90#define DEBUG_COND (isSelected())
92#define DEBUG_COND2(obj) ((obj != 0 && (obj)->isSelected()))
136 for (
auto p : persons) {
165 if (nextIsMyVehicles()) {
166 if (myI1 != myI1End) {
168 }
else if (myI3 != myI3End) {
182 if (nextIsMyVehicles()) {
183 if (myI1 != myI1End) {
184 return myLane->myVehicles[myI1];
185 }
else if (myI3 != myI3End) {
186 return myLane->myTmpVehicles[myI3];
188 assert(myI2 == myI2End);
192 return myLane->myPartialVehicles[myI2];
203 if (myI1 == myI1End && myI3 == myI3End) {
204 if (myI2 != myI2End) {
210 if (myI2 == myI2End) {
213 MSVehicle* cand = myI1 == myI1End ? myLane->myTmpVehicles[myI3] : myLane->myVehicles[myI1];
221 if (cand->
getPositionOnLane() < myLane->myPartialVehicles[myI2]->getPositionOnLane(myLane)) {
224 return !myDownstream;
238 int index,
bool isRampAccel,
239 const std::string& type) :
267 mySimulationTask(*this, 0),
272 assert(
myRNGs.size() > 0);
335 veh->addReminder(rem);
347 std::cout <<
SIMTIME <<
" setPartialOccupation. lane=" <<
getID() <<
" veh=" << v->
getID() <<
"\n";
367 std::cout <<
SIMTIME <<
" resetPartialOccupation. lane=" <<
getID() <<
" veh=" << v->
getID() <<
"\n";
387 std::cout <<
SIMTIME <<
" setManeuverReservation. lane=" <<
getID() <<
" veh=" << v->
getID() <<
"\n";
398 std::cout <<
SIMTIME <<
" resetManeuverReservation(): lane=" <<
getID() <<
" veh=" << v->
getID() <<
"\n";
443 if (leader ==
nullptr) {
448 leader = leaderInfo.first;
454 if (leader ==
nullptr) {
460 if (leaderBack >= frontGapNeeded) {
461 pos =
MIN2(pos, leaderBack - frontGapNeeded);
483 if (missingRearGap > 0) {
484 if (minPos + missingRearGap <=
myLength) {
491 return isInsertionSuccess(&veh, mspeed, minPos + missingRearGap, posLat,
true, notification);
502 const double speed = leader->
getSpeed();
504 if (leaderPos >= frontGapNeeded) {
514 MSLane::VehCont::iterator predIt =
myVehicles.begin();
525 double speed = mspeed;
526 if (leader !=
nullptr) {
532 if (leader !=
nullptr) {
535 frontMax = leaderRearPos - frontGapNeeded;
543 if (frontMax > minPos && backMin + POSITION_EPS < frontMax) {
545 if (
isInsertionSuccess(&veh, speed, backMin + POSITION_EPS, posLat,
true, notification)) {
586 if (last !=
nullptr) {
638 bool patchSpeed =
true;
655 for (
int i = 0; i < 10; i++) {
705 for (
int i = 0; i < 10; i++) {
732#ifdef DEBUG_EXTRAPOLATE_DEPARTPOS
741 double dist = speed *
STEPS2TIME(relevantDelay);
743 if (leaderInfo.first !=
nullptr) {
747 dist =
MIN2(dist, leaderInfo.second - frontGapNeeded);
759 if (nspeed < speed) {
761 speed =
MIN2(nspeed, speed);
763 }
else if (speed > 0) {
770 if (emergencyBrakeGap <= dist) {
778 if (errorMsg !=
"") {
779 WRITE_ERRORF(
TL(
"Vehicle '%' will not be able to depart using the given velocity (%)!"), aVehicle->
getID(), errorMsg);
791 double speed,
double pos,
double posLat,
bool patchSpeed,
795 WRITE_WARNINGF(
TL(
"Invalid departPos % given for vehicle '%'. Inserting at lane end instead."),
796 pos, aVehicle->
getID());
800#ifdef DEBUG_INSERTION
802 std::cout <<
"\nIS_INSERTION_SUCCESS\n"
804 <<
" veh '" << aVehicle->
getID()
807 <<
" speed=" << speed
808 <<
" patchSpeed=" << patchSpeed
817 std::vector<MSLane*>::const_iterator ri = bestLaneConts.begin();
824#ifdef DEBUG_INSERTION
826 std::cout <<
" bidi-lane occupied\n";
832 MSLink* firstRailSignal =
nullptr;
833 double firstRailSignalDist = -1;
839 if (nextStop.
lane ==
this) {
840 std::stringstream msg;
841 msg <<
"scheduled stop on lane '" <<
myID <<
"' too close";
842 const double distToStop = nextStop.
pars.
endPos - pos;
843 if (
checkFailure(aVehicle, speed, dist,
MAX2(0.0, cfModel.
stopSpeed(aVehicle, speed, distToStop, MSCFModel::CalcReason::FUTURE)),
854 MSLane* currentLane =
this;
857 while ((seen < dist || (isRail && firstRailSignal ==
nullptr)) && ri != bestLaneConts.end()) {
859 std::vector<MSLink*>::const_iterator link =
succLinkSec(*aVehicle, nRouteSuccs, *currentLane, bestLaneConts);
882 if (isRail && firstRailSignal ==
nullptr) {
883 std::string constraintInfo;
884 bool isInsertionOrder;
886 setParameter((isInsertionOrder ?
"insertionOrder" :
"insertionConstraint:")
887 + aVehicle->
getID(), constraintInfo);
888#ifdef DEBUG_INSERTION
890 std::cout <<
" insertion constraint at link " << (*link)->getDescription() <<
" not cleared \n";
898 if (firstRailSignal ==
nullptr && (*link)->
getTLLogic() !=
nullptr) {
899 firstRailSignal = *link;
900 firstRailSignalDist = seen;
906 bool brakeBeforeSignal = patchSpeed || speed <= vSafe;
908#ifdef DEBUG_INSERTION
910 std::cout <<
" oncoming rail traffic at link " << (*link)->getDescription() <<
"\n";
918 if (brakeBeforeSignal) {
919 speed =
MIN2(speed, vSafe);
923 cfModel.
getMaxDecel(), 0, posLat,
nullptr,
false, aVehicle)
924 || !(*link)->havePriority()) {
926 std::string errorMsg =
"";
927 const LinkState state = (*link)->getState();
933 errorMsg =
"unpriorised junction too close";
934 }
else if ((*link)->getTLLogic() !=
nullptr && !(*link)->getTLLogic()->getsMajorGreen((*link)->getTLIndex())) {
936 errorMsg =
"tlLogic '" + (*link)->getTLLogic()->getID() +
"' link " +
toString((*link)->getTLIndex()) +
" never switches to 'G'";
948#ifdef DEBUG_INSERTION
950 std::cout <<
SIMTIME <<
" isInsertionSuccess lane=" <<
getID()
951 <<
" veh=" << aVehicle->
getID()
952 <<
" patchSpeed=" << patchSpeed
953 <<
" speed=" << speed
954 <<
" remaining=" << remaining
958 <<
" failed (@926)!\n";
963#ifdef DEBUG_INSERTION
965 std::cout <<
"trying insertion before minor link: "
966 <<
"insertion speed = " << speed <<
" dist=" << dist
973 nextLane = (*link)->getViaLaneOrLane();
975 if (nextLane !=
nullptr) {
988 if (nextStop.
lane == nextLane) {
989 std::stringstream msg;
990 msg <<
"scheduled stop on lane '" << nextStop.
lane->
getID() <<
"' too close";
991 const double distToStop = seen + nextStop.
pars.
endPos;
1004#ifdef DEBUG_INSERTION
1006 std::cout <<
SIMTIME <<
" leader on lane '" << nextLane->
getID() <<
"': " << leaders.
toString() <<
" nspeed=" << nspeed <<
"\n";
1011#ifdef DEBUG_INSERTION
1013 std::cout <<
" isInsertionSuccess lane=" <<
getID()
1014 <<
" veh=" << aVehicle->
getID()
1016 <<
" posLat=" << posLat
1017 <<
" patchSpeed=" << patchSpeed
1018 <<
" speed=" << speed
1019 <<
" nspeed=" << nspeed
1020 <<
" nextLane=" << nextLane->
getID()
1022 <<
" failed (@641)!\n";
1032 const double nspeed = cfModel.
freeSpeed(aVehicle, speed, seen, nextLane->
getVehicleMaxSpeed(aVehicle),
true, MSCFModel::CalcReason::FUTURE);
1033 if (nspeed < speed) {
1040 WRITE_WARNINGF(
TL(
"Vehicle '%' is inserted too fast and will violate the speed limit on a lane '%'."),
1044 WRITE_ERRORF(
TL(
"Vehicle '%' will not be able to depart using the given velocity (slow lane ahead)!"), aVehicle->
getID());
1055 if ((*link)->hasApproachingFoe(arrivalTime, leaveTime, speed, cfModel.
getMaxDecel())) {
1063 currentLane = nextLane;
1064 if ((*link)->getViaLane() ==
nullptr) {
1078#ifdef DEBUG_INSERTION
1080 std::cout <<
SIMTIME <<
" isInsertionSuccess lane=" <<
getID()
1081 <<
" veh=" << aVehicle->
getID()
1083 <<
" posLat=" << posLat
1084 <<
" patchSpeed=" << patchSpeed
1085 <<
" speed=" << speed
1086 <<
" nspeed=" << nspeed
1087 <<
" nextLane=" << nextLane->
getID()
1088 <<
" leaders=" << leaders.
toString()
1089 <<
" failed (@700)!\n";
1094#ifdef DEBUG_INSERTION
1096 std::cout <<
SIMTIME <<
" speed = " << speed <<
" nspeed = " << nspeed << std::endl;
1101 for (
int i = 0; i < followers.
numSublanes(); ++i) {
1102 const MSVehicle* follower = followers[i].first;
1103 if (follower !=
nullptr) {
1105 if (followers[i].second < backGapNeeded
1109#ifdef DEBUG_INSERTION
1111 std::cout <<
SIMTIME <<
" isInsertionSuccess lane=" <<
getID()
1112 <<
" veh=" << aVehicle->
getID()
1114 <<
" posLat=" << posLat
1115 <<
" speed=" << speed
1116 <<
" nspeed=" << nspeed
1117 <<
" follower=" << follower->
getID()
1118 <<
" backGapNeeded=" << backGapNeeded
1119 <<
" gap=" << followers[i].second
1120 <<
" failure (@719)!\n";
1133#ifdef DEBUG_INSERTION
1138 if (shadowLane !=
nullptr) {
1140 for (
int i = 0; i < shadowFollowers.
numSublanes(); ++i) {
1141 const MSVehicle* follower = shadowFollowers[i].first;
1142 if (follower !=
nullptr) {
1144 if (shadowFollowers[i].second < backGapNeeded
1148#ifdef DEBUG_INSERTION
1151 <<
" isInsertionSuccess shadowlane=" << shadowLane->
getID()
1152 <<
" veh=" << aVehicle->
getID()
1154 <<
" posLat=" << posLat
1155 <<
" speed=" << speed
1156 <<
" nspeed=" << nspeed
1157 <<
" follower=" << follower->
getID()
1158 <<
" backGapNeeded=" << backGapNeeded
1159 <<
" gap=" << shadowFollowers[i].second
1160 <<
" failure (@812)!\n";
1170 if (veh !=
nullptr) {
1177#ifdef DEBUG_INSERTION
1180 <<
" isInsertionSuccess shadowlane=" << shadowLane->
getID()
1181 <<
" veh=" << aVehicle->
getID()
1183 <<
" posLat=" << posLat
1184 <<
" speed=" << speed
1185 <<
" nspeed=" << nspeed
1186 <<
" leader=" << veh->
getID()
1187 <<
" gapNeeded=" << gapNeeded
1189 <<
" failure (@842)!\n";
1201 if (missingRearGap > 0
1204#ifdef DEBUG_INSERTION
1207 <<
" isInsertionSuccess lane=" <<
getID()
1208 <<
" veh=" << aVehicle->
getID()
1210 <<
" posLat=" << posLat
1211 <<
" speed=" << speed
1212 <<
" nspeed=" << nspeed
1213 <<
" missingRearGap=" << missingRearGap
1214 <<
" failure (@728)!\n";
1221 speed =
MAX2(0.0, speed);
1225#ifdef DEBUG_INSERTION
1228 <<
" isInsertionSuccess lane=" <<
getID()
1229 <<
" veh=" << aVehicle->
getID()
1231 <<
" posLat=" << posLat
1232 <<
" speed=" << speed
1233 <<
" nspeed=" << nspeed
1234 <<
" failed (@733)!\n";
1241 if (extraReservation > 0) {
1242 std::stringstream msg;
1243 msg <<
"too many lane changes required on lane '" <<
myID <<
"'";
1246 double stopSpeed = cfModel.
