Package ‘lintr’

October 11, 2022

Title A 'Linter' for R Code
Version 3.0.2

Description Checks adherence to a given style, syntax errors and possible
semantic issues. Supports on the fly checking of R code edited with
'RStudio IDE', 'Emacs', 'Vim', 'Sublime Text', 'Atom' and 'Visual
Studio Code'.

License MIT + file LICENSE
URL https://github.com/r-1ib/lintr, https://lintr.r-1lib.org

BugReports https://github.com/r-1ib/lintr/issues
Depends R (>=3.2)

Imports backports,
codetools,
crayon,
cyclocomp,
digest,
glue,
jsonlite,
knitr,
rex,
stats,
utils,
xml2 (>=1.0.0),
xmlparsedata (>= 1.0.5)

Suggests covr,
httr (>=1.2.1),
mockery,
patrick,
pkgdown,
rmarkdown,
rstudioapi (>= 0.2),
testthat (>= 3.0.0),
tibble,
withr (>=2.5.0)

VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

https://github.com/r-lib/lintr
https://lintr.r-lib.org
https://github.com/r-lib/lintr/issues

Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1

Collate 'T_and_F_symbol_linter.R’'
"utils.R’
'aaa.R’
'actions.R'
'addins.R’
'any_duplicated_linter.R’
'any_is_na_linter.R'
'assignment_linter.R’'
'backport_linter.R’
'brace_linter.R'
'cache.R’
'class_equals_linter.R'
'closed_curly_linter.R’
'commas_linter.R'
'comment_linters.R'
'comments.R'
‘condition_message_linter.R’
'conjunct_test_linter.R’'
'consecutive_stopifnot_linter.R'
'cyclocomp_linter.R'
'declared_functions.R'
'deprecated.R’
'duplicate_argument_linter.R'
'equals_na_linter.R’
'exclude.R’
'expect_comparison_linter.R’'
'expect_identical_linter.R'
'expect_length_linter.R'
'expect_lint.R’
'expect_named_linter.R’'
'expect_not_linter.R'
'expect_null_linter.R'
'expect_s3_class_linter.R'
'expect_true_false_linter.R'
'expect_type_linter.R'
'extract.R’
'extraction_operator_linter.R'
'fixed_regex_linter.R'
'function_argument_linter.R’'
'function_left_parentheses_linter.R’'
'get_source_expressions.R'
'ids_with_token.R'
'ifelse_censor_linter.R'
'implicit_integer_linter.R'
'infix_spaces_linter.R’'
'inner_combine_linter.R'
'is_lint_level.R'
'line_length_linter.R'
Tlint.R’

'linter_tag_docs.R'
'linter_tags.R'
'literal_coercion_linter.R'
'make_linter_from_regex.R'
'methods.R’
'missing_argument_linter.R’'
'missing_package_linter.R'
'namespace.R’
'namespace_linter.R'
'nested_ifelse_linter.R'
'no_tab_linter.R'
'numeric_leading_zero_linter.R’
'object_name_linters.R'
'object_usage_linter.R'
'open_curly_linter.R'
'outer_negation_linter.R’
'package_hooks_linter.R'
'‘paren_body_linter.R'
'paren_brace_linter.R'
'paste_linter.R’
'path_linters.R’
'pipe_call_linter.R’'
'pipe_continuation_linter.R'
'redundant_ifelse_linter.R'
'regex_subset_linter.R'
'semicolon_linter.R'
'seq_linter.R'

'settings.R’
'single_quotes_linter.R’'
'spaces_inside_linter.R’'
'spaces_left_parentheses_linter.R'
'sprintf_linter.R'
'string_boundary_linter.R’'
'strings_as_factors_linter.R’'
'system_file_linter.R'
'trailing_blank_lines_linter.R’
'trailing_whitespace_linter.R’
'tree-utils.R'
'undesirable_function_linter.R'
'undesirable_operator_linter.R'
'unneeded_concatenation_linter.R'
‘unreachable_code_linter.R'
'unused_import_linter.R’
'use_lintr.R'
'vector_logic_linter.R'
'with.R'

