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Abstract

Motivation: Database searching algorithms for proteins use scoring matrices
based on average protein properties, and thus are dominated by globular
proteins. However, since transmembrane regions of a protein are in a distinctly
different environment than globular proteins, one would expect generalized
substitution matrices to be inappropriate for transmembrane regions.

Results: We present the PHAT (predicted hydrophobic and transmembrane)
matrix, which significantly outperforms generalized matrices and a previously
published transmembrane matrix in searches with transmembrane queries.
We conclude that a better matrix can be constructed by using background
frequencies characteristic of the twilight zone, where low-scoring true positives
have scores indistinguishable from high-scoring false positives, rather than the
amino acid frequencies of the database. The PHAT matrix may help improve the
accuracy of sequence alignments and evolutionary trees of membrane proteins.

Availability: http://www.blocks.fhcrc.org/∼pauline

Contact: steveh@muller.fhcrc.org

http://www.blocks.fhcrc.org/~pauline
mailto:steveh@muller.fhcrc.org


Abstract

Introduction

Methods

Tested matrices

Test set

Database searching

Matrix evaluation

Results

Effect of . . .

Performance in . . .

Protein sequence . . .

Discussion

Acknowledgements

References

� �

� �

GO BACK

CLOSE FILE

Introduction
Given a protein sequence, database searching for homologues can be used
to infer the protein’s function and structure. Database searching and other
alignment algorithms for proteins use an amino acid substitution matrix to score
protein alignments. The matrix contains log-likelihood scores that reflect how
likely one amino acid is substituted for another; a positive score indicates that
the substitution is favored over a chance event, a negative score indicates the
substitution is less likely to occur than predicted by chance alone. Typically,
amino acids with similar physiochemical properties have positive scores while
amino acids that are unlike each other have negative scores. A substitution
score for amino acidi to j can be calculated from alignment data by:
si j = λ−1 ln(qi j /(pi p j )) where λ is a scaling factor,qi j ’s are target or
observed frequencies of amino acid pairs taken from alignments andpi ’s are
the background frequencies (Altschul, 1991). The widespread use of database
searching and other protein alignment tools in modern biology underscores
the importance of using substitution matrices that most accurately resemble
biological reality.

The point accepted mutation (PAM) and blocks substitution matrices
(BLOSUM) are the two most popular matrix series (Dayhoff, 1978; Henikoff
and Henikoff, 1992). The PAM matrix is computed by counting mutations
between closely related sequences and an inferred common ancestral sequence
to obtain PAM 1 target frequencies. The PAM 1 scores are extrapolated by
matrix multiplication to get a matrix series corresponding to evolutionary
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distance. The PAM 1 matrix estimates scores for accepting one mutation per
100 positions; the PAM 170 is constructed by multiplying PAM 1 by itself
170 times and estimates 170 accepted point mutations per 100 positions. In
1992, Jones and colleagues modified the collection of PAM 1 counts (Joneset
al., 1992). They automated the process by counting substitutions between pairs
of highly similar sequences from a protein sequence database to obtain target
frequencies (qi j ’s). Background frequencies (pi ’s) were taken from the database
and the JTT PAM series was computed.

Whereas the PAM model is based on closely related sequences, the BLOSUM
model is based on blocks, which are multiple alignments of distantly related
but conserved regions (Henikoff and Henikoff, 1991). The target frequencies
(qi j ’s) are calculated by counting the substitutions observed in blocks. Instead
of using background frequencies from a protein database, thepi ’s are calculated
as the marginal frequencies:pi = 6 j qi j . Closely related sequences are
downweighted by clustering based on the percentage of identical residues. The
BLOSUM series is constructed by varying this cluster percentage. For example,
BLOSUM 62 is derived from counts between clusters of sequence segments that
are less than 62% identical.

Matrices based on different models that have similar relative entropies can be
compared to each other (Altschul, 1991). The relative entropy (H ) of a matrix
is defined as the average information per aligned residue pair and is calculated
by: H = 6i 6 j qi j si j . By comparing BLOSUM matrices to other matrices with
similar relative entropy, it was shown that the BLOSUM series performed as
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well as or better than other published matrices (Pearson, 1995; Henikoff and
Henikoff, 1993).