stopSpeed(aVehicle, speed, distToStop, MSCFModel::CalcReason::FUTURE);
1247#ifdef DEBUG_INSERTION
1249 std::cout <<
"\nIS_INSERTION_SUCCESS\n"
1250 <<
SIMTIME <<
" veh=" << aVehicle->
getID() <<
" bestLaneOffset=" << bestLaneOffset <<
" bestLaneDist=" << aVehicle->
getBestLaneDist() <<
" extraReservation=" << extraReservation
1251 <<
" distToStop=" << distToStop <<
" v=" << speed <<
" v2=" << stopSpeed <<
"\n";
1262 return v->getPositionOnLane() >= pos;
1264#ifdef DEBUG_INSERTION
1267 <<
" isInsertionSuccess lane=" <<
getID()
1268 <<
" veh=" << aVehicle->
getID()
1270 <<
" posLat=" << posLat
1271 <<
" speed=" << speed
1272 <<
" nspeed=" << nspeed
1276 <<
"\n leaders=" << leaders.
toString()
1300 return v->getPositionOnLane() >= pos;
1307 double nspeed = speed;
1308#ifdef DEBUG_INSERTION
1310 std::cout <<
SIMTIME <<
" safeInsertionSpeed veh=" << veh->
getID() <<
" speed=" << speed <<
"\n";
1315 if (leader !=
nullptr) {
1324 nspeed =
MIN2(nspeed,
1326#ifdef DEBUG_INSERTION
1328 std::cout <<
" leader=" << leader->
getID() <<
" nspeed=" << nspeed <<
"\n";
1343 int freeSublanes = 1;
1348 while (freeSublanes > 0 && veh !=
nullptr) {
1349#ifdef DEBUG_PLAN_MOVE
1352 std::cout <<
" getLastVehicleInformation lane=" <<
getID() <<
" minPos=" << minPos <<
" veh=" << veh->
getID() <<
" pos=" << veh->
getPositionOnLane(
this) <<
"\n";
1357 freeSublanes = leaderTmp.
addLeader(veh,
true, vehLatOffset);
1358#ifdef DEBUG_PLAN_MOVE
1360 std::cout <<
" latOffset=" << vehLatOffset <<
" newLeaders=" << leaderTmp.
toString() <<
"\n";
1366 if (ego ==
nullptr && minPos == 0) {
1374#ifdef DEBUG_PLAN_MOVE
1403 int freeSublanes = 1;
1405 while (freeSublanes > 0 && veh !=
nullptr) {
1406#ifdef DEBUG_PLAN_MOVE
1408 std::cout <<
" veh=" << veh->
getID() <<
" pos=" << veh->
getPositionOnLane(
this) <<
" maxPos=" << maxPos <<
"\n";
1415#ifdef DEBUG_PLAN_MOVE
1417 std::cout <<
" veh=" << veh->
getID() <<
" latOffset=" << vehLatOffset <<
"\n";
1420 freeSublanes = followerTmp.
addLeader(veh,
true, vehLatOffset);
1424 if (ego ==
nullptr && maxPos == std::numeric_limits<double>::max()) {
1429#ifdef DEBUG_PLAN_MOVE
1452 double cumulatedVehLength = 0.;
1456 VehCont::reverse_iterator veh =
myVehicles.rbegin();
1459#ifdef DEBUG_PLAN_MOVE
1463 <<
" planMovements() lane=" <<
getID()
1471#ifdef DEBUG_PLAN_MOVE
1473 std::cout <<
" plan move for: " << (*veh)->getID();
1477#ifdef DEBUG_PLAN_MOVE
1479 std::cout <<
" leaders=" << leaders.
toString() <<
"\n";
1482 (*veh)->planMove(t, leaders, cumulatedVehLength);
1483 cumulatedVehLength += (*veh)->getVehicleType().getLengthWithGap();
1492 veh->setApproachingForAllLinks(t);
1501 bool nextToConsiderIsPartial;
1504 while (moreReservationsAhead || morePartialVehsAhead) {
1505 if ((!moreReservationsAhead || (*vehRes)->getPositionOnLane(
this) <= veh->
getPositionOnLane())
1506 && (!morePartialVehsAhead || (*vehPart)->getPositionOnLane(
this) <= veh->
getPositionOnLane())) {
1512 if (moreReservationsAhead && !morePartialVehsAhead) {
1513 nextToConsiderIsPartial =
false;
1514 }
else if (morePartialVehsAhead && !moreReservationsAhead) {
1515 nextToConsiderIsPartial =
true;
1517 assert(morePartialVehsAhead && moreReservationsAhead);
1519 nextToConsiderIsPartial = (*vehPart)->getPositionOnLane(
this) > (*vehRes)->getPositionOnLane(
this);
1522 if (nextToConsiderIsPartial) {
1523 const double latOffset = (*vehPart)->getLatOffset(
this);
1524#ifdef DEBUG_PLAN_MOVE
1526 std::cout <<
" partial ahead: " << (*vehPart)->getID() <<
" latOffset=" << latOffset <<
"\n";
1530 && !(*vehPart)->getLaneChangeModel().isChangingLanes())) {
1531 ahead.
addLeader(*vehPart,
false, latOffset);
1536 const double latOffset = (*vehRes)->getLatOffset(
this);
1537#ifdef DEBUG_PLAN_MOVE
1539 std::cout <<
" reservation ahead: " << (*vehRes)->getID() <<
" latOffset=" << latOffset <<
"\n";
1542 ahead.
addLeader(*vehRes,
false, latOffset);
1553#ifdef DEBUG_COLLISIONS
1555 std::vector<const MSVehicle*> all;
1557 all.push_back(*last);
1559 std::cout <<
SIMTIME <<
" detectCollisions stage=" << stage <<
" lane=" <<
getID() <<
":\n"
1562 <<
" all=" <<
toString(all) <<
"\n"
1571 std::set<const MSVehicle*, ComparatorNumericalIdLess> toRemove;
1572 std::set<const MSVehicle*, ComparatorNumericalIdLess> toTeleport;
1575#ifdef DEBUG_JUNCTION_COLLISIONS
1577 std::cout <<
SIMTIME <<
" detect junction Collisions stage=" << stage <<
" lane=" <<
getID() <<
":\n"
1584 const std::vector<const MSLane*>& foeLanes =
myLinks.front()->getFoeLanes();
1591 for (
const MSLane*
const foeLane : foeLanes) {
1592#ifdef DEBUG_JUNCTION_COLLISIONS
1594 std::cout <<
" foeLane " << foeLane->getID()
1595 <<
" foeVehs=" <<
toString(foeLane->myVehicles)
1596 <<
" foePart=" <<
toString(foeLane->myPartialVehicles) <<
"\n";
1601 const MSVehicle*
const victim = *it_veh;
1602 if (victim == collider) {
1606#ifdef DEBUG_JUNCTION_COLLISIONS
1609 <<
" bound=" << colliderBoundary <<
" foeBound=" << victim->
getBoundingBox()
1624 foeLane->handleCollisionBetween(timestep, stage, victim, collider, -1, 0, toRemove, toTeleport);
1633 if (
myLinks.front()->getWalkingAreaFoe() !=
nullptr) {
1636 if (
myLinks.front()->getWalkingAreaFoeExit() !=
nullptr) {
1644#ifdef DEBUG_PEDESTRIAN_COLLISIONS
1646 std::cout <<
SIMTIME <<
" detect pedestrian collisions stage=" << stage <<
" lane=" <<
getID() <<
"\n";
1660#ifdef DEBUG_PEDESTRIAN_COLLISIONS
1663 <<
" dist=" << leader.second <<
" jammed=" << leader.first->isJammed() <<
"\n";
1666 if (leader.first != 0 && leader.second < length && !leader.first->isJammed()) {
1671 const double gap = leader.second - length;
1682 VehCont::reverse_iterator lastVeh =
myVehicles.rend() - 1;
1683 for (VehCont::reverse_iterator pred =
myVehicles.rbegin(); pred != lastVeh; ++pred) {
1684 VehCont::reverse_iterator veh = pred + 1;
1695 double high = (*veh)->getPositionOnLane(
this);
1696 double low = (*veh)->getBackPositionOnLane(
this);
1704 if (*veh == *veh2 && !
isRailway((*veh)->getVClass())) {
1707 if ((*veh)->getLane() == (*veh2)->getLane() ||
1708 (*veh)->getLane() == (*veh2)->getBackLane() ||
1709 (*veh)->getBackLane() == (*veh2)->getLane()) {
1713 double low2 =
myLength - (*veh2)->getPositionOnLane(bidiLane);
1714 double high2 =
myLength - (*veh2)->getBackPositionOnLane(bidiLane);
1720 if (!(high < low2 || high2 < low)) {
1721#ifdef DEBUG_COLLISIONS
1723 std::cout <<
SIMTIME <<
" bidi-collision veh=" << (*veh)->getID() <<
" bidiVeh=" << (*veh2)->getID()
1724 <<
" vehFurther=" <<
toString((*veh)->getFurtherLanes())
1725 <<
" high=" << high <<
" low=" << low <<
" high2=" << high2 <<
" low2=" << low2 <<
"\n";
1754 if (lead == follow) {
1769 for (std::set<const MSVehicle*, ComparatorNumericalIdLess>::iterator it = toRemove.begin(); it != toRemove.end(); ++it) {
1773 if (toTeleport.count(veh) > 0) {
1785 SUMOTime timestep,
const std::string& stage,
1786 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toRemove,
1787 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toTeleport) {
1789#ifdef DEBUG_PEDESTRIAN_COLLISIONS
1791 std::cout <<
SIMTIME <<
" detect pedestrian junction collisions stage=" << stage <<
" lane=" <<
getID() <<
" foeLane=" << foeLane->
getID() <<
"\n";
1795 for (std::vector<MSTransportable*>::const_iterator it_p = persons.begin(); it_p != persons.end(); ++it_p) {
1796#ifdef DEBUG_PEDESTRIAN_COLLISIONS
1798 std::cout <<
" collider=" << collider->
getID()
1799 <<
" ped=" << (*it_p)->getID()
1800 <<
" jammed=" << (*it_p)->isJammed()
1801 <<
" colliderBoundary=" << colliderBoundary
1802 <<
" pedBoundary=" << (*it_p)->getBoundingBox()
1806 if ((*it_p)->isJammed()) {
1809 if (colliderBoundary.
overlapsWith((*it_p)->getBoundingBox())
1811 std::string collisionType =
"junctionPedestrian";
1813 collisionType =
"crossing";
1815 collisionType =
"walkingarea";
1826 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toRemove,
1827 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toTeleport)
const {
1834 if (collider == victim) {
1840 const bool bothOpposite = victimOpposite && colliderOpposite;
1856 }
else if (colliderOpposite) {
1860#ifdef DEBUG_COLLISIONS
1863 <<
" thisLane=" <<
getID()
1864 <<
" collider=" << collider->
getID()
1865 <<
" victim=" << victim->
getID()
1866 <<
" colOpposite=" << colliderOpposite
1867 <<
" vicOpposite=" << victimOpposite
1870 <<
" colPos=" << colliderPos
1871 <<
" vicBack=" << victimBack
1875 <<
" minGapFactor=" << minGapFactor
1884 if (gap < -NUMERICAL_EPS) {
1889 if (latGap + NUMERICAL_EPS > 0) {
1895 double gapDelta = 0;
1896 const MSVehicle* otherLaneVeh = collider->
getLane() ==
this ? victim : collider;
1901 if (&cand->getEdge() == &
getEdge()) {
1902 gapDelta =
getLength() - cand->getLength();
1907 if (gap + gapDelta >= 0) {
1915 && victim->
getLane() !=
this) {
1919#ifdef DEBUG_COLLISIONS
1921 std::cout <<
SIMTIME <<
" detectedCollision gap=" << gap <<
" latGap=" << latGap <<
"\n";
1933 double gap,
double latGap, std::set<const MSVehicle*, ComparatorNumericalIdLess>& toRemove,
1934 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toTeleport)
const {
1940 ?
"frontal collision"
1941 : (
isInternal() ?