'with_id.R'
'xml_nodes_to_lints.R'
'xp_utils.R'
'yoda_test_linter.R'

'zzz.R'

4 R topics documented:

R topics documented:

absolute_path_linter L 6
all_undesirable_functions e 7
any_duplicated_lintero 8
any_is_na_linter. e e e 9
assignment_linter L 9
available_linters e 10
backport_linter 11
best_practices_linters 12
brace_linter L e 13
checkstyle_output L 14
class_equals_linter 14
clear_cache e 15
closed_curly_linter L 15
commas_lINter e e e e e e 16
commented_code_linter e e 16
common_mistakes_linters e e 17
condition_message_linter 17
configurable_linters L 18
conjunct_test_linter L. 19
consecutive_stopifnot_linter L 19
consistency_linters L. e e e 20
correctness_lINters e e e 21
cyclocomp_linter e 21
default_linters e e e 22
default_settings e e 23
deprecated_linters L 23
duplicate_argument_linter 24
efficiency_linters L 24
equals_na_linter e e e 25
exclude e 25
executing_linters L. L 26
expect_comparison_linter o 27
expect_identical_linter 27
expect_length_linter 28
expect_lint.o 28
expect_lint_free 29
expect_named_linter 30
expect_not_linter L 30
expect_null_linter 31
expect_s3_class_linter 31
expect_sd_class_linter e 32
expect_true_false linter L 32
expect_type_linter. 33
extraction_operator_linter o 33
fixed_regex_linter 34
function_argument_linter 0oL 34
function_left_parentheses_linter 35
Et_SOUICE_EXPIESSIONS v v v v e ittt e e e e 35
ids_with_token e 36

ifelse_censor_linter e e 37

R topics documented: 5

implicit_integer_lintero e 38
infix_spaces_linter 38
inner_combine_linter L e 39
is_lint_level e e 39
line_length linter L 40
LNt . . . e e e 40
lint-83 e e 42
Linter e e e 43
LNters e e e e 43
linters_with_defaults e 46
linters_with_tags 47
literal_coercion_linter e e 48
missing_argument_linter L. 48
missing_package linter L 49
modify_defaults 49
namespace_linter L L e 50
nested_ifelse linter L e 51
nonportable_path_linter 51
no_tab_linter e e 52
numeric_leading_zero_linter L 52
object_length_linter 53
object_name_linter L 53
object_usage_linter e 54
open_curly_linter L. 55
outer_negation_linter 55
package_development_linters L o 56
package_hooks_linter 56
paren_body_linter 57
paren_brace_linter L e e e 58
parse_exclusions e e e e 58
paste_linter 59
pipe_call_linter e 60
pipe_continuation_lintero e 60
readability_linters 61
read_Settings L. e e e e e e 62
redundant_ifelse_linter 63
regex_subset_linter 63
robustness_linters L e 64
sarif_outputo 65
semicolon_linter e e e 65
seq_lintero L e 66
single_quotes_linter 66
spaces_inside_linter e e 67
spaces_left_parentheses_linter oL 67
sprintf_linter 68
strings_as_factors_linter 68
string_boundary_linter 69
style_linters L 69
system_file_linter L e 71
todo_comment_linter e 71
trailing_blank_lines_linter L 72

trailing_whitespace_linter. L. oL 72

absolute_path_linter

T_and_F_symbol_linter. 73
undesirable_function_linter 73
undesirable_operator_lintero 74
unneeded_concatenation_linter L Lo 74
unreachable_code_linter 75
unused_import_linter L. 75
use_lintr L s 76
vector_logic_linter L. 77
xml nodes_to lints e 77
yoda_test_linter e e e 78

absolute_path_linter Absolute path linter

Description

Check that no absolute paths are used (e.g. "/var", "C:\System", "~/docs").