For transmembrane proteins, the hydrophobic environment for amino acids
located in the lipid bilayer is very different from the aqueous cytosolic and
extracellular compartments. Thus a matrix specialized for transmembrane
regions should work better than matrices which have been generalized for all
proteins.

In this paper, we describe a matrix built frompredictedhydrophobicand
transmembrane (PHAT) regions of the Blocks database (Henikoff et al.,
1999). We demonstrate that in searches on queries consisting of putative
transmembrane regions, the PHAT matrix significantly outperforms both
the generalized matrices, BLOSUM and JTT PAM, as well as the JTT
transmembrane matrix (Joneset al., 1994). When nontransmembrane regions
were included in the query, the PHAT matrix performed better than most
of the generalized matrices. We attribute the success of the PHAT matrix to
using background frequencies characteristic of the twilight zone, rather than
background frequencies of the entire database. The PHAT matrix may be useful
for structural alignments and phylogenetic trees of membrane proteins.
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Methods

Matrix construction

In order to obtain target(qi j ) and background frequencies(pi ) for a
transmembrane matrix series, membrane prediction methods were applied
to the Blocks + database (Henikoff et al., 1999). Block families were
submitted to PHDhtm, a prediction program that achieves 86% transmembrane
prediction accuracy per residue (Rost et al., 1996). PHDhtm can accept
multiple alignments but needs the context of neighboring residues to predict
transmembrane topology. Therefore blocks for a given family were linked
with the sequence of the intervening segments from a representative sequence
of that family (Henikoff and Henikoff, 1997) to reconstruct a multiple
alignment that could be submitted to PHDhtm. Out of 2935 families, 598 were
predicted to contain transmembrane segments (20.3%); out of 8909 blocks,
844 had transmembrane segments (9%). Blocks lacking transmembrane regions
were discarded, and nontransmembrane regions were removed from blocks
containing putative transmembrane regions. Blocks containing more than one
predicted transmembrane region were split. The resulting blocks containing
only predicted transmembrane regions were clustered, and matrices were
constructed by the BLOSUM method (Henikoff and Henikoff, 1992). The
resulting matrix series was termed PHDhtm.

A second matrix series was built from hydrophobic blocks. Persson and
Argos obtained propensity values of amino acids for transmembrane regions
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(Persson and Argos, 1994). When eight or more consecutive amino acids have
an average transmembrane propensity value exceeding 1.23, the sequence is
predicted to be the core of a transmembrane segment. These values were used
to predict blocks that were entirely hydrophobic. The average transmembrane
propensity value of an entire block was calculated. If the block’s value exceeded
1.23, the entire block was used to construct a hydrophobic matrix. 514 of
the 8909 blocks passed this criterion, 383 of which were also identified as
transmembrane by PHDhtm. These hydrophobic blocks were clustered by
percentage identity to construct the Persson–Argos matrix series.

Using the target frequencies from the PHDhtm matrix and background
frequencies from the Persson–Argos matrix with corresponding relative entropy,
scores for a third transmembrane matrix were calculated bysPHAT

i j =

λ−1 ln(qPHDhtm
i j /(pP−A

i pP−A
j )). We termed this matrix series PHAT because

it was built frompredictedhydrophobicand transmembrane regions of blocks.
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Tested matrices
Matrices of similar relative entropies were compared, we compared BLOSUM 55
(H = 0.5637), JTT PAM 170 (Joneset al., 1992) (H = 0.5655), and the JTT
transmembrane matrix 170(H = 0.5655) with our own matrices PHDhtm 80
(H = 0.5550) and Persson–Argos 80(H = 0.5725). The PHAT 75/73
matrix was constructed from PHDhtm 75(H = 0.5007) target values and
Persson–Argos 73(H = 0.5038) background frequencies. PHAT 75/73 has
H = 0.5605, a relative entropy similar to the other matrices, so can be
used for comparison. Although BLOSUM 62 has a higher relative entropy
(H = 0.6979), we also used it as a test matrix since it is the default matrix
in BLASTP searches.
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Test set
To test the matrices, 100 sequences from 74 different Prosite (release 14.0)
(Hofmannet al., 1999) protein families documented as transmembrane were
used as queries. Sequences closest to the consensus sequence for the blocks
(Henikoff and Henikoff, 1997) corresponding to these Prosite families resulted
in 74 of the 100 queries. Twenty six of the 74 Prosite families listed false
negative sequences. From each of these, one false negative sequence was
randomly chosen to be used as a query to give a total of 100 queries. The
percentage of transmembrane residues in a query protein ranged from 2 to 82%;
the number of predicted segments from 1 to 14.