"junction collision" :
"collision"));
1946 std::string prefix =
"Vehicle '" + collider->
getID() +
"'; " + collisionType +
" with vehicle '" + victim->
getID() ;
1951 std::string dummyError;
1957 double victimSpeed = victim->
getSpeed();
1958 double colliderSpeed = collider->
getSpeed();
1961 if (collisionAngle < 45) {
1963 colliderSpeed =
MIN2(colliderSpeed, victimSpeed);
1964 }
else if (collisionAngle < 135) {
2003 prefix =
"Teleporting vehicle '" + collider->
getID() +
"'; " + collisionType +
" with vehicle '" + victim->
getID() ;
2004 toRemove.insert(collider);
2005 toTeleport.insert(collider);
2008 prefix =
"Removing " + collisionType +
" participants: vehicle '" + collider->
getID() +
"', vehicle '" + victim->
getID();
2009 bool removeCollider =
true;
2010 bool removeVictim =
true;
2014 toRemove.insert(victim);
2016 if (removeCollider) {
2017 toRemove.insert(collider);
2019 if (!removeVictim) {
2020 if (!removeCollider) {
2021 prefix =
"Keeping remote-controlled " + collisionType +
" participants: vehicle '" + collider->
getID() +
"', vehicle '" + victim->
getID();
2023 prefix =
"Removing " + collisionType +
" participant: vehicle '" + collider->
getID() +
"', keeping remote-controlled vehicle '" + victim->
getID();
2025 }
else if (!removeCollider) {
2026 prefix =
"Keeping remote-controlled " + collisionType +
" participant: vehicle '" + collider->
getID() +
"', removing vehicle '" + victim->
getID();
2034 if (collisionType ==
"frontal collision") {
2035 collisionType =
"frontal";
2036 }
else if (collisionType ==
"junction collision") {
2037 collisionType =
"junction";
2042 +
"', lane='" +
getID()
2046 +
" stage=" + stage +
".");
2051#ifdef DEBUG_COLLISIONS
2053 toRemove.erase(collider);
2054 toTeleport.erase(collider);
2057 toRemove.erase(victim);
2058 toTeleport.erase(victim);
2066 double gap,
const std::string& collisionType,
2067 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toRemove,
2068 std::set<const MSVehicle*, ComparatorNumericalIdLess>& toTeleport)
const {
2072 std::string prefix =
TLF(
"Vehicle '%'", collider->
getID());
2077 std::string dummyError;
2082 double colliderSpeed = collider->
getSpeed();
2083 const double victimStopPos = victim->
getEdgePos();
2101 prefix =
TLF(
"Teleporting vehicle '%' after", collider->
getID());
2102 toRemove.insert(collider);
2103 toTeleport.insert(collider);
2106 prefix =
TLF(
"Removing vehicle '%' after", collider->
getID());
2107 bool removeCollider =
true;
2109 if (!removeCollider) {
2110 prefix =
TLF(
"Keeping remote-controlled vehicle '%' after", collider->
getID());
2112 toRemove.insert(collider);
2123 WRITE_WARNING(prefix +
TLF(
" collision with person '%', lane='%', gap=%, time=%, stage=%.",
2126 WRITE_WARNING(prefix +
TLF(
" collision with person '%', lane='%', time=%, stage=%.",
2132#ifdef DEBUG_COLLISIONS
2134 toRemove.erase(collider);
2135 toTeleport.erase(collider);
2160#ifdef DEBUG_EXEC_MOVE
2162 std::cout <<
SIMTIME <<
" veh " << veh->
getID() <<
" has arrived." << std::endl;
2167 }
else if (target !=
nullptr && moved) {
2192 WRITE_WARNINGF(
TL(
"Teleporting vehicle '%'; beyond end of lane, target lane='%', time=%."),
2199 WRITE_WARNINGF(
TL(
"Removing vehicle '%' after earlier collision, lane='%', time=%."),
2204 WRITE_WARNINGF(
TL(
"Teleporting vehicle '%' after earlier collision, lane='%', time=%."),
2208 if (firstNotStopped ==
nullptr && !(*i)->
isStopped() && (*i)->getLane() ==
this) {
2209 firstNotStopped = *i;
2215 if (firstNotStopped ==
nullptr && !(*i)->
isStopped() && (*i)->getLane() ==
this) {
2216 firstNotStopped = *i;
2224 i = VehCont::reverse_iterator(
myVehicles.erase(i.base()));
2226 if (firstNotStopped !=
nullptr) {
2230 const bool wrongLane = !
appropriate(firstNotStopped);
2231 const bool r1 = ttt > 0 && firstNotStopped->
getWaitingTime() > ttt;
2236 && firstNotStopped->
succEdge(1) !=
nullptr
2238 const bool r4 = !r1 && !r2 && !r3 && tttb > 0
2240 if (r1 || r2 || r3 || r4) {
2242 const bool minorLink = !wrongLane && (link !=
myLinks.end()) && !((*link)->havePriority());
2243 std::string reason = (wrongLane ?
" (wrong lane" : (minorLink ?
" (yield" :
" (jam"));
2250 reason =
" (blocked";
2252 WRITE_WARNINGF(
"Teleporting vehicle '%'; waited too long" + reason
2253 + (r2 ?
", highway" :
"")
2254 + (r3 ?
", disconnected" :
"")
2255 + (r4 ?
", bidi" :
"")
2259 }
else if (minorLink) {
2312 const MSLane* firstInternal =
this;
2314 while (pred !=
nullptr && pred->
isInternal()) {
2315 firstInternal = pred;
2319 return firstInternal;
2326 const DictType::iterator it =
myDict.lower_bound(
id);
2327 if (it ==
myDict.end() || it->first !=
id) {
2329 myDict.emplace_hint(it,
id, ptr);
2338 const DictType::iterator it =
myDict.find(
id);
2339 if (it ==
myDict.end()) {
2349 for (DictType::iterator i =
myDict.begin(); i !=
myDict.end(); ++i) {
2358 for (DictType::iterator i =
myDict.begin(); i !=
myDict.end(); ++i) {
2359 into.push_back((*i).first);
2364template<
class RTREE>
void
2366 for (DictType::iterator i =
myDict.begin(); i !=
myDict.end(); ++i) {
2370 const float cmin[2] = {(float) b.
xmin(), (float) b.
ymin()};
2371 const float cmax[2] = {(float) b.
xmax(), (float) b.
ymax()};
2372 into.Insert(cmin, cmax, l);
2376template void MSLane::fill<NamedRTree>(
NamedRTree& into);
2397 return (link !=
myLinks.end());
2407 assert(veh->getLane() ==
this);
2421#ifdef DEBUG_VEHICLE_CONTAINER
2441 std::cout <<
"sortManeuverReservations on lane " <<
getID()
2510std::vector<MSLink*>::const_iterator
2512 const MSLane& succLinkSource,
const std::vector<MSLane*>& conts) {
2515 if (nRouteEdge ==
nullptr) {
2517 return succLinkSource.
myLinks.end();
2521 assert(succLinkSource.
myLinks.size() == 1);
2524 return succLinkSource.
myLinks.begin();
2535 if (nRouteSuccs < (
int)conts.size()) {
2537 for (std::vector<MSLink*>::const_iterator link = succLinkSource.
myLinks.begin(); link != succLinkSource.
myLinks.end(); ++link) {
2538 if ((*link)->getLane() !=
nullptr && (*link)->getLane()->myEdge == nRouteEdge && (*link)->getLane()->allowsVehicleClass(veh.
getVehicleType().
getVehicleClass())) {
2540 if ((*link)->getLane() == conts[nRouteSuccs]) {
2547 return succLinkSource.
myLinks.end();
2550#ifdef DEBUG_NO_CONNECTION
2552 WRITE_WARNING(
"Could not find connection between lane " + succLinkSource.
getID() +
" and lane " + conts[nRouteSuccs]->getID() +
2555 return succLinkSource.
myLinks.end();
2563 if ((internal && l->getViaLane() == target) || (!internal && l->getLane() == target)) {
2574 if (l->getLane() == target) {
2575 return l->getViaLane();
2587 const MSLane* internal =
this;
2589 assert(lane !=
nullptr);
2593 assert(lane !=
nullptr);
2636 assert(remVehicle->
getLane() ==
this);
2638 if (remVehicle == *it) {
2673 }
else if (!approachingEdge->
isInternal() && warnMultiCon) {
2676 WRITE_WARNINGF(
TL(
"Lane '%' is approached multiple times from edge '%'. This may cause collisions."),
2685 std::map<MSEdge*, std::vector<MSLane*> >::const_iterator i =
myApproachingLanes.find(edge);
2689 const std::vector<MSLane*>& lanes = (*i).second;
2690 return std::find(lanes.begin(), lanes.end(), lane) != lanes.end();
2701 const MSVehicle* v = followerInfo.first;
2716 return MIN2(maxSpeed * maxSpeed * 0.5 / minDecel,
2721std::pair<MSVehicle* const, double>
2722MSLane::getLeader(
const MSVehicle* veh,
const double vehPos,
const std::vector<MSLane*>& bestLaneConts,
double dist,
bool checkTmpVehicles)
const {
2730 if (checkTmpVehicles) {
2739 std::cout << std::setprecision(
gPrecision) <<
" getLeader lane=" <<
getID() <<
" ego=" << veh->
getID() <<
" egoPos=" << vehPos <<
" pred=" << pred->
getID() <<
" predPos=" << pred->
getPositionOnLane() <<
"\n";
2755 std::cout <<
" getLeader lane=" <<
getID() <<
" ego=" << veh->
getID() <<
" egoPos=" << vehPos
2772 if (bestLaneConts.size() > 0) {
2780 std::cout <<
" getLeader lane=" <<
getID() <<
" seen=" << seen <<
" dist=" << dist <<
"\n";
2784 return std::pair<MSVehicle* const, double>(
static_cast<MSVehicle*
>(
nullptr), -1);
2788 return std::make_pair(
static_cast<MSVehicle*
>(
nullptr), -1);
2793std::pair<MSVehicle* const, double>
2795 const std::vector<MSLane*>& bestLaneConts)
const {
2798 std::cout <<
" getLeaderOnConsecutive lane=" <<
getID() <<
" ego=" << veh.
getID() <<
" seen=" << seen <<
" dist=" << dist <<
" conts=" <<
toString(bestLaneConts) <<
"\n";
2802 return std::make_pair(
static_cast<MSVehicle*
>(
nullptr), -1);
2817 return std::pair<MSVehicle* const, double>(pred, gap);
2825 const MSLane* nextLane =
this;
2829 std::vector<MSLink*>::const_iterator link =
succLinkSec(veh, view, *nextLane, bestLaneConts);
2833 std::cout <<
" cannot continue after nextLane=" << nextLane->
getID() <<
"\n";
2840 const bool laneChanging = veh.
getLane() !=
this;
2843 if (linkLeaders.size() > 0) {
2844 std::pair<MSVehicle*, double> result;
2845 double shortestGap = std::numeric_limits<double>::max();
2846 for (
auto ll : linkLeaders) {
2847 double gap = ll.vehAndGap.second;
2849 if (lVeh !=
nullptr) {
2856 <<
" isLeader=" << veh.
isLeader(*link, lVeh, gap)
2857 <<
" gap=" << ll.vehAndGap.second
2858 <<
" gap+brakeing=" << gap
2863 if (lVeh !=
nullptr && !laneChanging && !veh.
isLeader(*link, lVeh, ll.vehAndGap.second)) {
2866 if (gap < shortestGap) {
2868 result = ll.vehAndGap;
2871 if (shortestGap != std::numeric_limits<double>::max()) {
2874 std::cout <<
" found linkLeader after nextLane=" << nextLane->
getID() <<
"\n";
2881 bool nextInternal = (*link)->getViaLane() !=
nullptr;
2882 nextLane = (*link)->getViaLaneOrLane();
2883 if (nextLane ==
nullptr) {
2888 if (leader !=
nullptr) {
2891 std::cout <<
" found leader " << leader->
getID() <<
" on nextLane=" << nextLane->
getID() <<
"\n";
2896 return std::make_pair(leader, leaderDist);
2903 if (!nextInternal) {
2906 }
while (seen <= dist || nextLane->
isInternal());
2910 return std::make_pair(
static_cast<MSVehicle*
>(
nullptr), -1);
2914std::pair<MSVehicle* const, double>
2918 std::cout <<
SIMTIME <<
" getCriticalLeader. lane=" <<
getID() <<
" veh=" << veh.
getID() <<
"\n";
2922 std::pair<MSVehicle*, double> result = std::make_pair(
static_cast<MSVehicle*
>(
nullptr), -1);
2923 double safeSpeed = std::numeric_limits<double>::max();
2928 const MSLane* nextLane =
this;
2932 std::vector<MSLink*>::const_iterator link =
succLinkSec(veh, view, *nextLane, bestLaneConts);
2949 for (MSLink::LinkLeaders::const_iterator it = linkLeaders.begin(); it != linkLeaders.end(); ++it) {
2950 const MSVehicle* leader = (*it).vehAndGap.first;
2951 if (leader !=
nullptr && leader != result.first) {
2955 double tmpSpeed = safeSpeed;
2956 veh.
adaptToJunctionLeader((*it).vehAndGap, seen,
nullptr, nextLane, tmpSpeed, tmpSpeed, (*it).distToCrossing);
2959 std::cout <<
" linkLeader=" << leader->
getID() <<
" gap=" << result.second <<
" tmpSpeed=" << tmpSpeed <<
" safeSpeed=" << safeSpeed <<
"\n";
2962 if (tmpSpeed < safeSpeed) {
2963 safeSpeed = tmpSpeed;
2964 result = (*it).vehAndGap;
2968 bool nextInternal = (*link)->getViaLane() !=
nullptr;
2969 nextLane = (*link)->getViaLaneOrLane();
2970 if (nextLane ==
nullptr) {
2974 if (leader !=
nullptr && leader != result.first) {
2977 if (tmpSpeed < safeSpeed) {
2978 safeSpeed = tmpSpeed;
2979 result = std::make_pair(leader, gap);
2990 if (!nextInternal) {
2993 }
while (seen <= dist || nextLane->
isInternal());
3003 for (MSEdgeVector::iterator i = pred.begin(); i != pred.end();) {
3012 if (pred.size() != 0) {
3014 MSEdge* best = *pred.begin();
3046 if (&(cand.lane->getEdge()) == &fromEdge) {
3071#ifdef DEBUG_LANE_SORTER
3087 std::vector<MSLink*> candidateLinks =
myLinks;
3090 MSLane* best = (*candidateLinks.begin())->getViaLaneOrLane();
3091#ifdef DEBUG_LANE_SORTER
3092 std::cout <<
"\nBest successor lane for lane '" <<
myID <<
"': '" << best->
getID() <<
"'" << std::endl;
3102 if (pred ==
nullptr) {
3110const std::vector<std::pair<const MSLane*, const MSEdge*> >
3112 std::vector<std::pair<const MSLane*, const MSEdge*> > result;
3114 assert(link->getLane() !=
nullptr);
3115 result.push_back(std::make_pair(link->getLane(), link->getViaLane() ==
nullptr ?