Usage

absolute_path_linter(lax = TRUE)

Arguments
lax Less stringent linting, leading to fewer false positives. If TRUE, only lint path
strings, which
* contain at least two path elements, with one having at least two characters
and
* contain only alphanumeric chars (including UTF-8), spaces, and win32-
allowed punctuation
Tags

best_practices, configurable, robustness

See Also

linters for a complete list of linters available in lintr.

all _undesirable_functions 7

all_undesirable_functions

Default undesirable functions and operators

Description

Lists of function names and operators for undesirable_function_linter() and undesirable_operator_linter().
There is a list for the default elements and another that contains all available elements. Use
modify_defaults() to produce a custom list.

Usage

all_undesirable_functions

default_undesirable_functions

all_undesirable_operators

default_undesirable_operators

Format

A named list of character strings.

Details

The following functions are sometimes regarded as undesirable:

attach() modifies the global search path. Use roxygen2’s @importFrom statement in pack-
ages, or : : in scripts.

browser () pauses execution when run and is likely a leftover from debugging. It should be
removed.

debug () traps a function and causes execution to pause when that function is run. It should
be removed.

debugcall () works similarly to debug(), causing execution to pause. It should be removed.
debugonce () is only useful for interactive debugging. It should be removed.

detach() modifies the global search path. Detaching environments from the search path is
rarely necessary in production code.

ifelse() isn’ttype stable. Use an if/else block for scalar logic, oruse dplyr: :if_else()/data. table
for type stable vectorized logic.

.libPaths() permanently modifies the library location. Use withr::with_libpaths() for
a temporary change instead.

library() modifies the global search path. Use roxygen2’s @importFrom statement in pack-
ages, Or : : in scripts.

loadNamespace() doesn’t provide an easy way to signal failures. Use the return value of
requireNamespace() instead.

mapply () isn’t type stable. Use Map () to guarantee a list is returned and simplify accordingly.

i:fifels

8 any_duplicated_linter

* options() permanently modifies the session options. Use withr::with_options() for a
temporary change instead.

e par() permanently modifies the graphics device parameters. Use withr: :with_par() for a
temporary change instead.

* require() modifies the global search path. Use roxygen2’s @importFrom statement in pack-
ages, and library() or :: in scripts.

* sapply() isn’t type stable. Use vapply () with an appropriate FUN. VALUE= argument to obtain
type stable simplification.

* setwd() modifies the global working directory. Use withr::with_dir() for a temporary
change instead.

* sink() permanently redirects output. Use withr::with_sink() for a temporary redirection
instead.

* source() loads code into the global environment unless local = TRUE is used, which can
cause unexpected behaviour.

* substring() should be replaced by substr () with appropriate stop= value.

* Sys.setenv() permanently modifies the global environment variables. Use withr: :with_envvar()
for a temporary change instead.

* Sys.setlocale() permanently modifies the session locale. Use withr: :with_locale() for
a temporary change instead.

* trace() traps a function and causes execution of arbitrary code when that function is run. It
should be removed.

* undebug() is only useful for interactive debugging with debug(). It should be removed.

* untrace() is only useful for interactive debugging with trace(). It should be removed.
The following operators are sometimes regarded as undesirable:

* ::: accesses non-exported functions inside packages. Code relying on these is likely to break
in future versions of the package because the functions are not part of the public interface and
may be changed or removed by the maintainers without notice. Use public functions via : :
instead.

» <<- and ->> assign outside the current environment in a way that can be hard to reason about.
Prefer fully-encapsulated functions wherever possible, or, if necessary, assign to a specific
environment with assign(). Recall that you can create an environment at the desired scope
with new.env ().

any_duplicated_linter Regquire usage of anyDuplicated() > 0 over any(duplicated.))