To restrict the database search to transmembrane segments, queries were
filtered by HMMTOP, a transmembrane prediction method based on a hidden
Markov model (Tusnady and Simon, 1998). Nontransmembrane segments were
replaced by the character ‘X’. X-ed out sequences were subjected to the tests
described below.
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Database searching
Ungapped BLASTP (v. 1.4.7) searches (Altschul et al., 1990) were executed
on the X-ed out sequences containing only putative transmembrane regions
to search against the SWISS-PROT database (release number 36). Reported
sequences(E < 1) were compared with the sequences listed in the same Prosite
family.

To carry out searches on the entire sequence of transmembrane protein, we
employed a bipartite scheme, as introduced byJoneset al. (1994). In their
bipartite scheme, a generalized matrix is used on the nontransmembrane regions
and a test matrix (either transmembrane or generalized) on the transmembrane
regions. SWAT(http://bozeman.mbt.washington.edu), a Smith–Waterman align-
ment tool that can accept profiles as input, was used for testing the entire
sequence. Nontransmembrane regions, as predicted by HMMTOP, were given
BLOSUM 62 scores and putative transmembrane regions were given values
from the test matrix. The resulting profile was searched against the SWISS-
PROT database (release number 36).

(http://bozeman.mbt.washington.edu)
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Matrix evaluation
In order to assess the performance of a matrix, the equivalence number was
calculated for each search (Pearson, 1995). The equivalence number is the
rank at which the number of false positives equals false negatives. A lower
equivalence number indicates better performance. To test whether two matrices
perform differently we used the sign rank test as described byPearson(1995).
Z-scores and correspondingp-values for this test are reported.
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Results

Matrices based solely on transmembrane regions

Joneset al. (1994) built a matrix for transmembrane proteins using the
PAM model in order to investigate the evolutionary constraints imposed by
the lipid environment. Counts were taken from 3155 pairwise alignments
of documented transmembrane segments. The matrix showed hydrophobic
residues to be variable and polar amino acids to be highly conserved.Jones
et al. proposed using a bipartite scheme for database searching. Using a
general matrix for nontransmembrane regions and their transmembrane matrix
for the transmembrane regions, the transmembrane protein bacteriorhodopsin
was searched against membrane proteins extracted from the SWISS-PROT
database (Bairoch and Apweiler, 1999). Higherz-scores were observed for two
rhodopsin sequences with the bipartite scheme using the JTT transmembrane
matrix compared to using only the generalized matrix.

Since the search byJoneset al. was limited to a transmembrane protein
database rather than the entire database, we tested the JTT transmembrane
matrix against the entire SWISS-PROT database, a more realistic situation.
Using a large data set of transmembrane sequences, we found that the
JTT transmembrane matrix performed poorly compared with the generalized
matrices when searching against the entire SWISS-PROT database (Table 1).

The PHDhtm matrix, like the JTT transmembrane matrix, was built from
transmembrane segments.Fig. 1 shows the differences between the JTT
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Table 1. Performance results for ungapped BLASTP (v. 1.4.7) searches of predicted
transmembrane regions of 100 protein sequences against the SWISS-PROT36
database. All matrices tested had similar relative entropies.Z-scores andp-values are
calculated as described byPearson(1995). See Methods for details