nullptr : &link->getViaLane()->getEdge()));
3120std::vector<const MSLane*>
3122 std::vector<const MSLane*> result = {};
3124 for (std::vector<MSLane*>::const_iterator it_lane = (*it).second.begin(); it_lane != (*it).second.end(); ++it_lane) {
3125 if (!((*it_lane)->isInternal())) {
3126 result.push_back(*it_lane);
3150 for (std::vector<MSLink*>::const_iterator i =
myLinks.begin(); i !=
myLinks.end(); ++i) {
3151 if ((*i)->getLane()->getEdge().isCrossing()) {
3152 return (
int)(i -
myLinks.begin());
3168 if (cand->getLane() == bidi) {
3169 sum += (brutto ? cand->getVehicleType().getLengthWithGap() : cand->getVehicleType().getLength());
3171 sum +=
myLength - cand->getBackPositionOnLane(
this);
3215 wtime += (*i)->getWaitingSeconds();
3230 v += veh->getSpeed();
3252 v += veh->getSpeed();
3271 if (vehs.size() == 0) {
3275 for (MSLane::VehCont::const_iterator i = vehs.begin(); i != vehs.end(); ++i) {
3276 double sv = (*i)->getHarmonoise_NoiseEmissions();
3277 ret += (double) pow(10., (sv / 10.));
3310 myLaneDir(e->getLanes()[0]->
getShape().angleAt2D(0)) {
3321 if (ae1 !=
nullptr && ae1->size() != 0) {
3331 if (ae2 !=
nullptr && ae2->size() != 0) {
3351 myLaneDir(targetLane->
getShape().angleAt2D(0)) {}
3369#ifdef DEBUG_LANE_SORTER
3370 std::cout <<
"\nincoming_lane_priority sorter()\n"
3371 <<
"noninternal predecessor for lane '" << laneInfo1.
lane->
getID()
3372 <<
"': '" << noninternal1->
getID() <<
"'\n"
3373 <<
"noninternal predecessor for lane '" << laneInfo2.
lane->
getID()
3374 <<
"': '" << noninternal2->
getID() <<
"'\n";
3382 bool priorized1 =
true;
3383 bool priorized2 =
true;
3385#ifdef DEBUG_LANE_SORTER
3386 std::cout <<
"FoeLinks of '" << noninternal1->
getID() <<
"'" << std::endl;
3389#ifdef DEBUG_LANE_SORTER
3390 std::cout << foeLink->getLaneBefore()->getID() << std::endl;
3392 if (foeLink == link2) {
3398#ifdef DEBUG_LANE_SORTER
3399 std::cout <<
"FoeLinks of '" << noninternal2->
getID() <<
"'" << std::endl;
3402#ifdef DEBUG_LANE_SORTER
3403 std::cout << foeLink->getLaneBefore()->getID() << std::endl;
3406 if (foeLink == link1) {
3414 if (priorized1 != priorized2) {
3428 myLaneDir(sourceLane->
getShape().angleAt2D(0)) {}
3434 if (target2 ==
nullptr) {
3437 if (target1 ==
nullptr) {
3441#ifdef DEBUG_LANE_SORTER
3442 std::cout <<
"\noutgoing_lane_priority sorter()\n"
3443 <<
"noninternal successors for lane '" << myLane->
getID()
3444 <<
"': '" << target1->
getID() <<
"' and "
3445 <<
"'" << target2->
getID() <<
"'\n";
3452 if (priority1 != priority2) {
3453 return priority1 > priority2;
3479 if (link->getApproaching().size() > 0) {
3488 const bool toRailJunction =
myLinks.size() > 0 && (
3491 const bool hasVehicles =
myVehicles.size() > 0;
3500 if (toRailJunction) {
3502 if (link->getApproaching().size() > 0) {
3505 for (
auto item : link->getApproaching()) {
3515 if (item.second.latOffset != 0) {
3547 for (
const std::string&
id : vehIds) {
3590 bool allSublanes,
double searchDist,
MinorLinkMode mLinkMode)
const {
3599 std::cout <<
SIMTIME <<
" getFollowers lane=" <<
getID() <<
" ego=" << ego->
getID()
3600 <<
" backOffset=" << backOffset <<
" pos=" << egoPos
3601 <<
" allSub=" << allSublanes <<
" searchDist=" << searchDist <<
" ignoreMinor=" << mLinkMode
3602 <<
" egoLatDist=" << egoLatDist
3603 <<
" getOppositeLeaders=" << getOppositeLeaders
3619 std::cout <<
SIMTIME <<
" getFollowers lane=" <<
getID() <<
" ego=" << ego->
getID()
3642 std::cout <<
" (1) added veh=" << veh->
getID() <<
" latOffset=" << latOffset <<
" result=" << result.
toString() <<
"\n";
3649 std::cout <<
" result.numFreeSublanes=" << result.
numFreeSublanes() <<
"\n";
3657 if (searchDist == -1) {
3661 std::cout <<
" computed searchDist=" << searchDist <<
"\n";
3665 std::set<const MSEdge*> egoFurther;
3667 egoFurther.insert(&further->getEdge());
3680 std::vector<MSLane::IncomingLaneInfo> newFound;
3682 while (toExamine.size() != 0) {
3683 for (std::vector<MSLane::IncomingLaneInfo>::iterator it = toExamine.begin(); it != toExamine.end(); ++it) {
3684 MSLane* next = (*it).lane;
3690 std::cout <<
" next=" << next->
getID() <<
" seen=" << (*it).length <<
" first=" << first.
toString() <<
" firstFront=" << firstFront.
toString() <<
" backOffset=" << backOffset <<
"\n";
3694 if (backOffset + (*it).length - next->
getLength() < 0
3695 && egoFurther.count(&next->
getEdge()) != 0
3701 for (
const auto& ll : linkLeaders) {
3702 if (ll.vehAndGap.first !=
nullptr) {
3703 const bool bidiFoe = (*it).viaLink->getLane() == ll.vehAndGap.first->getLane()->getNormalPredecessorLane()->getBidiLane();
3704 const bool egoIsLeader = !bidiFoe && ll.vehAndGap.first->isLeader((*it).viaLink, ego, ll.vehAndGap.second);
3707 const double gap = (egoIsLeader
3708 ? -ll.vehAndGap.second - ll.vehAndGap.first->getVehicleType().getLengthWithGap() - ego->
getVehicleType().
getMinGap()
3713 std::cout <<
SIMTIME <<
" ego=" << ego->
getID() <<
" link=" << (*it).viaLink->getViaLaneOrLane()->getID()
3715 <<
" gap=" << ll.vehAndGap.second <<
" dtC=" << ll.distToCrossing
3716 <<
" bidiFoe=" << bidiFoe
3717 <<
" egoIsLeader=" << egoIsLeader <<
" gap2=" << gap
3731 const MSVehicle* v = first[i] == ego ? firstFront[i] : first[i];
3734 if (v !=
nullptr && v != ego) {
3741 agap = (*it).length - next->
getLength() + backOffset
3746 std::cout <<
" agap1=" << agap <<
"\n";
3752 if (!getOppositeLeaders) {
3757 if (v !=
nullptr && v != ego) {
3770 if (!(*it).viaLink->havePriority() && !ego->
onFurtherEdge(&(*it).lane->getEdge())
3776 agap =
MAX2(agap, 0.0);
3787 if ((*it).length < searchDist) {
3788 const std::vector<MSLane::IncomingLaneInfo>& followers = next->
getIncomingLanes();
3789 for (std::vector<MSLane::IncomingLaneInfo>::const_iterator j = followers.begin(); j != followers.end(); ++j) {
3790 if (visited.find((*j).lane) == visited.end() && (((*j).viaLink->havePriority() && !(*j).viaLink->isTurnaround())
3791 || mLinkMode == MinorLinkMode::FOLLOW_ALWAYS
3792 || (mLinkMode == MinorLinkMode::FOLLOW_ONCOMING && (*j).viaLink->getDirection() ==
LinkDirection::STRAIGHT))) {
3793 visited.insert((*j).lane);
3795 ili.
lane = (*j).lane;
3796 ili.
length = (*j).length + (*it).length;
3798 newFound.push_back(ili);
3804 swap(newFound, toExamine);
3816 bool oppositeDirection)
const {
3835 const MSLane* nextLane =
this;
3840 bool nextInternal =
false;
3841 if (oppositeDirection) {
3842 if (view >= (
int)bestLaneConts.size()) {
3845 nextLane = bestLaneConts[view];
3847 std::vector<MSLink*>::const_iterator link =
succLinkSec(*ego, view, *nextLane, bestLaneConts);
3853 if (linkLeaders.size() > 0) {
3863 std::cout <<
" linkleader=" << veh->
getID() <<
" gap=" << ll.
vehAndGap.second <<
" leaderOffset=" << ll.
latOffset <<
" flags=" << ll.
llFlags <<
"\n";
3880 nextInternal = (*link)->getViaLane() !=
nullptr;
3881 nextLane = (*link)->getViaLaneOrLane();
3882 if (nextLane ==
nullptr) {
3890 std::cout <<
SIMTIME <<
" getLeadersOnConsecutive lane=" <<
getID() <<
" nextLane=" << nextLane->
getID() <<
" leaders=" << leaders.
toString() <<
"\n";
3895 for (
int i = 0; i < iMax; ++i) {
3897 if (veh !=
nullptr) {
3914 if (!nextInternal) {
3928#ifdef DEBUG_SURROUNDING
3930 std::cout <<
" addLeaders lane=" <<
getID() <<
" veh=" << vehicle->
getID() <<
" vehPos=" << vehPos <<
" opposite=" << opposite <<
"\n";
3934 for (
int i = 0; i < aheadSamePos.
numSublanes(); ++i) {
3936 if (veh !=
nullptr && veh != vehicle) {
3938#ifdef DEBUG_SURROUNDING
3949 double speed = vehicle->
getSpeed();
3957#ifdef DEBUG_SURROUNDING
3959 std::cout <<
" aborting forward search. dist=" << dist <<
" seen=" << seen <<
"\n";
3964#ifdef DEBUG_SURROUNDING
3966 std::cout <<
" add consecutive before=" << result.
toString() <<
" seen=" << seen <<
" dist=" << dist;
3971#ifdef DEBUG_SURROUNDING
3973 std::cout <<
" upstreamOpposite=" <<
toString(bestLaneConts);
3981#ifdef DEBUG_SURROUNDING
3983 std::cout <<
" after=" << result.