Description

anyDuplicated() exists as a replacement for any(duplicated(.)) which is more efficient for
simple objects, and in the worst case is the same efficiency. Therefore it should be used in all
situations instead of the latter.

Usage

any_duplicated_linter()

any_is_na_linter 9

Details

Also match usage like length(unique (x$col)) == nrow(x), which can be replaced by anyDuplicated(x$col)
==0L.

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

any_is_na_linter Require usage of anyNA over any(is.na(.))

Description

anyNA() exists as a replacement for any(is.na(.)) which is more efficient for simple objects, and
in the worst case is the same efficiency. Therefore it should be used in all situations instead of the
latter.

Usage

any_is_na_linter()

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

assignment_linter Assignment linter

Description

Check that <- is always used for assignment.

Usage

assignment_linter(
allow_cascading_assign = TRUE,
allow_right_assign = FALSE,
allow_trailing = TRUE

)

10 available_linters

Arguments

allow_cascading_assign
Logical, default TRUE. If FALSE, <<- and ->> are not allowed.

allow_right_assign
Logical, default FALSE. If TRUE, -> and ->> are allowed.

allow_trailing Logical, default TRUE. If FALSE then assignments aren’t allowed at end of lines.

Tags

consistency, default, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#assignment-1

available_linters Get Linter metadata from a package

Description

available_linters() obtains a tagged list of all Linters available in a package.

available_tags() searches for available tags.

Usage

available_linters(packages = "lintr"”, tags = NULL, exclude_tags = "deprecated"”)

available_tags(packages = "lintr")

Arguments
packages A character vector of packages to search for linters.
tags Optional character vector of tags to search. Only linters with at least one match-

ing tag will be returned. If tags is NULL, all linters will be returned.

exclude_tags Tags to exclude from the results. Linters with at least one matching tag will not
be returned. If except_tags is NULL, no linters will be excluded.

Value
available_linters returns a data frame with columns ’linter’, *package’ and ’tags’:

linter A character column naming the function associated with the linter.
package A character column containing the name of the package providing the linter.

tags A list column containing tags associated with the linter.

available_tags returns a character vector of linter tags used by the packages.

https://style.tidyverse.org/syntax.html#assignment-1

backport_linter 11

Package Authors

To implement available_linters() for your package, include a file inst/lintr/linters.csv
in your package. The CSV file must contain the columns ’linter’ and ’tags’, and be UTF-8 encoded.
Additional columns will be silently ignored if present and the columns are identified by name. Each
row describes a linter by

1. its function name (e.g. "assignment_linter") in the column ’linter’.

2. space-separated tags associated with the linter (e.g. "style consistency default”) in the
column ’tags’.

Tags should be snake_case.
See available_tags("lintr") to find out what tags are already used by lintr.
See Also

linters for a complete list of linters available in lintr.

Examples

lintr_linters <- available_linters()

If the package doesn't exist or isn't installed, an empty data frame will be returned
available_linters("does-not-exist")

lintr_linters2 <- available_linters(c("lintr", "does-not-exist"))
identical(lintr_linters, lintr_linters2)
available_tags()

backport_linter Backport linter

Description

Check for usage of unavailable functions. Not reliable for testing r-devel dependencies.

Usage

backport_linter(r_version = getRversion(), except = character())

Arguments
r_version Minimum R version to test for compatibility
except Character vector of functions to be excluded from linting. Use this to list ex-
plicitly defined backports, e.g. those imported from the backports package or
manually defined in your package.
Tags

configurable, package_development, robustness

See Also

linters for a complete list of linters available in lintr.

12

best_practices_linters

best_practices_linters

Best practices linters

Description

Linters checking the use of coding best practices, such as explicit typing of numeric constants.