Test matrix No. of queries No. of queries No. of queries for
which

z-score p-value

BLOSUM 55
better

test matrix better matrices
performed the
same

JTT 33 10 57 3.51 0.0002
Transmem-
brane 170
PHDhtm 8029 12 59 2.65 0.0040
Persson– 16 23 61 −1.12 0.63
Argos 80

transmembrane and PHDhtm matrices. The PHDhtm matrix performs similarly
to the JTT transmembrane matrix for database searching. Both these matrices
perform worse than the generalized matrices (Table 1).
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Fig. 1. The lower half of the matrix is the PHDhtm 80 matrix(H = 0.5550).
The upper half of the matrix gives the difference between PHDhtm 80 and JTT
transmembrane 170(H = 0.5599).
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Effect of background frequencies
Surprisingly, the Persson–Argos matrix based on hydrophobic blocks performed
similarly to BLOSUM 55 and better than the PHDhtm matrix, which was
built from predicted transmembrane regions (Table 1). A comparison of the
Persson–Argos matrix with the PHDhtm matrix show that while many of the
scores are similar, the largest differences are observed for the charged amino
acids (K, R, H, D, E) (Fig. 2). We noticed that the PHDhtm background
frequencies for the charged amino acids were lower than the Persson–Argos
background frequencies, and both PHDhtm and Persson–Argos background
frequencies for the charged amino acids were lower than the SWISS-PROT
database (Table 2).This suggested to us that the differences in performance were
due to differences in background frequencies.

Database searching requires not only identification of related sequences
(sensitivity) but elimination of false positives (selectivity). The twilight zone
is the region where high-scoring false positives overlap with related sequences.
An improvement in database searching implies that there is better separation
of false positives and related sequences in the twilight zone. We suspected
the twilight zone of a search with a transmembrane query consisted of
sequences with hydrophobic patches as well as transmembrane regions. We
reasoned the Persson–Argos matrix outperformed the PHDhtm matrix (Table 1)
because its background frequencies resembled the twilight zone, and hence,
better separation could occur. Then to build a matrix for searching with a
transmembrane region, we surmised that the scores should be calculated with
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C S T P A G N D E Q H R K M I L V F Y W