toString() <<
"\n";
3999 std::cout <<
SIMTIME <<
" getPartialBehind lane=" <<
getID() <<
" ego=" << ego->
getID() <<
" found=" << veh->
getID() <<
"\n";
4030 assert(checkedLanes !=
nullptr);
4031 if (checkedLanes->find(
this) != checkedLanes->end()) {
4032#ifdef DEBUG_SURROUNDING
4033 std::cout <<
"Skipping previously scanned lane: " <<
getID() << std::endl;
4035 return std::set<MSVehicle*>();
4038 (*checkedLanes)[
this] = std::make_pair(
MAX2(0.0, startPos - upstreamDist),
MIN2(startPos + downstreamDist,
getLength()));
4040#ifdef DEBUG_SURROUNDING
4041 std::cout <<
"Scanning on lane " <<
myID <<
"(downstr. " << downstreamDist <<
", upstr. " << upstreamDist <<
", startPos " << startPos <<
"): " << std::endl;
4044 if (startPos < upstreamDist) {
4047 MSLane* incoming = incomingInfo.lane;
4048#ifdef DEBUG_SURROUNDING
4049 std::cout <<
"Checking on incoming: " << incoming->
getID() << std::endl;
4050 if (checkedLanes->find(incoming) != checkedLanes->end()) {
4051 std::cout <<
"Skipping previous: " << incoming->
getID() << std::endl;
4055 foundVehicles.insert(newVehs.begin(), newVehs.end());
4059 if (
getLength() < startPos + downstreamDist) {
4063#ifdef DEBUG_SURROUNDING
4064 std::cout <<
"Checking on outgoing: " << l->getViaLaneOrLane()->getID() << std::endl;
4066 std::set<MSVehicle*> newVehs = l->getViaLaneOrLane()->getSurroundingVehicles(0.0, downstreamDist - (
myLength - startPos), upstreamDist, checkedLanes);
4067 foundVehicles.insert(newVehs.begin(), newVehs.end());
4070#ifdef DEBUG_SURROUNDING
4071 std::cout <<
"On lane (2) " <<
myID <<
": \nFound vehicles: " << std::endl;
4073 std::cout << v->getID() <<
" pos = " << v->getPositionOnLane() << std::endl;
4076 return foundVehicles;
4082 std::set<MSVehicle*> res;
4085 if (!vehs.empty()) {
4087 if (veh->getPositionOnLane() >= a) {
4088 if (veh->getBackPositionOnLane() > b) {
4100std::vector<const MSJunction*>
4103 std::vector<const MSJunction*> junctions;
4105 junctions.insert(junctions.end(), l->getJunction());
4111std::vector<const MSLink*>
4113#ifdef DEBUG_SURROUNDING
4114 std::cout <<
"getUpcoming links on lane '" <<
getID() <<
"' with pos=" << pos
4115 <<
" range=" << range << std::endl;
4118 std::vector<const MSLink*> links;
4121 const MSLane* lane =
this;
4124 std::vector<MSLane*>::const_iterator contLanesIt = contLanes.begin();
4128 const MSLink* link =
nullptr;
4130 assert(*contLanesIt ==
nullptr);
4132 links.insert(links.end(), link);
4137 assert(*(contLanesIt + 1) == lane);
4139 while (++contLanesIt != contLanes.end()) {
4143#ifdef DEBUG_SURROUNDING
4144 std::cout <<
"Distance until end of lane '" << lane->
getID() <<
"' is " << dist <<
"." << std::endl;
4150 if (link !=
nullptr) {
4151 links.insert(links.end(), link);
4153 lane = *contLanesIt;
4176std::pair<MSVehicle* const, double>
4183 std::cout <<
" getFollower lane=" <<
getID() <<
" egoPos=" << egoPos <<
" pred=" << pred->
getID() <<
" predPos=" << pred->
getPositionOnLane(
this) <<
"\n";
4191 if (dist > 0 && backOffset > dist) {
4192 return std::make_pair(
nullptr, -1);
4196 return std::make_pair(
const_cast<MSVehicle*
>(result.first), result.second);
4199std::pair<MSVehicle* const, double>
4201#ifdef DEBUG_OPPOSITE
4203 <<
" ego=" << ego->
getID()
4207 <<
" oppositeDir=" << oppositeDir
4215 std::pair<MSVehicle* const, double> result =
getFollower(ego, egoPos + egoLength, dist, mLinkMode);
4216 if (result.first !=
nullptr) {
4218 if (result.first->getLaneChangeModel().isOpposite()) {
4219 result.second -= result.first->getVehicleType().getLength();
4227std::pair<MSVehicle* const, double>
4229#ifdef DEBUG_OPPOSITE
4231 <<
" ego=" << ego->
getID()
4241 std::pair<MSVehicle*, double> result =
getLeader(ego, vehPos, std::vector<MSLane*>());
4244 while (result.first ==
nullptr && dist > 0) {
4249 if (next ==
nullptr) {
4253 result = next->
getLeader(ego, vehPos, std::vector<MSLane*>());
4255 if (result.first !=
nullptr) {
4256 if (result.first->getLaneChangeModel().isOpposite()) {
4257 result.second -= result.first->getVehicleType().getLength();
4259 if (result.second > POSITION_EPS) {
4261 return std::make_pair(
static_cast<MSVehicle*
>(
nullptr), -1);
4271 const std::string action = oc.
getString(option);
4272 if (action ==
"none") {
4274 }
else if (action ==
"warn") {
4276 }
else if (action ==
"teleport") {
4278 }
else if (action ==
"remove") {
4359#ifdef DEBUG_INSERTION
4361 std::cout <<
SIMTIME <<
" check for pedestrians on lane=" <<
getID() <<
" pos=" << pos <<
"\n";
4366 if (leader.first != 0) {
4372#ifdef DEBUG_INSERTION
4374 <<
" isInsertionSuccess lane=" <<
getID()
4375 <<
" veh=" << aVehicle->
getID()
4378 <<
" patchSpeed=" << patchSpeed
4379 <<
" speed=" << speed
4380 <<
" stopSpeed=" << stopSpeed
4381 <<
" pedestrianLeader=" << leader.first->getID()
4382 <<
" failed (@796)!\n";
4395 const int numRNGs = oc.
getInt(
"thread-rngs");
4396 const bool random = oc.
getBool(
"random");
4397 int seed = oc.
getInt(
"seed");
4399 for (
int i = 0; i < numRNGs; i++) {
4433 myLinks.front()->getFoeLanes().size() > 0
4434 ||
myLinks.front()->getWalkingAreaFoe() !=
nullptr
4435 ||
myLinks.front()->getWalkingAreaFoeExit() !=
nullptr);
4448 foundStopped =
true;
4449 const double lastBrakeGap = last->getCarFollowModel().brakeGap(last->getSpeed());
4450 const double ret = last->getBackPositionOnLane() + lastBrakeGap - lengths;
4454 lengths += last->getVehicleType().getLengthWithGap() * (last->getVehicleType().getWidth() + last->getVehicleType().getMinGapLat()) /
getWidth();
4456 lengths += last->getVehicleType().getLengthWithGap();
std::vector< MSEdge * > MSEdgeVector
std::pair< const MSVehicle *, double > CLeaderDist
std::pair< const MSPerson *, double > PersonDist
ConstMSEdgeVector::const_iterator MSRouteIterator
#define WRITE_WARNINGF(...)
#define WRITE_ERRORF(...)
#define WRITE_WARNING(msg)
SUMOTime string2time(const std::string &r)
convert string to SUMOTime
std::string time2string(SUMOTime t, bool humanReadable)
convert SUMOTime to string (independently of global format setting)
const SVCPermissions SVCAll
all VClasses are allowed
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permission is a railway edge.
@ SVC_SHIP
is an arbitrary ship
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_BICYCLE
vehicle is a bicycle
@ AIRCRAFT
render as aircraft
int SVCPermissions
bitset where each bit declares whether a certain SVC may use this edge/lane
const int STOP_DURATION_SET
@ GIVEN
The speed is given.
@ RANDOM
The lateral position is chosen randomly.
@ RIGHT
At the rightmost side of the lane.
@ GIVEN
The position is given.
@ DEFAULT
No information given; use default.
@ LEFT
At the leftmost side of the lane.
@ FREE
A free lateral position is chosen.
@ CENTER
At the center of the lane.
@ RANDOM_FREE
If a fixed number of random choices fails, a free lateral position is chosen.
@ RANDOM
The position is set by the vehroute device.
@ GIVEN
The position is given.
@ DEFAULT
No information given; use default.
@ STOP
depart position is endPos of first stop
@ FREE
A free position is chosen.
@ BASE
Back-at-zero position.
@ LAST
Insert behind the last vehicle as close as possible to still allow the specified departSpeed....
@ RANDOM_FREE
If a fixed number of random choices fails, a free position is chosen.
@ RANDOM
The speed is chosen randomly.
@ MAX
The maximum safe speed is used.
@ GIVEN
The speed is given.
@ LIMIT
The maximum lane speed is used (speedLimit)
@ DEFAULT
No information given; use default.
@ DESIRED
The maximum lane speed is used (speedLimit * speedFactor)
@ LAST
The speed of the last vehicle. Fallback to DepartSpeedDefinition::DESIRED if there is no vehicle on t...
@ AVG
The average speed on the lane. Fallback to DepartSpeedDefinition::DESIRED if there is no vehicle on t...
@ SPLIT
The departure is triggered by a train split.
InsertionCheck
different checking levels for vehicle insertion
@ SUMO_TAG_LINK
Link information for state-saving.
@ SUMO_TAG_APPROACHING
Link-approaching vehicle information for state-saving.
@ SUMO_TAG_VIEWSETTINGS_VEHICLES
@ SUMO_TAG_LANE
begin/end of the description of a single lane
@ STRAIGHT
The link is a straight direction.
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic,...
@ LINKSTATE_ALLWAY_STOP
This is an uncontrolled, all-way stop link.
@ LINKSTATE_STOP
This is an uncontrolled, minor link, has to stop.
@ LINKSTATE_EQUAL
This is an uncontrolled, right-before-left link.
@ LINKSTATE_DEADEND
This is a dead end link.
@ LINKSTATE_MINOR
This is an uncontrolled, minor link, has to brake.
@ SUMO_ATTR_ARRIVALSPEEDBRAKING
@ SUMO_ATTR_STATE
The state of a link.
int gPrecision
the precision for floating point outputs
double roundDecimal(double x, int precision)
round to the given number of decimal digits
bool gDebugFlag1
global utility flags for debugging
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
A class that stores a 2D geometrical boundary.
double ymin() const
Returns minimum y-coordinate.
double xmin() const
Returns minimum x-coordinate.
Boundary & grow(double by)
extends the boundary by the given amount
double ymax() const
Returns maximum y-coordinate.
double xmax() const
Returns maximum x-coordinate.
static double angleDiff(const double angle1, const double angle2)
Returns the difference of the second angle to the first angle in radiants.
static double sum(double val)
Computes the resulting noise.
Container & getContainer()
bool hasBlueLight() const
MSLane * getShadowLane() const
Returns the lane the vehicle's shadow is on during continuous/sublane lane change.
virtual double getExtraReservation(int) const
reserve extra space for unseen blockers when more tnan one lane change is required
bool isChangingLanes() const
return true if the vehicle currently performs a lane change maneuver
The base class for microscopic and mesoscopic vehicles.
double getImpatience() const
Returns this vehicles impatience.
const MSEdge * succEdge(int nSuccs) const
Returns the nSuccs'th successor of edge the vehicle is currently at.
virtual double getArrivalPos() const
Returns this vehicle's desired arrivalPos for its current route (may change on reroute)
const SUMOVehicleParameter & getParameter() const
Returns the vehicle's parameter (including departure definition)
double getChosenSpeedFactor() const
Returns the precomputed factor by which the driver wants to be faster than the speed limit.
const SUMOVehicleParameter::Stop * getNextStopParameter() const
return parameters for the next stop (SUMOVehicle Interface)
bool isJumping() const
Returns whether the vehicle is perform a jump.
double getLength() const
Returns the vehicle's length.
bool isParking() const
Returns whether the vehicle is parking.
const MSEdge * getEdge() const
Returns the edge the vehicle is currently at.
bool hasDeparted() const
Returns whether this vehicle has already departed.
double basePos(const MSEdge *edge) const
departure position where the vehicle fits fully onto the edge (if possible)
bool hasStops() const
Returns whether the vehicle has to stop somewhere.
SUMOVehicleClass getVClass() const
Returns the vehicle's access class.
NumericalID getNumericalID() const
return the numerical ID which is only for internal usage
const MSRoute & getRoute() const
Returns the current route.
SUMOTime getDepartDelay() const
Returns the depart delay.
const MSVehicleType & getVehicleType() const
Returns the vehicle's type definition.
bool isStopped() const
Returns whether the vehicle is at a stop.
The car-following model abstraction.
double getCollisionMinGapFactor() const
Get the factor of minGap that must be maintained to avoid a collision event.
double getEmergencyDecel() const
Get the vehicle type's maximal phisically possible deceleration [m/s^2].
virtual double freeSpeed(const MSVehicle *const veh, double speed, double seen, double maxSpeed, const bool onInsertion=false, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed without a leader.
virtual double insertionFollowSpeed(const MSVehicle *const veh, double speed, double gap2pred, double predSpeed, double predMaxDecel, const MSVehicle *const pred=0) const
Computes the vehicle's safe speed (no dawdling) This method is used during the insertion stage....
virtual double getSecureGap(const MSVehicle *const veh, const MSVehicle *const, const double speed, const double leaderSpeed, const double leaderMaxDecel) const
Returns the minimum gap to reserve if the leader is braking at maximum (>=0)
double brakeGap(const double speed) const
Returns the distance the vehicle needs to halt including driver's reaction time tau (i....
double getMaxDecel() const
Get the vehicle type's maximal comfortable deceleration [m/s^2].
double stopSpeed(const MSVehicle *const veh, const double speed, double gap, const CalcReason usage=CalcReason::CURRENT) const
Computes the vehicle's safe speed for approaching a non-moving obstacle (no dawdling)
virtual double insertionStopSpeed(const MSVehicle *const veh, double speed, double gap) const
Computes the vehicle's safe speed for approaching an obstacle at insertion without constraints due to...
std::string toString() const
print a debugging representation
int addFollower(const MSVehicle *veh, const MSVehicle *ego, double gap, double latOffset=0, int sublane=-1)
void gotActive(MSLane *l)
Informs the control that the given lane got active.
void checkCollisionForInactive(MSLane *l)
trigger collision checking for inactive lane
void needsVehicleIntegration(MSLane *const l)
A road/street connecting two junctions.
void changeLanes(SUMOTime t) const
Performs lane changing on this edge.
bool isCrossing() const
return whether this edge is a pedestrian crossing
int getPriority() const
Returns the priority of the edge.
const std::set< MSTransportable *, ComparatorNumericalIdLess > & getPersons() const
Returns this edge's persons set.
bool isWalkingArea() const
return whether this edge is walking area
const std::vector< MSLane * > & getLanes() const
Returns this edge's lanes.
const MSEdge * getNormalSuccessor() const
if this edge is an internal edge, return its first normal successor, otherwise the edge itself
const MSEdge * getBidiEdge() const
return opposite superposable/congruent edge, if it exist and 0 else
bool isNormal() const
return whether this edge is an internal edge
std::vector< MSTransportable * > getSortedPersons(SUMOTime timestep, bool includeRiding=false) const
Returns this edge's persons sorted by pos.
const std::vector< MSLane * > * allowedLanes(const MSEdge &destination, SUMOVehicleClass vclass=SVC_IGNORING) const
Get the allowed lanes to reach the destination-edge.
void recalcCache()
Recalculates the cached values.
bool hasLaneChanger() const
const MSJunction * getToJunction() const
bool isInternal() const
return whether this edge is an internal edge
bool isVaporizing() const
Returns whether vehicles on this edge shall be vaporized.