Linters

The following linters are tagged with best_practices’:

absolute_path_linter
any_duplicated_linter
any_is_na_linter
class_equals_linter
commented_code_linter
condition_message_linter
conjunct_test_linter
cyclocomp_linter
expect_comparison_linter
expect_length_linter
expect_named_linter
expect_not_linter
expect_null_linter
expect_s3_class_linter
expect_s4_class_linter
expect_true_false_linter

expect_type_linter

extraction_operator_linter

fixed_regex_linter
function_argument_linter
ifelse_censor_linter
implicit_integer_linter
literal_coercion_linter
nonportable_path_linter
outer_negation_linter
paste_linter
redundant_ifelse_linter
regex_subset_linter
seg_linter

system_file_linter

brace_linter 13
e T_and_F_symbol_linter
* undesirable_function_linter
e undesirable_operator_linter
e unreachable_code_linter
* unused_import_linter
e vector_logic_linter
e yoda_test_linter
See Also
linters for a complete list of linters available in lintr.
brace_linter Brace linter
Description
Perform various style checks related to placement and spacing of curly braces:
Usage
brace_linter(allow_single_line = FALSE)
Arguments
allow_single_line
if TRUE, allow an open and closed curly pair on the same line.
Details
* Opening curly braces are never on their own line and are always followed by a newline.
* Opening curly braces have a space before them.
* Closing curly braces are on their own line unless they are followed by an else.
* Closing curly braces in if conditions are on the same line as the corresponding else.
* Either both or neither branch in if/else use curly braces, i.e., either both branches use { . . .}

or neither does.

* Functions spanning multiple lines use curly braces.

Tags

configurable, default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#indenting
https://style.tidyverse.org/syntax.html#if-statements

https://style.tidyverse.org/syntax.html#indenting
https://style.tidyverse.org/syntax.html#if-statements

14 class_equals_linter

checkstyle_output Checkstyle Report for lint results

Description

Generate a report of the linting results using the Checkstyle XML format.

Usage

checkstyle_output(lints, filename = "lintr_results.xml")
Arguments

lints the linting results.

filename the name of the output report

class_equals_linter Block comparison of class with ==

Description

Usage like class(x) == "character” is prone to error since class in R is in general a vector. The
correct version for S3 classes is inherits(): inherits(x, "character”). Often, class k will
have an is. equivalent, for example is.character() or is.data.frame().

Usage

class_equals_linter()

Details

Similar reasoning applies for class(x) %in% "character”

Tags

best_practices, consistency, robustness

See Also

linters for a complete list of linters available in lintr.

https://checkstyle.sourceforge.io

clear_cache 15

clear_cache Clear the lintr cache

Description

Clear the lintr cache

Usage

clear_cache(file = NULL, path = NULL)

Arguments
file filename whose cache to clear. If you pass NULL, it will delete all of the caches.
path directory to store caches. Reads option ’lintr.cache_directory’ as the default.
Value

0 for success, 1 for failure, invisibly.

closed_curly_linter Closed curly linter

Description

Check that closed curly braces are on their own line unless they follow an else, comma, or closing
bracket.

Usage

closed_curly_linter(allow_single_line = FALSE)

Arguments

allow_single_line
if TRUE, allow an open and closed curly pair on the same line.
Tags

configurable, deprecated, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#indenting

https://style.tidyverse.org/syntax.html#indenting

16 commented_code_linter

commas_linter Commas linter

Description

Check that all commas are followed by spaces, but do not have spaces before them.

Usage

commas_linter ()

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#commas

commented_code_linter Commented code linter

Description

Check that there is no commented code outside roxygen blocks.

Usage

commented_code_linter()

Tags

best_practices, default, readability, style

See Also

linters for a complete list of linters available in lintr.

https://style.tidyverse.org/syntax.html#commas

common_

mistakes_linters

17

common_mistakes_linters

Common mistake linters

Description

Linters highlighting common mistakes, such as duplicate arguments.

Linters

The following linters are tagged with ’common_mistakes’:

See Also

duplicate_argument_linter
equals_na_linter
missing_argument_linter
missing_package_linter
sprintf_linter

unused_import_linter

linters for a complete list of linters available in lintr.

condition_message_linter

Block usage of paste() and paste0() with messaging functions using ...