2 -2 -1 -2 -1 -1 -1 2 0 -1 0 -1 0 -1 -1 -1 0 -2 0 1 C

0 -1 1 0 0 1 1 1 0 0 2 0 0 0 0 0 0 0 0 S

C 11 1 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 T

S 0 6 -1 3 2 1 2 1 1 2 2 -4 2 0 0 1 1 1 1 P

T -1 1 6 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 A

P-10 -2 -3 12 0 0 0 0 0 1 1 -3 0 1 0 1 1 1 0 G

A 0 2 1 -1 4 -2 0 1 -1 0 1 -1 0 0 1 1 1 0 1 N

G -3 1 -1 -2 1 8 -2 -1 0 1 4 1 0 0 0 0 0 0 2 D

N -2 2 0 -3 -1 -1 9 -3 0 -1 4 2 0 0 0 0 0 -1 1 E

D -3 -2 -3 -2 -4 -1 3 13 -2 -1 1 0 -1 0 0 -1 0 -1 -2 Q

E -5 0 -2 -2 -3 -2 2 8 13 -3 3 3 0 0 1 0 -1 0 -2 H

Q -4 0 -1 -1 -2 -1 2 3 3 10 -3 1 -1 0 -1 0 -1 1 0 R

H -5 -1 -2 -3 -2 -3 5 2 1 3 11 -5 -2 -2 -2 0 -2 -2 0 K

R -6 -2 -3 -3 -3 -3 0 0 2 3 2 11 1 1 1 0 1 1 0 M

K -5 -1 -2 -3 -3 -3 2 2 4 5 3 7 10 0 0 0 1 0 0 I

M -2 -2 0 -4 -1 -2 -3 -5 -4 -1 -4 -5 -4 6 0 1 0 0 0 L

I -4 -3 -1 -5 -1 -3 -4 -5 -5 -3 -5 -5 -6 2 4 0 0 0 0 V

L -2 -3 -1 -5 -1 -3 -2 -5 -4 -2 -3 -5 -5 2 1 3 1 0 0 F

V -1 -2 0 -4 1 -2 -3 -5 -4 -3 -4 -5 -4 1 2 1 3 1 -1 Y

F -2 -2 -2 -5 -2 -2 -1 -4 -4 -2 -1 -6 -5 0 -1 0 -2 6 -1 W

Y -2 -3 -3 -5 -4 -3 0 -3 -3 -1 3 -4 -3 -3 -4 -3 -4 3 10

W -2 -5 -6 -4 -4 -5 -3 -4 -3 1 -3 -4 -2 -3 -4 -3 -4 1 0 13

C S T P A G N D E Q H R K M I L V F Y W

Fig. 2. The lower half of the matrix is Persson–Argos 80(H = 0.5725). The upper
half of the matrix gives the differences between Persson–Argos 80 and PHDhtm 80
(H = 0.5725). Most of the difference values are 0; charged amino acids account for
most of the large non-zero difference values (bold).
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Table 2. Amino acid composition(pi s) of the matrices. As expected, the percentage
of the hydrophobic residues is higher in the PHDhtm and Persson–Argos matrices
compared to BLOSUM and the SWISS-PROT database. Major differences in amino
acid composition for the charged amino acids (K, R, H, D, E) are observed between
Persson–Argos and PHDhtm

Matrix Ala Arg Asn Asp Cys Gln Glu Gly His lle
Persson– 8.3 3.7 2.3 2.0 3.2 1.5 1.5 5.4 4.5 10
Argos
PHDhtm 8.8 2.1 2.2 1.4 2.6 1.2 1.0 5.7 1.1 11
SWISS-PROT 7.6 5.1 4.5 5.3 1.7 4.0 6.4 6.8 2.2 5.8
BLOSUM 62 7.4 5.2 4.5 5.4 2.5 3.4 5.4 7.4 2.6 6.8

Matrix Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
Persson– 14 2.6 3.6 8.1 3.3 6.5 6.3 2.5 3.8 10
Argos
PHDhtm 16 .9 4.1 9.3 3.2 6.5 5.3 1.9 4.7 11
SWISS-PROT 9.4 5.9 2.4 4.1 4.9 7.1 5.7 1.2 3.2 6.6
BLOSUM 62 9.9 5.8 2.8 4.7 3.9 5.7 5.1 1.3 3.2 7.3

target frequencies from transmembrane regions and background frequencies
from hydrophobic regions. We built the PHAT matrix series using target
frequencies from the PHDhtm matrices and background frequencies from the
Persson–Argos matrix with corresponding relative entropy. The PHAT 75/73
matrix (Fig. 3) with target frequencies from PHDhtm 75 and background
frequencies from Persson–Argos 73 was subjected to tests described below.
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Fig. 3. The PHAT 75/73 matrix(H = 0.5605) constructed from PHDhtm 75(H =

0.5007) target values and Persson–Argos 73 background frequencies(H = 0.5038).
The PHAT 75/73 matrix was used for evaluating database searching performance.
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Performance in searching
BLASTP database search results on transmembrane regions for the PHAT
matrix were compared with the other matrices. The PHAT matrix performs
significantly better than the generalized matrices BLOSUM and JTT PAM,
as well as the JTT transmembrane matrix for BLAST searches on queries
consisting of transmembrane regions (Table 3). BLOSUM 55 was used in
addition to BLOSUM 62 because it has a relative entropy similar to the
transmembrane matrix. To show that the better performance of the PHATmatrix
is independent of the search algorithm used, SWAT was used with the
aforementioned matrices on queries consisting of only transmembrane regions.
As expected, similar results were obtained (data not shown).

Blocks containing the test queries were represented in the data set used to
build the PHAT matrix. To show that the success of the PHAT matrix was not
due to overrepresentation of these blocks, blocks from families containing a
test query were removed from the data set and the PHAT matrix reconstructed.
Database searching using these reconstructed PHAT matrices gave similar
results to the original PHAT matrix (data not shown). We also constructed a
matrix from PHDhtm target values and SWISS-PROT database background
frequencies. This matrix performed poorly in the BLAST searches (data not
shown), supporting the notion that the twilight zone of the search consists of
hydrophobic patches and transmembrane regions rather than a sample that is
compositionally similar to the entire SWISS-PROT database.