MSLane * parallelLane(const MSLane *const lane, int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to the given lane one or 0 if it does not exist.
const std::string & getEdgeType() const
Returns the type of the edge.
const MSEdgeVector & getPredecessors() const
static SUMOTime gTimeToTeleportDisconnected
static SUMOTime gTimeToGridlockHighways
static double gGridlockHighwaysSpeed
static bool gRemoveGridlocked
static SUMOTime gTimeToTeleportBidi
static double gLateralResolution
static bool gClearState
whether the simulation is in the process of clearing state (MSNet::clearState)
static bool gComputeLC
whether the simulationLoop is in the lane changing phase
static bool gEmergencyInsert
static int gNumSimThreads
how many threads to use for simulation
static bool gSublane
whether sublane simulation is enabled (sublane model or continuous lanechanging)
static SUMOTime gLaneChangeDuration
static bool gUnitTests
whether unit tests are being run
static bool gUsingInternalLanes
Information whether the simulation regards internal lanes.
static SUMOTime gTimeToGridlock
void retractDescheduleDeparture(const SUMOVehicle *veh)
reverts a previous call to descheduleDeparture (only needed for departPos="random_free")
void descheduleDeparture(const SUMOVehicle *veh)
stops trying to emit the given vehicle (and delete it)
SumoXMLNodeType getType() const
return the type of this Junction
AnyVehicleIterator is a structure, which manages the iteration through all vehicles on the lane,...
bool nextIsMyVehicles() const
AnyVehicleIterator & operator++()
const MSVehicle * operator*()
void add(const MSLane *const l) const
Adds the given object to the container.
std::set< const Named * > & myObjects
The container.
const PositionVector & myShape
Sorts edges by their angle relative to the given edge (straight comes first)
by_connections_to_sorter(const MSEdge *const e)
constructor
int operator()(const MSEdge *const e1, const MSEdge *const e2) const
comparing operator
Sorts lanes (IncomingLaneInfos) by their priority or, if this doesn't apply, wrt. the angle differenc...
incoming_lane_priority_sorter(const MSLane *targetLane)
constructor
int operator()(const IncomingLaneInfo &lane1, const IncomingLaneInfo &lane2) const
comparing operator
Sorts lanes (their origin link) by the priority of their noninternal target edges or,...
outgoing_lane_priority_sorter(const MSLane *sourceLane)
constructor
int operator()(const MSLink *link1, const MSLink *link2) const
comparing operator
int operator()(MSVehicle *v1, MSVehicle *v2) const
Comparing operator.
Sorts vehicles by their position (descending)
int operator()(MSVehicle *v1, MSVehicle *v2) const
Comparing operator.
Representation of a lane in the micro simulation.
void addApproachingLane(MSLane *lane, bool warnMultiCon)
bool detectCollisionBetween(SUMOTime timestep, const std::string &stage, MSVehicle *collider, MSVehicle *victim, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toRemove, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toTeleport) const
detect whether there is a collision between the two vehicles
static SUMOTime myIntermodalCollisionStopTime
MFXSynchQue< MSVehicle *, std::vector< MSVehicle * > > myVehBuffer
Buffer for vehicles that moved from their previous lane onto this one. Integrated after all vehicles ...
SVCPermissions myPermissions
The vClass permissions for this lane.
MSLane * myLogicalPredecessorLane
static void initCollisionAction(const OptionsCont &oc, const std::string &option, CollisionAction &myAction)
virtual void setJunctionApproaches(const SUMOTime t) const
Register junction approaches for all vehicles after velocities have been planned.
std::set< const MSBaseVehicle * > myParkingVehicles
bool checkForPedestrians(const MSVehicle *aVehicle, double &speed, double &dist, double pos, bool patchSpeed) const
check whether pedestrians on this lane interfere with vehicle insertion
std::pair< MSVehicle *const, double > getFollower(const MSVehicle *ego, double egoPos, double dist, MinorLinkMode mLinkMode) const
Find follower vehicle for the given ego vehicle (which may be on the opposite direction lane)
std::pair< const MSPerson *, double > nextBlocking(double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false) const
This is just a wrapper around MSPModel::nextBlocking. You should always check using hasPedestrians be...
MSLane * getParallelLane(int offset, bool includeOpposite=true) const
Returns the lane with the given offset parallel to this one or 0 if it does not exist.
double myRightSideOnEdge
the combined width of all lanes with lower index on myEdge
const StopOffset & getLaneStopOffsets() const
Returns vehicle class specific stopOffsets.
virtual void removeParking(MSBaseVehicle *veh)
remove parking vehicle. This must be syncrhonized when running with GUI
virtual ~MSLane()
Destructor.
bool insertVehicle(MSVehicle &v)
Tries to insert the given vehicle.
const MSLeaderInfo getFirstVehicleInformation(const MSVehicle *ego, double latOffset, bool onlyFrontOnLane, double maxPos=std::numeric_limits< double >::max(), bool allowCached=true) const
analogue to getLastVehicleInformation but in the upstream direction
virtual void integrateNewVehicles()
Insert buffered vehicle into the real lane.
double myLength
Lane length [m].
bool isApproachedFrom(MSEdge *const edge)
double getNettoOccupancy() const
Returns the netto (excluding minGaps) occupancy of this lane during the last step (including minGaps)
virtual MSVehicle * removeVehicle(MSVehicle *remVehicle, MSMoveReminder::Notification notification, bool notify=true)
int getCrossingIndex() const
return the index of the link to the next crossing if this is walkingArea, else -1
PositionVector myShape
The shape of the lane.
std::map< long long, SVCPermissions > myPermissionChanges
const std::map< SUMOVehicleClass, double > * myRestrictions
The vClass speed restrictions for this lane.
virtual void incorporateVehicle(MSVehicle *veh, double pos, double speed, double posLat, const MSLane::VehCont::iterator &at, MSMoveReminder::Notification notification=MSMoveReminder::NOTIFICATION_DEPARTED)
Inserts the vehicle into this lane, and informs it about entering the network.
void initRestrictions()
initialized vClass-specific speed limits
std::vector< MSMoveReminder * > myMoveReminders
This lane's move reminder.
bool hasApproaching() const
void addParking(MSBaseVehicle *veh)
add parking vehicle. This should only used during state loading
VehCont myTmpVehicles
Container for lane-changing vehicles. After completion of lane-change- process, the containers will b...
double getDepartSpeed(const MSVehicle &veh, bool &patchSpeed)
MSLeaderInfo myFollowerInfo
followers on all sublanes as seen by vehicles on consecutive lanes (cached)
const MSLane * getNormalSuccessorLane() const
get normal lane following this internal lane, for normal lanes, the lane itself is returned
int getVehicleNumber() const
Returns the number of vehicles on this lane (for which this lane is responsible)
static SUMOTime myCollisionStopTime
static CollisionAction myCollisionAction
the action to take on collisions
MSLane * myCanonicalSuccessorLane
Main successor lane,.
SVCPermissions myChangeLeft
The vClass permissions for changing from this lane.
void getLeadersOnConsecutive(double dist, double seen, double speed, const MSVehicle *ego, const std::vector< MSLane * > &bestLaneConts, MSLeaderDistanceInfo &result, bool oppositeDirection=false) const
Returns the immediate leaders and the distance to them (as getLeaderOnConsecutive but for the sublane...
std::vector< IncomingLaneInfo > myIncomingLanes
All direct predecessor lanes.
AnyVehicleIterator anyVehiclesEnd() const
end iterator for iterating over all vehicles touching this lane in downstream direction
static void insertIDs(std::vector< std::string > &into)
Adds the ids of all stored lanes into the given vector.
bool hadPermissionChanges() const
void sortPartialVehicles()
sorts myPartialVehicles
double myFrictionCoefficient
Lane-wide friction coefficient [0..1].
MSVehicle * getFirstAnyVehicle() const
returns the first vehicle that is fully or partially on this lane
const MSLink * getEntryLink() const
Returns the entry link if this is an internal lane, else nullptr.
int getVehicleNumberWithPartials() const
Returns the number of vehicles on this lane (including partial occupators)
static bool myCheckJunctionCollisions
static void clear()
Clears the dictionary.
virtual void resetManeuverReservation(MSVehicle *v)
Unregisters a vehicle, which previously registered for maneuvering into this lane.
SVCPermissions myOriginalPermissions
The original vClass permissions for this lane (before temporary modifications)
MSEdge *const myEdge
The lane's edge, for routing only.
double myNettoVehicleLengthSum
The current length of all vehicles on this lane, excluding their minGaps.
static std::vector< MSLink * >::const_iterator succLinkSec(const SUMOVehicle &veh, int nRouteSuccs, const MSLane &succLinkSource, const std::vector< MSLane * > &conts)
void detectPedestrianJunctionCollision(const MSVehicle *collider, const PositionVector &colliderBoundary, const MSLane *foeLane, SUMOTime timestep, const std::string &stage, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toRemove, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toTeleport)
detect whether a vehicle collids with pedestrians on the junction
double getMissingRearGap(const MSVehicle *leader, double backOffset, double leaderSpeed) const
return by how much further the leader must be inserted to avoid rear end collisions
double myMaxSpeed
Lane-wide speedlimit [m/s].
void saveState(OutputDevice &out)
Saves the state of this lane into the given stream.
const MSLink * getLinkTo(const MSLane *const) const
returns the link to the given lane or nullptr, if it is not connected
int myRightmostSublane
the index of the rightmost sublane of this lane on myEdge
void setChangeRight(SVCPermissions permissions)
Sets the permissions for changing to the right neighbour lane.
const bool myIsRampAccel
whether this lane is an acceleration lane
virtual void planMovements(const SUMOTime t)
Compute safe velocities for all vehicles based on positions and speeds from the last time step....
static void saveRNGStates(OutputDevice &out)
save random number generator states to the given output device
SUMOTime myFollowerInfoTime
time step for which myFollowerInfo was last updated
MSLeaderInfo myLeaderInfo
leaders on all sublanes as seen by approaching vehicles (cached)
bool isInsertionSuccess(MSVehicle *vehicle, double speed, double pos, double posLat, bool recheckNextLanes, MSMoveReminder::Notification notification)
Tries to insert the given vehicle with the given state (speed and pos)
void forceVehicleInsertion(MSVehicle *veh, double pos, MSMoveReminder::Notification notification, double posLat=0)
Inserts the given vehicle at the given position.
double getVehicleStopOffset(const MSVehicle *veh) const
Returns vehicle class specific stopOffset for the vehicle.
static void initCollisionOptions(const OptionsCont &oc)
int myNumericalID
Unique numerical ID (set on reading by netload)
VehCont myVehicles
The lane's vehicles. This container holds all vehicles that have their front (longitudinally) and the...
double getSpeedLimit() const
Returns the lane's maximum allowed speed.
MSLeaderInfo getPartialBeyond() const
get all vehicles that are inlapping from consecutive edges
std::vector< MSVehicle * > VehCont
Container for vehicles.
bool checkFailure(const MSVehicle *aVehicle, double &speed, double &dist, const double nspeed, const bool patchSpeed, const std::string errorMsg, InsertionCheck check) const
static DictType myDict
Static dictionary to associate string-ids with objects.
static void fill(RTREE &into)
Fills the given RTree with lane instances.
double safeInsertionSpeed(const MSVehicle *veh, double seen, const MSLeaderInfo &leaders, double speed)
return the maximum safe speed for insertion behind leaders (a negative value indicates that safe inse...
std::vector< const MSJunction * > getUpcomingJunctions(double pos, double range, const std::vector< MSLane * > &contLanes) const
Returns all upcoming junctions within given range along the given (non-internal) continuation lanes m...
void addIncomingLane(MSLane *lane, MSLink *viaLink)
const MSEdge * getNextNormal() const
Returns the lane's follower if it is an internal lane, the edge of the lane otherwise.
void addLink(MSLink *link)
Delayed initialization.
std::set< MSVehicle * > getVehiclesInRange(const double a, const double b) const
Returns all vehicles on the lane overlapping with the interval [a,b].
void enteredByLaneChange(MSVehicle *v)
double getDepartPosLat(const MSVehicle &veh)
std::pair< MSVehicle *const, double > getOppositeLeader(const MSVehicle *ego, double dist, bool oppositeDir, MinorLinkMode mLinkMode=MinorLinkMode::FOLLOW_NEVER) const
SVCPermissions getPermissions() const
Returns the vehicle class permissions for this lane.