Description

stop(paste@(...)) is strictly redundant — stop(...) is equivalent. stop(...) is also prefer-
able to stop(paste(...)). The same applies to all default condition functions, i.e., stop(),
warning(), message(), and packageStartupMessage().

Usage

condition_message_linter()

Tags

best_practices, consistency

See Also

linters for a complete list of linters available in lintr.

18 configurable_linters

configurable_linters Configurable linters

Description

Generic linters which support custom configuration to your needs.

Linters

The following linters are tagged with ’configurable’:

e absolute_path_linter

e backport_linter

e brace_linter

e closed_curly_linter

e cyclocomp_linter

e duplicate_argument_linter

e line_length_linter

* missing_argument_linter

* namespace_linter

e nonportable_path_linter

e object_length_linter

e object_name_linter

e open_curly_linter

* semicolon_linter

* semicolon_terminator_linter
* todo_comment_linter

e undesirable_function_linter
e undesirable_operator_linter
e unneeded_concatenation_linter

e unused_import_linter

See Also

linters for a complete list of linters available in lintr.

conjunct_test_linter 19

conjunct_test_linter Force & & conditions in expect_true(), expect_false() to be written sep-
arately

Description

For readability of test outputs, testing only one thing per call to testthat::expect_true() is
preferable, i.e., expect_true(A); expect_true(B) is better than expect_true(A &&B), and
expect_false(A); expect_false(B) is better than expect_false(A || B).

Usage

conjunct_test_linter(allow_named_stopifnot = TRUE)

Arguments

allow_named_stopifnot
Logical, TRUE by default. If FALSE, "named" calls to stopifnot(), available
since R 4.0.0 to provide helpful messages for test failures, are also linted.

Details

Similar reasoning applies to && usage inside stopifnot() and assertthat: :assert_that() calls.

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

consecutive_stopifnot_linter
Force consecutive calls to stopifnot into just one when possible

Description

stopifnot() accepts any number of tests, so sequences like stopifnot(x); stopifnot(y) are
redundant.

Usage

consecutive_stopifnot_linter()

Tags

consistency, readability, style

See Also

linters for a complete list of linters available in lintr.

20

consistency_linters

consistency_linters

Consistency linters

Description

Linters checking enforcing a consistent alternative if there are multiple syntactically valid ways to
write something.

Linters

The following linters are tagged with ’consistency’:

See Also

linters for a complete list of linters available in lintr.

assignment_linter
class_equals_linter
condition_message_linter
consecutive_stopifnot_linter
function_argument_linter
implicit_integer_linter
inner_combine_linter
literal_coercion_linter
no_tab_linter
numeric_leading_zero_linter
object_name_linter
paste_linter
redundant_ifelse_linter
seg_linter
single_quotes_linter
system_file_linter

T_and_F_symbol_linter

correctness_linters 21

correctness_linters Correctness linters

Description

Linters highlighting possible programming mistakes, such as unused variables.

Linters
The following linters are tagged with ’correctness’:

e duplicate_argument_linter
e equals_na_linter

* missing_argument_linter

* namespace_linter

* object_usage_linter

e package_hooks_linter

e sprintf_linter

See Also

linters for a complete list of linters available in lintr.

cyclocomp_linter Cyclomatic complexity linter

Description

Check for overly complicated expressions. See cyclocomp: :cyclocomp().

Usage

cyclocomp_linter(complexity_limit = 15L)

Arguments

complexity_limit
expressions with a cyclomatic complexity higher than this are linted, defaults to
15. See cyclocomp: :cyclocomp().

Tags

best_practices, configurable, default, readability, style

See Also

linters for a complete list of linters available in lintr.

22 default_linters

default_linters Default linters

Description
List of default linters for 1int(). Use linters_with_defaults() to customize it. Most of the
default linters are based on the tidyverse style guide.