Joneset al.(1994) introduced a bipartite scheme for transmembrane proteins
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Table 3. PHAT performance results for ungapped BLASTP (v. 1.4.7) searches of
the transmembrane regions of 100 protein sequences against SWISS-PROT 36. All
matrices tested had similar relative entropies(H ≈ 0.56) except for BLOSUM 62
(H = 0.70)

Test matrix No. of queries No. of No. of z-score p-value
PHAT 75/73 queries queries for
better test which

matrix matrices
better performed

the same
BLOSUM 62 36 6 58 4.63 < 0.0001
BLOSUM 55 35 5 60 4.74 < 0.0001
JTT PAM 170 39 3 58 5.56 < 0.0001
JTT Trans- 44 0 56 6.63 < 0.0001
membrane 170

by using generalized matrix values on nontransmembrane regions and a
transmembrane matrix on the transmembrane. We applied this strategy using the
SWAT program. When nontransmembrane regions were included in the search,
performance was increased overall for all matrices, thereby decreasing the
differences in performance between matrices (Table 4). The PHAT matrix still
performed significantly better than BLOSUM 62 and the JTT transmembrane
matrix, albeit with lowerz-scores. Using the bipartite scheme, the PHAT matrix
performed among the best of the matrices.
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Table 4. SWAT results using the bipartite scheme. BLOSUM 62 values were used on
nontransmembrane regions. Values from the test matrix were used for transmembrane
regions predicted by HMMTOP. Comparison tests were done as described inTable 1

Test matrix No. of queries No. of No. of z-score p-value
PHAT 75/73 queries queries for
better test matrix which

better matrices
performed
the same

BLOSUM 62 15 4 81 2.52 0.0059
BLOSUM 55 8 11 81 −0.69 0.7451
JTT PAM 170 15 7 78 1.71 0.0436
JTT Transmem- 19 4 77 3.13 0.0009
brane 170
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Protein sequence alignment
The Smith–Waterman alignments given by the generalized matrices were
usually identical with that of the bipartite BLOSUM/PHAT matrix scheme.
However, we noticed several examples in which the alignment resulting from
the bipartite search using the PHAT matrix was more likely to be true than the
alignment given by the generalized matrices. One example is in the heme copper
oxidase family (PS00077), to which NORBPSEAE and COX1DIDMA both
belong. It appears the alignment given by the BLOSUM matrices is incorrect
since the Prosite patterns do not align (Fig. 4). The alignment given by the
bipartite scheme using the PHAT matrix has a lower Smith–Watermanz-value
and a shorter alignment compared to the BLOSUM alignment. However, it
is apparent that the ‘HH’ motif for COX1DIDMA and NORB PSEAE are
aligned.

Since these data suggest that the PHAT matrix may perform better for
aligning transmembrane proteins, we tested the ability of the PHAT matrix
to align transmembrane proteins whose structures are known. We tested
pairs of transmembrane proteins with known structures: the photosynthetic
reaction centerL and cytochromec oxidase. Identical alignments were obtained
from the bipartite scheme using BLOSUM 62 on the nontransmembrane
regions and either BLOSUM 62, BLOSUM 55 or the PHAT 75/73 matrix
on the transmembrane regions. From this small data set, we are unable to
determine whether using the bipartite scheme with the PHAT matrix gives better
alignments overall.
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(a)

NORB_PSEAE|Q59647 NITRIC-OXIDE REDUCTASE SUBUNIT B

Length: 466 Score: 120 z: 7.94 E: 1.54

Subject 91 PKLAWILFWVFAAAGV--LTILGYLLVPYAGLARLTGNELWPTMGREFLE 138

Query 228 PILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVW-A 276

Subject 139 QPTISKAGIVIVALGFLFNVGMTV-LRGRKTAISMVLMTGLIGLALLFLF 187

Query 277 MMSIGFLGFIVWA-HHMFTVGLDVDTRAYFTSATMIIAIP-TGVKVFSWL 324

Subject 188 SFYNPENLTRDKFYWWWVVHLWVEG-VWELIMGAILAFVLVK----ITGV 232

Query 325 ATLHGGNIK------WSPAMLWALGFIFLFTIGGLTGIVLANSSLDIVLH 368

Subject 233 DREVIEKWLYVIIAMALISGIIGTGHHYFWIGVPGYWL---WLGSVFSAL 279

Query 369 DTYYVVAHFHYVLSMGAVFAIMGGFVHWFPL-FTGYMLNDMWAKIHFFIM 417

Subject 280 ---EPLPFFAMVLFAFNTINRRRRRDYPNRAVALWAMGTTVMAFL 321

Query 418 FVGVNLTFFPQHFLGLSGMPRRYS-DYPD-AYTMWNVVSSIGSFI 460

(b)

