaction with the agent

can now commence with the reading of the failed node identity {256}, which can be appended to the

failedList {257}. The targetNode for the agent can then be read {258} and then the indication of

whether the agent has been initialised or not into alreadyInitialised {259}. If the agent has not been

initialised then the channel location of the input fromRing channel can be written to the agent {261}.

251 if (ringBuffer instanceof StopAgent) {
252 def theAgent = ringBuffer
253 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
254 def agentManager = new ProcessManager (theAgent)
255 agentManager.start()
256 def failedNode = fromAgentInEnd.read()
257 failedList << failedNode
258 def targetNode = fromAgentInEnd.read()
259 def alreadyInitialised = fromAgentInEnd.read()

260 if (! alreadyInitialised) {
261 toAgentOutEnd.write (fromRing.getChannelLocation())
262 }

263 if (element == targetNode) {
264 toAgentOutEnd.write(true)
265 def NetChannelLocation revisedToRing = fromAgentInEnd.read()
266 toRing = NetChannelEnd.createAny2Net(revisedToRing)
267 agentManager.join()
268 theAgent.disconnect()
269 }

270 else {
271 toAgentOutEnd.write(false)
272 agentManager.join()
273 theAgent.disconnect()
274 toRing.write(theAgent)
275 }
276 }

Listing 20-9 Stop Agent Processing

The remainder of the processing deals with whether or not the agent has arrived at the required

destination node, which is the node preceding the faulty node. By the time the agent has travelled to the

destination node all the intervening nodes will have had their failedList updated so they will no longer

be sending messages to the failed node.

If the agent has arrived at the destination node {263} then true is written to the agent {264} and the

channel location to be used for subsequent outputs by this destination node is read from the agent as

revisedToRing {265}. The channel toRing is then assigned the Any2Net channel created from

revisedToRing {266}. An Any2Net channel has been used so that more than one process can write to

the channel, which is required in this situation. When the faulty node detects that it can resume processing

because the Receiver process has started to accept messages again; a RestartAgent will be written on

the original toRing channel.

The agentManager then joins with the agent {267} waiting for the latter to terminate at which point

theAgent can be disconnected {268}. There is no need to write theAgent to the next node as it was

the faulty node and we now know that its input, fromRing, has been bypassed. More importantly we do

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 11

not write an emptyPacket to the ring even though the agent has taken up an emptyPacket, when it was

first written to the ring. If we were to write an emptyPacket to the ring there would be more packets than

nodes and deadlock would ensue.

If theAgent has not yet arrived at its destination then processing is much simpler. A false signal is

written to the agent {271}. The process then waits for the agent to terminate {272} after which it can

disconnect itself from the agent {273}. The process can then write theAgent to the ring {274}.

20.8.2.3 Restart Agent Processing

RestartAgent processing is shown in Listing 20-10, which starts with assigning {277} theAgent from

ringBuffer into which it was originally read {198}. In the same manner as before, theAgent can be

connected to the host process, allocated to an agentManager and started {278-280}.

Three values are then read from the agent, firstHop {281}, resumedNode {282} and targetNode {284}

using the channel fromAgent. As the agent passes through each element it needs to modify the list of

failed nodes by removing the identifier of the resumedNode from the failedList {283}.

If this is the first move made by the agent the firstHop will be true {285}. In this case the resuming

node will have injected the RestartAgent into the ring of nodes as an extra packet (see the next section

23.8.3) and this needs to be dealt with specially, if deadlock is not to occur. All the processing between

agent and host element has been completed so all that remains is to wait for the agent to terminate and to

disconnect it from the host {286, 287}. Instead of writing theAgent onto the ring it is placed in a buffer,

restartBuffer {288} and restarting is set true {289}. In due course when either an empty packet

arrives at the node or a packet is received that is destined for this node the restartBuffer will be written to

the ring {207-209, 233-235} and restarting is reset to false.

The remainder of the processing deals with determination of whether or not the agent has arrived at the

node, targetNode, which needs to have its toRing output channel returned to its original setting so that

the resumed node is reconnected to the network. This is dealt with by resetting toRing to the

originalToRing value previously saved {176}. The host then waits for the agent to terminate and

disconnects itself from the agent. {294-5}. Finally, an emptyPacket is written to the ring {296}

because the previously faulty node is now operating again. If the agent has not arrived at the targetNode

it simply waits for theAgent to terminate, disconnects itself and then writes theAgent to the next node

{299-301}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 12

277 def theAgent = ringBuffer
278 theAgent.connect ([fromAgentOutEnd, toAgentInEnd])
279 def agentManager = new ProcessManager (theAgent)
280 agentManager.start()
281 def firstHop = fromAgentInEnd.read()
282 def resumedNode = fromAgentInEnd.read()
283 failedList = failedList - [resumedNode]
284 def targetNode = fromAgentInEnd.read()

285 if (firstHop) {
286 agentManager.join()
287 theAgent.disconnect()
288 restartBuffer = theAgent
289 restarting = true
290 }

291 else {
292 if (element == targetNode) {
293 toRing = NetChannelEnd.createAny2Net (originalToRing)
294 agentManager.join()
295 theAgent.disconnect()
296 toRing.write (emptyPacket)
297 }

298 else {
299 agentManager.join()
300 theAgent.disconnect()
301 toRing.write(theAgent)
302 }
303 }
304 }
305 }

Listing 20-10 Restart Agent Processing

20.8.3 Dealing With Inputs From the StateManager Process

The StateManager only generates inputs to the RingAgentElement, whenever the state of the Queue is

such that either a ring element needs to be removed from the ring or reinstated. The associated processing

is shown in Listing 20-11. If the fromStateManager alternative {195} is enabled then the MANAGER case

is processed {306} of the switch specified at {185}. The state is read fromStateManager {307}.