LinkState getIncomingLinkState() const
get the state of the link from the logical predecessor to this lane
void updateLengthSum()
updated current vehicle length sum (delayed to avoid lane-order-dependency)
const std::vector< IncomingLaneInfo > & getIncomingLanes() const
static const long CHANGE_PERMISSIONS_PERMANENT
MSLane * getCanonicalPredecessorLane() const
void resetPermissions(long long transientID)
MSVehicle * getLastFullVehicle() const
returns the last vehicle for which this lane is responsible or 0
static void loadRNGState(int index, const std::string &state)
load random number generator state for the given rng index
const std::string myLaneType
the type of this lane
VehCont myManeuverReservations
The vehicles which registered maneuvering into the lane within their current action step....
void addLeaders(const MSVehicle *vehicle, double vehPos, MSLeaderDistanceInfo &result, bool oppositeDirection=false)
get leaders for ego on the given lane
static double myCheckJunctionCollisionMinGap
double getLength() const
Returns the lane's length.
double myBruttoVehicleLengthSum
The current length of all vehicles on this lane, including their minGaps.
const PositionVector & getShape() const
Returns this lane's shape.
void setChangeLeft(SVCPermissions permissions)
Sets the permissions for changing to the left neighbour lane.
std::vector< const MSLink * > getUpcomingLinks(double pos, double range, const std::vector< MSLane * > &contLanes) const
Returns all upcoming links within given range along the given (non-internal) continuation lanes measu...
const MSLane * getFirstInternalInConnection(double &offset) const
Returns 0 if the lane is not internal. Otherwise the first part of the connection (sequence of intern...
static int getNumRNGs()
return the number of RNGs
void handleCollisionBetween(SUMOTime timestep, const std::string &stage, const MSVehicle *collider, const MSVehicle *victim, double gap, double latGap, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toRemove, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toTeleport) const
take action upon collision
double getMaximumBrakeDist() const
compute maximum braking distance on this lane
static CollisionAction myIntermodalCollisionAction
const MSLane * getInternalFollowingLane(const MSLane *const) const
returns the internal lane leading to the given lane or nullptr, if there is none
static std::vector< SumoRNG > myRNGs
virtual void swapAfterLaneChange(SUMOTime t)
moves myTmpVehicles int myVehicles after a lane change procedure
std::pair< MSVehicle *const, double > getCriticalLeader(double dist, double seen, double speed, const MSVehicle &veh) const
Returns the most dangerous leader and the distance to him.
StopOffset myLaneStopOffset
const MSLeaderInfo getLastVehicleInformation(const MSVehicle *ego, double latOffset, double minPos=0, bool allowCached=true) const
Returns the last vehicles on the lane.
static void initRNGs(const OptionsCont &oc)
initialize rngs
std::set< MSVehicle * > getSurroundingVehicles(double startPos, double downstreamDist, double upstreamDist, std::shared_ptr< LaneCoverageInfo > checkedLanes) const
Returns all vehicles closer than downstreamDist along the road network starting on the given position...
MSLane(const std::string &id, double maxSpeed, double friction, double length, MSEdge *const edge, int numericalID, const PositionVector &shape, double width, SVCPermissions permissions, SVCPermissions changeLeft, SVCPermissions changeRight, int index, bool isRampAccel, const std::string &type)
Constructor.
void clearState()
Remove all vehicles before quick-loading state.
MSLane * myCanonicalPredecessorLane
Similar to LogicalPredecessorLane,.
bool myNeedsCollisionCheck
whether a collision check is currently needed
bool isLinkEnd(std::vector< MSLink * >::const_iterator &i) const
virtual double setPartialOccupation(MSVehicle *v)
Sets the information about a vehicle lapping into this lane.
double getVehicleMaxSpeed(const SUMOTrafficObject *const veh) const
Returns the lane's maximum speed, given a vehicle's speed limit adaptation.
void setBidiLane(MSLane *bidyLane)
Adds the (overlapping) reverse direction lane to this lane.
double getRightSideOnEdge() const
std::pair< MSVehicle *const, double > getOppositeFollower(const MSVehicle *ego) const
bool hasPedestrians() const
whether the lane has pedestrians on it
const std::vector< std::pair< const MSLane *, const MSEdge * > > getOutgoingViaLanes() const
get the list of outgoing lanes
MSVehicle * getPartialBehind(const MSVehicle *ego) const
void setLaneStopOffset(const StopOffset &stopOffset)
Set vehicle class specific stopOffsets.
double myBruttoVehicleLengthSumToRemove
The length of all vehicles that have left this lane in the current step (this lane,...
void leftByLaneChange(MSVehicle *v)
MSLane * getCanonicalSuccessorLane() const
std::vector< StopWatch< std::chrono::nanoseconds > > myStopWatch
void setPermissions(SVCPermissions permissions, long long transientID)
Sets the permissions to the given value. If a transientID is given, the permissions are recored as te...
const double myWidth
Lane width [m].
bool lastInsertion(MSVehicle &veh, double mspeed, double posLat, bool patchSpeed)
inserts vehicle as close as possible to the last vehicle on this lane (or at the end of the lane if t...
void changeLanes(const SUMOTime time)
double getOppositePos(double pos) const
return the corresponding position on the opposite lane
SVCPermissions myChangeRight
const double myLengthGeometryFactor
precomputed myShape.length / myLength
virtual void executeMovements(const SUMOTime t)
Executes planned vehicle movements with regards to right-of-way.
const std::set< const MSBaseVehicle * > & getParkingVehicles() const
retrieve the parking vehicles (see GUIParkingArea)
MSLane * getLogicalPredecessorLane() const
get the most likely precedecessor lane (sorted using by_connections_to_sorter). The result is cached ...
double getBruttoOccupancy() const
Returns the brutto (including minGaps) occupancy of this lane during the last step.
AnyVehicleIterator anyVehiclesUpstreamEnd() const
end iterator for iterating over all vehicles touching this lane in upstream direction
int myIndex
The lane index.
double getMeanSpeedBike() const
get the mean speed of all bicycles on this lane
void updateLeaderInfo(const MSVehicle *veh, VehCont::reverse_iterator &vehPart, VehCont::reverse_iterator &vehRes, MSLeaderInfo &ahead) const
This updates the MSLeaderInfo argument with respect to the given MSVehicle. All leader-vehicles on th...
double getWaitingSeconds() const
Returns the overall waiting time on this lane.
void setMaxSpeed(double val)
Sets a new maximum speed for the lane (used by TraCI and MSCalibrator)
static bool dictionary(const std::string &id, MSLane *lane)
Static (sic!) container methods {.
virtual void detectCollisions(SUMOTime timestep, const std::string &stage)
Check if vehicles are too close.
std::vector< MSLink * > myLinks
MSVehicle * getLastAnyVehicle() const
returns the last vehicle that is fully or partially on this lane
VehCont myPartialVehicles
The lane's partial vehicles. This container holds all vehicles that are partially on this lane but wh...
void sortManeuverReservations()
sorts myManeuverReservations
MinorLinkMode
determine whether/how getFollowers looks upstream beyond minor links
AnyVehicleIterator anyVehiclesUpstreamBegin() const
begin iterator for iterating over all vehicles touching this lane in upstream direction
std::vector< const MSLane * > getNormalIncomingLanes() const
get the list of all direct (disregarding internal predecessors) non-internal predecessor lanes of thi...
virtual void resetPartialOccupation(MSVehicle *v)
Removes the information about a vehicle lapping into this lane.
void setOpposite(MSLane *oppositeLane)
Adds a neighbor to this lane.
AnyVehicleIterator anyVehiclesBegin() const
begin iterator for iterating over all vehicles touching this lane in downstream direction
double getHarmonoise_NoiseEmissions() const
Returns the sum of last step noise emissions.
std::pair< MSVehicle *const, double > getLeader(const MSVehicle *veh, const double vehPos, const std::vector< MSLane * > &bestLaneConts, double dist=-1, bool checkTmpVehicles=false) const
Returns the immediate leader of veh and the distance to veh starting on this lane.
void handleIntermodalCollisionBetween(SUMOTime timestep, const std::string &stage, const MSVehicle *collider, const MSTransportable *victim, double gap, const std::string &collisionType, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toRemove, std::set< const MSVehicle *, ComparatorNumericalIdLess > &toTeleport) const
static bool myExtrapolateSubstepDepart
MSLane * getOpposite() const
return the neighboring opposite direction lane for lane changing or nullptr
void setLength(double val)
Sets a new length for the lane (used by TraCI only)
std::map< MSEdge *, std::vector< MSLane * > > myApproachingLanes
All direct internal and direct (disregarding internal predecessors) non-internal predecessor lanes of...
virtual const VehCont & getVehiclesSecure() const
Returns the vehicles container; locks it for microsimulation.
virtual void releaseVehicles() const
Allows to use the container for microsimulation again.
bool mustCheckJunctionCollisions() const
whether this lane must check for junction collisions
virtual void setManeuverReservation(MSVehicle *v)
Registers the lane change intentions (towards this lane) for the given vehicle.
MSLane * getBidiLane() const
retrieve bidirectional lane or nullptr
static double myCollisionMinGapFactor
std::pair< MSVehicle *const, double > getLeaderOnConsecutive(double dist, double seen, double speed, const MSVehicle &veh, const std::vector< MSLane * > &bestLaneConts) const
Returns the immediate leader and the distance to him.
SUMOTime myLeaderInfoTime
time step for which myLeaderInfo was last updated
@ COLLISION_ACTION_TELEPORT
@ COLLISION_ACTION_REMOVE
virtual const PositionVector & getShape(bool) const
MSLane * getParallelOpposite() const
return the opposite direction lane of this lanes edge or nullptr
std::map< std::string, MSLane * > DictType
definition of the static dictionary type
double getFractionalVehicleLength(bool brutto) const
return length of fractional vehicles on this lane
MSEdge & getEdge() const
Returns the lane's edge.
double getSpaceTillLastStanding(const MSVehicle *ego, bool &foundStopped) const
return the empty space up to the last standing vehicle or the empty space on the whole lane if no veh...
const MSLane * getNormalPredecessorLane() const
get normal lane leading to this internal lane, for normal lanes, the lane itself is returned
virtual bool appropriate(const MSVehicle *veh) const
MSLeaderDistanceInfo getFollowersOnConsecutive(const MSVehicle *ego, double backOffset, bool allSublanes, double searchDist=-1, MinorLinkMode mLinkMode=FOLLOW_ALWAYS) const
return the sublane followers with the largest missing rear gap among all predecessor lanes (within di...
double getWidth() const
Returns the lane's width.
const std::vector< MSLink * > & getLinkCont() const
returns the container with all links !!!
bool freeInsertion(MSVehicle &veh, double speed, double posLat, MSMoveReminder::Notification notification=MSMoveReminder::NOTIFICATION_DEPARTED)
Tries to insert the given vehicle on any place.
virtual void addMoveReminder(MSMoveReminder *rem)
Add a move-reminder to move-reminder container.
double getMeanSpeed() const
Returns the mean speed on this lane.
double myNettoVehicleLengthSumToRemove
The length of all vehicles that have left this lane in the current step (this lane,...
void loadState(const std::vector< std::string > &vehIDs, MSVehicleControl &vc)
Loads the state of this segment with the given parameters.
void setFrictionCoefficient(double val)
Sets a new friction coefficient for the lane [to be later (used by TraCI and MSCalibrator)].
static CollisionAction getCollisionAction()
saves leader/follower vehicles and their distances relative to an ego vehicle
virtual std::string toString() const
print a debugging representation
CLeaderDist getClosest() const
return vehicle with the smalles gap
virtual int addLeader(const MSVehicle *veh, double gap, double latOffset=0, int sublane=-1)
void setSublaneOffset(int offset)
set number of sublanes by which to shift positions
int numFreeSublanes() const
virtual int addLeader(const MSVehicle *veh, bool beyond, double latOffset=0.)
virtual std::string toString() const
print a debugging representation
int getSublaneOffset() const
LinkState getState() const
Returns the current state of the link.
MSJunction * getJunction() const
MSLane * getLane() const
Returns the connected lane.
const std::vector< MSLink * > & getFoeLinks() const
std::vector< LinkLeader > LinkLeaders
double getInternalLengthsAfter() const
Returns the cumulative length of all internal lanes after this link.
const MSTrafficLightLogic * getTLLogic() const
Returns the TLS index.
Something on a lane to be noticed about vehicle movement.
Notification
Definition of a vehicle state.