NORB_PSEAE|Q59647 NITRIC-OXIDE REDUCTASE SUBUNIT B

Length: 466 Score: 81 z: 5.49 E: 35.8

Subject 238 EKWLYVIIAMALIS-GIIGT---GHHYFWIGVPGYWLWLGSVFSALEPLP 283

Query 266 EPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGLDVDTRAYFTSATMIIAIP 315

Subject 284 FFAMVLFAFNTINRRRRRDYPNRAVALWAMGTTVMAFLGAGVWGFMHTLA 333

Query 316 TGVKVFSWLATLHGGNIKWSP---AMLWALGFIFLFTIG-GLTGIVLANS 361

Subject 334 PVNYYTHGTQLTAAHGHMAFYGAYAMIVMTIISYAMP 370

Query 362 SLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFVHWFP 398

Fig. 4. SWAT alignment of NORBPSEAE (Subject) with COX1DIDMA
(Query). The PROSITE pattern for the heme copper oxidase family PS00077 is
[YWG]-[LIVFYWTA](2)-[VGS]-H-[LNP]-X-V-x(44,47)-H-H (bold). (a) Shows the
alignment given using BLOSUM 62 on the transmembrane regions in the bipartite
scheme; (b) shows the alignment using the PHAT 75/73 matrix on the transmembrane
regions. Note the ‘HH’ motif is aligned in (b) and not in (a). JTT PAM 170 and
BLOSUM 55 gave the same alignment as (a). NORBPSEAE was not found with the
JTT transmembrane matrix.
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Discussion
The PHAT matrix presented here performs significantly better in database
searches than generalized matrices and the JTT transmembrane matrix on
queries consisting of transmembrane regions. When nontransmembrane regions
were included in the queries and a bipartite scheme employed, the disparity
between searching performance using different matrices on transmembrane
regions was reduced. An explanation for these results is that transmembrane
regions may not contribute significantly to the score. This could be because
transmembrane regions are not well conserved in comparison with nontransme-
mbrane regions and/or they represent a small fraction of the region of
alignment. Using the PHAT matrix specialized for transmembrane regions
improves database searching, and the PHAT matrix may improve alignment
of distantly related transmembrane proteins. The PHAT matrix may also be
useful for pairwise and multiple alignment applications such as evolutionary
trees. However, there is insufficient data to test this because too few homologous
transmembrane protein structures are available.

A key step in constructing the PHAT matrix series was to use target
frequencies of transmembrane regions and background frequencies of hydro-
phobic patches. As can be seen inTable 2, the background frequencies between
Persson–Argos and PHDhtm are similar except for the charged amino acids.
Without replacing the background frequencies, the substitution scores for
conservation of charged amino acids are extremely high. This may increase
the possibility of a spurious match with a hydrophobic patch that may have a
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composition similar to the transmembrane segment, and by chance have charged
amino acids in the appropriate positions. When matching a transmembrane
segment with all other sequences in the database, there is little chance that the
sequence will match with sequences that have ‘normal’ amino acid frequencies
of a generalized protein because the query itself has an abnormal amino acid
content of more hydrophobic amino acids. The twilight zone for searching
with transmembrane segments is not a random sample of the whole database,
but rather of hydrophobic patches and transmembrane regions. By changing
the background frequencies to reflect this, the PHAT matrix outperformed
generalized matrices and other transmembrane matrices for searching on
transmembrane regions. In general, one should consider using the background
frequencies characteristic of alignments found in the twilight zone rather than
of those in the entire database when making a specialized substitution matrix.
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