If “STOP” is read then stopping is set true, which will cause the StopAgent, stopper {170}, to be

output when the next emptyPacket is read by the node {202-204} or a packet arrives {228-230} that is

destined for this node. At this point the node is still operating normally with respect to incoming packets.

Its operation will only be modified when it no longer receives packets on its fromRing channel because it

has been redirected. In fact the faulty node is not modified in any way as its fromRing channel is still

connected to the previous node. Its toRing channel is still connected and will, in due course, be used to

output the RestartAgent, when it resumes normal operation.

If the value “RESTART” has been read then all that is required is to write {312} the RestartAgent,

restarter {173} to the ring. This is an additional packet being placed on the ring without there having

been a packet received because the node in this case has been disconnected from the ring. This justifies

the firstHop processing previously described {285-290} otherwise deadlock would occur.

306 case MANAGER:
307 def state = fromStateManager.read()
308 if (state == "STOP") {
309 stopping = true
310 }
311 else {
312 toRing.write (restarter)
313 }
314 break

Listing 20-11 StateManager Input Processing

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 13

20.8.4 Dealing With Inputs From the Sender Process

Listing 20-12 shows the processing concerned with messages received from the Sender process. The

Sender process writes messages to the ring element node at regular intervals and sends messages to all

the other nodes. Messages can only be received when the localBuffer is not full and its element in the

preCon array is true. Once a message packet is received fromSender {316}. A test is undertaken to

determine whether or not its destination is in the failedList {317}. If the message is destined for a

failed node it is effectively ignored and the control variable localBufferFull is not changed. This

means that the message will not get written to the ring and will be overwritten by another message. This

has the effect that while a node has failed it will receive no messages and for the time that it has failed

any messages that it should have received will be lost. This of course is not the most sensible course of

action but it does make it much easier to observe the dynamic operation of the system.

315 case SENDER:
316 localBuffer = fromSender.read()
317 if (! failedList.contains(localBuffer.destination)) {
318 preCon[SENDER] = false
319 localBufferFull = true
320 }
321 break

Listing 20-12 Sender Process Input Processing

20.9 Running A Node

The easiest way of instantiating the system is to create a script for each node and the extra element that

create the node directly. Such a script for node 2 is shown in Listing 20-13.

322 Node.getInstance().init(new TCPIPNodeFactory())

323 def int nodeId = 2
324 def int sentMessages = 150
325 def int nodes = 4
326 def fromRingName = "ring2"
327 def toRingName = "ring3"

328 def fromRing = CNS.createNet2One(fromRingName)
329 def toRing = CNS.createAny2Net(toRingName)

330 def processNode = new AgentElement (fromRing: fromRing,
331 toRing: toRing,
332 element: nodeId,
333 iterations: sentMessages,
334 nodes: nodes)

335 new PAR ([processNode]).run()

Listing 20-13 Running Node 2

The properties required by the AgentElement process, which creates the network of RingAgentElement,

Sender, Queue, Prompter, Receiver and StateManager processes for each node, are defined {321-

327}. The ring channels are defined noting that the toRing channel {329} is defined as Any2Net because

when a channel is redirected as seen in Figure 20-1 the receiving node has two channel connections on its

fromRing input.

20.10 Observing The System’s Operation

The accompanying web site contains all the processes and scripts and can be used to create a network of

four nodes. Once all the nodes are operating, the console associated with each Receiver process will be

visible. A Receiver process can be made to stop receiving messages by typing “stop” into the input area

of the console. It will be observed that the other nodes will continue operation but will not send any

messages to the failed node. The failed node can be restarted by typing “go” into the console input area.

At which point it will be observed that the messages that have been saved in the Queue appear

immediately and at some time later messages from the other nodes start to appear. However it can also be

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 14

observed that the sequence of message values has a gap that corresponds to the time for which the node

was not receiving messages.

20.11 Summary

This chapter has demonstrated an agent based system that has neither a central control system nor a

specific host to which agents return messages or data. The control is distributed around the system so that

agents commence when a local situation develops that requires their intervention. The agents have a

limited life span pertaining to the time they are required. They are then destroyed. If the node becomes

faulty again the original agent is reused.

20.12 Challenges

1. Does the processing deal with the case when two adjacent nodes fail? If not, what changes are

required?

1. Modify the processing so that messages for faulty nodes are not lost but retained for later transmission

once they resume normal processing.

2. Once a node fails because the Receiver has been stopped it no longer receives empty packets and

therefore cannot send messages onto the ring, even though the Sender process is still functional. Modify

the behaviour so that a failed node can still send messages. The real problem is that great care has to be

taken to ensure that the system does not deadlock.