@ NOTIFICATION_ARRIVED
The vehicle arrived at its destination (is deleted)
@ NOTIFICATION_TELEPORT_ARRIVED
The vehicle was teleported out of the net.
@ NOTIFICATION_DEPARTED
The vehicle has departed (was inserted into the network)
@ NOTIFICATION_VAPORIZED_VAPORIZER
The vehicle got vaporized with a vaporizer.
@ NOTIFICATION_VAPORIZED_COLLISION
The vehicle got removed by a collision.
@ NOTIFICATION_LOAD_STATE
The vehicle has been loaded from a state file.
@ NOTIFICATION_TELEPORT
The vehicle is being teleported.
The simulated network and simulation perfomer.
@ COLLISION
The vehicle is involved in a collision.
static MSNet * getInstance()
Returns the pointer to the unique instance of MSNet (singleton).
static const std::string STAGE_MOVEMENTS
SUMOTime getCurrentTimeStep() const
Returns the current simulation step.
const std::map< SUMOVehicleClass, double > * getRestrictions(const std::string &id) const
Returns the restrictions for an edge type If no restrictions are present, 0 is returned.
void informVehicleStateListener(const SUMOVehicle *const vehicle, VehicleState to, const std::string &info="")
Informs all added listeners about a vehicle's state change.
bool hasPersons() const
Returns whether persons are simulated.
MSInsertionControl & getInsertionControl()
Returns the insertion control.
MSVehicleControl & getVehicleControl()
Returns the vehicle control.
virtual MSTransportableControl & getPersonControl()
Returns the person control.
bool registerCollision(const SUMOTrafficObject *collider, const SUMOTrafficObject *victim, const std::string &collisionType, const MSLane *lane, double pos)
register collision and return whether it was the first one involving these vehicles
MSEdgeControl & getEdgeControl()
Returns the edge control.
virtual PersonDist nextBlocking(const MSLane *lane, double minPos, double minRight, double maxLeft, double stopTime=0, bool bidi=false)
returns the next pedestrian beyond minPos that is laterally between minRight and maxLeft or 0
virtual bool hasPedestrians(const MSLane *lane)
whether the given lane has pedestrians on it
static bool hasOncomingRailTraffic(MSLink *link, const MSVehicle *ego, bool &brakeBeforeSignal)
static bool hasInsertionConstraint(MSLink *link, const MSVehicle *veh, std::string &info, bool &isInsertionOrder)
const MSEdge * getLastEdge() const
returns the destination edge
MSRouteIterator begin() const
Returns the begin of the list of edges to pass.
const MSLane * lane
The lane to stop at (microsim only)
double getEndPos(const SUMOVehicle &veh) const
return halting position for upcoming stop;
const SUMOVehicleParameter::Stop pars
The stop parameter.
MSPModel * getMovementModel()
Returns the default movement model for this kind of transportables.
virtual double getEdgePos() const
Return the position on the edge.
const MSVehicleType & getVehicleType() const
Returns the object's "vehicle" type.
bool isRemoteAffected(SUMOTime t) const
The class responsible for building and deletion of vehicles.
void registerTeleportYield()
register one non-collision-related teleport
double getMinDeceleration() const
return the minimum deceleration capability for all road vehicles that ever entered the network
SUMOVehicle * getVehicle(const std::string &id) const
Returns the vehicle with the given id.
void registerTeleportJam()
register one non-collision-related teleport
double getMaxSpeedFactor() const
return the maximum speed factor for all vehicles that ever entered the network
double getMinDecelerationRail() const
return the minimum deceleration capability for all ral vehicles that ever entered the network
void scheduleVehicleRemoval(SUMOVehicle *veh, bool checkDuplicate=false)
Removes a vehicle after it has ended.
void registerTeleportWrongLane()
register one non-collision-related teleport
void registerCollision(bool teleport)
registers one collision-related teleport
Representation of a vehicle in the micro simulation.
double getRightSideOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
void updateBestLanes(bool forceRebuild=false, const MSLane *startLane=0)
computes the best lanes to use in order to continue the route
bool isOnRoad() const
Returns the information whether the vehicle is on a road (is simulated)
SUMOTime getLastActionTime() const
Returns the time of the vehicle's last action point.
PositionVector getBoundingPoly(double offset=0) const
get bounding polygon
void setTentativeLaneAndPosition(MSLane *lane, double pos, double posLat=0)
set tentative lane and position during insertion to ensure that all cfmodels work (some of them requi...
SUMOTime getWaitingTime() const
Returns the SUMOTime waited (speed was lesser than 0.1m/s)
void registerInsertionApproach(MSLink *link, double dist)
register approach on insertion
void enterLaneAtInsertion(MSLane *enteredLane, double pos, double speed, double posLat, MSMoveReminder::Notification notification)
Update when the vehicle enters a new lane in the emit step.
bool isFrontOnLane(const MSLane *lane) const
Returns the information whether the front of the vehicle is on the given lane.
MSAbstractLaneChangeModel & getLaneChangeModel()
double getLeftSideOnLane() const
Get the lateral position of the vehicles left side on the lane:
double getActionStepLengthSecs() const
Returns the vehicle's action step length in secs, i.e. the interval between two action points.
const std::vector< MSLane * > getUpstreamOppositeLanes() const
Returns the sequence of opposite lanes corresponding to past lanes.
PositionVector getBoundingBox(double offset=0) const
get bounding rectangle
Position getPosition(const double offset=0) const
Return current position (x/y, cartesian)
const std::vector< MSLane * > & getBestLanesContinuation() const
Returns the best sequence of lanes to continue the route starting at myLane.
bool ignoreCollision() const
whether this vehicle is except from collision checks
void onRemovalFromNet(const MSMoveReminder::Notification reason)
Called when the vehicle is removed from the network.
bool resumeFromStopping()
int getBestLaneOffset() const
void adaptToJunctionLeader(const std::pair< const MSVehicle *, double > leaderInfo, const double seen, DriveProcessItem *const lastLink, const MSLane *const lane, double &v, double &vLinkPass, double distToCrossing=-1) const
double getBackPositionOnLane(const MSLane *lane) const
Get the vehicle's position relative to the given lane.
void resetActionOffset(const SUMOTime timeUntilNextAction=0)
Resets the action offset for the vehicle.
void leaveLane(const MSMoveReminder::Notification reason, const MSLane *approachedLane=0)
Update of members if vehicle leaves a new lane in the lane change step or at arrival.
double getLatOffset(const MSLane *lane) const
Get the offset that that must be added to interpret myState.myPosLat for the given lane.
bool hasArrived() const
Returns whether this vehicle has already arived (reached the arrivalPosition on its final edge)
SUMOTime collisionStopTime() const
Returns the remaining time a vehicle needs to stop due to a collision. A negative value indicates tha...
double getBestLaneDist() const
returns the distance that can be driven without lane change
bool executeMove()
Executes planned vehicle movements with regards to right-of-way.
const MSLane * getLane() const
Returns the lane the vehicle is on.
bool isLeader(const MSLink *link, const MSVehicle *veh, const double gap) const
whether the given vehicle must be followed at the given junction
MSLane * getMutableLane() const
Returns the lane the vehicle is on Non const version indicates that something volatile is going on.
Influencer & getInfluencer()
bool isBidiOn(const MSLane *lane) const
whether this vehicle is driving against lane
double getRightSideOnLane() const
Get the lateral position of the vehicles right side on the lane:
double getLateralPositionOnLane() const
Get the vehicle's lateral position on the lane.
double getSpeed() const
Returns the vehicle's current speed.
const std::vector< MSLane * > & getFurtherLanes() const
const std::vector< LaneQ > & getBestLanes() const
Returns the description of best lanes to use in order to continue the route.
const MSCFModel & getCarFollowModel() const
Returns the vehicle's car following model definition.
double processNextStop(double currentVelocity)
Processes stops, returns the velocity needed to reach the stop.
double getPositionOnLane() const
Get the vehicle's position along the lane.
bool onFurtherEdge(const MSEdge *edge) const
whether this vehicle has its back (and no its front) on the given edge
double getLateralOverlap() const
return the amount by which the vehicle extends laterally outside it's primary lane
double getAngle() const
Returns the vehicle's direction in radians.
bool hasInfluencer() const
whether the vehicle is individually influenced (via TraCI or special parameters)
void executeFractionalMove(double dist)
move vehicle forward by the given distance during insertion
double getCenterOnEdge(const MSLane *lane=0) const
Get the vehicle's lateral position on the edge of the given lane (or its current edge if lane == 0)
static MSVehicleTransfer * getInstance()
Returns the instance of this object.
void add(const SUMOTime t, MSVehicle *veh)
Adds a vehicle to this transfer object.
double getLengthWithGap() const
Get vehicle's length including the minimum gap [m].
double getWidth() const
Get the width which vehicles of this class shall have when being drawn.
SUMOVehicleClass getVehicleClass() const
Get this vehicle type's vehicle class.
double getMinGap() const
Get the free space in front of vehicles of this class.
double getLength() const
Get vehicle's length [m].
SUMOVehicleShape getGuiShape() const
Get this vehicle type's shape.
const SUMOVTypeParameter & getParameter() const
Base class for objects which have an id.
std::string myID
The name of the object.
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
A RT-tree for efficient storing of SUMO's Named objects.
A storage for options typed value containers)
double getFloat(const std::string &name) const
Returns the double-value of the named option (only for Option_Float)
int getInt(const std::string &name) const
Returns the int-value of the named option (only for Option_Integer)
std::string getString(const std::string &name) const
Returns the string-value of the named option (only for Option_String)
bool getBool(const std::string &name) const
Returns the boolean-value of the named option (only for Option_Bool)
Static storage of an output device and its base (abstract) implementation.
OutputDevice & writeAttr(const SumoXMLAttr attr, const T &val)
writes a named attribute
OutputDevice & openTag(const std::string &xmlElement)
Opens an XML tag.
bool closeTag(const std::string &comment="")
Closes the most recently opened tag and optionally adds a comment.
void unsetParameter(const std::string &key)
Removes a parameter.
virtual void setParameter(const std::string &key, const std::string &value)
Sets a parameter.
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
bool overlapsWith(const AbstractPoly &poly, double offset=0) const
Returns the information whether the given polygon overlaps with this.
double distance2D(const Position &p, bool perpendicular=false) const
closest 2D-distance to point p (or -1 if perpendicular is true and the point is beyond this vector)
Boundary getBoxBoundary() const
Returns a boundary enclosing this list of lines.
double angleAt2D(int pos) const
get angle in certain position of position vector
static void loadState(const std::string &state, SumoRNG *rng=nullptr)
load rng state from string
static void initRand(SumoRNG *which=nullptr, const bool random=false, const int seed=23423)
Initialises the random number generator with hardware randomness or seed.
static double rand(SumoRNG *rng=nullptr)
Returns a random real number in [0, 1)
static std::string saveState(SumoRNG *rng=nullptr)
save rng state to string
virtual const MSVehicleType & getVehicleType() const =0
Returns the object's "vehicle" type.
SUMOTime getTimeToTeleport(SUMOTime defaultValue) const
return time-to-teleport (either custom or default)
SUMOTime getTimeToTeleportBidi(SUMOTime defaultValue) const
return time-to-teleport.bidi (either custom or default)
Representation of a vehicle.
virtual const MSEdge * succEdge(int nSuccs) const =0
Returns the nSuccs'th successor of edge the vehicle is currently at.
Definition of vehicle stop (position and duration)
std::string lane
The lane to stop at.
std::string split
the id of the vehicle (train portion) that splits of upon reaching this stop
double startPos
The stopping position start.
int parametersSet
Information for the output which parameter were set.
double endPos
The stopping position end.
bool collision
Whether this stop was triggered by a collision.
SUMOTime duration
The stopping duration.
Structure representing possible vehicle parameter.
double departPosLat
(optional) The lateral position the vehicle shall depart from
ArrivalSpeedDefinition arrivalSpeedProcedure
Information how the vehicle's end speed shall be chosen.
double departSpeed
(optional) The initial speed of the vehicle
DepartPosLatDefinition departPosLatProcedure
Information how the vehicle shall choose the lateral departure position.
double departPos
(optional) The position the vehicle shall depart from
DepartSpeedDefinition departSpeedProcedure
Information how the vehicle's initial speed shall be chosen.
double arrivalSpeed
(optional) The final speed of the vehicle (not used yet)
DepartDefinition departProcedure
Information how the vehicle shall choose the depart time.
int insertionChecks
bitset of InsertionCheck
DepartPosDefinition departPosProcedure
Information how the vehicle shall choose the departure position.
A scoped lock which only triggers on condition.
bool isDefined() const
check if stopOffset was defined
SVCPermissions getPermissions() const
get permissions
double getOffset() const
get offset
TRACI_CONST int CMD_GET_VEHICLE_VARIABLE
TRACI_CONST int CMD_GET_EDGE_VARIABLE
TRACI_CONST int CMD_GET_PERSON_VARIABLE
TRACI_CONST int CMD_GET_LANE_VARIABLE
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
std::pair< MSVehicle *, double > vehAndGap