The set of default linters is as follows (any parameterised linters, eg, line_length_linter use
their default argument(s), see ?<linter_name> for details):

Usage

default_linters

Format

An object of class 1ist of length 24.

Linters

)

The following linters are tagged with ’default’:

* assignment_linter

e brace_linter

e commas_linter

* commented_code_linter

e cyclocomp_linter

e equals_na_linter

e function_left_parentheses_linter
e infix_spaces_linter

e line_length_linter

* no_tab_linter

* object_length_linter

e object_name_linter

* object_usage_linter

e paren_body_linter

e pipe_continuation_linter

e semicolon_linter

e seq_linter

* single_quotes_linter

e spaces_inside_linter

* spaces_left_parentheses_linter
e T_and_F_symbol_linter

e trailing_blank_lines_linter
e trailing_whitespace_linter

e vector_logic_linter

https://style.tidyverse.org/

default_settings 23

See Also

linters for a complete list of linters available in lintr.

default_settings Default lintr settings

Description

Default lintr settings

Usage

default_settings

Format

An object of class 1ist of length 12.

See Also

read_settings(), default_linters

deprecated_linters Deprecated linters

Description
Linters that are deprecated and provided for backwards compatiblility only. These linters will be
excluded from linters_with_tags() by default.
Linters
The following linters are tagged with ’deprecated’:
e closed_curly_linter
e open_curly_linter

e paren_brace_linter

e semicolon_terminator_linter

See Also

linters for a complete list of linters available in lintr.

24

efficiency_linters

duplicate_argument_linter
Duplicate argument linter

Description

Check for duplicate arguments in function calls.

Usage

duplicate_argument_linter(except = character())

Arguments

except a character vector of function names as exceptions.

Tags

common_mistakes, configurable, correctness

See Also

linters for a complete list of linters available in lintr.

efficiency_linters Efficiency linters

Description

Linters highlighting code efficiency problems, such as unnecessary function calls.

Linters
The following linters are tagged with ’efficiency’:

* any_duplicated_linter

e any_is_na_linter

e fixed_regex_linter

* ifelse_censor_linter

e inner_combine_linter

e literal_coercion_linter
* nested_ifelse_linter

e outer_negation_linter

* redundant_ifelse_linter
* regex_subset_linter

e seq_linter

e string_boundary_linter

equals_na_linter

e undesirable_function_linter
e undesirable_operator_linter
e unneeded_concatenation_linter

e vector_logic_linter

See Also

linters for a complete list of linters available in lintr.

25

equals_na_linter Equality check with NA linter

Description

Check for x == NA and x !=NA

Usage

equals_na_linter()

Tags

common_mistakes, correctness, default, robustness

See Also

linters for a complete list of linters available in lintr.

exclude Exclude lines or files from linting

Description

Exclude lines or files from linting

Usage

exclude(lints, exclusions = settings$exclusions, linter_names = NULL,

Arguments
lints that need to be filtered.
exclusions manually specified exclusions

linter_names character vector of names of the active linters, used for parsing inline exclusions.

additional arguments passed to parse_exclusions()

26 executing_linters

Details

Exclusions can be specified in three different ways.

1. single line in the source file. default: # nolint, possibly followed by a listing of linters to
exclude. If the listing is missing, all linters are excluded on that line. The default listing format
is# nolint: linter_name, linter2_name.. There may not be anything between the colon
and the line exclusion tag and the listing must be terminated with a full stop (.) for the linter
list to be respected.

2. line range in the source file. default: # nolint start, # nolint end. # nolint start
accepts linter lists in the same form as # nolint.

3. exclusions parameter, a named list of files with named lists of linters and lines to exclude them
on, a named list of the files and lines to exclude, or just the filenames if you want to exclude
the entire file, or the directory names if you want to exclude all files in a directory.

executing_linters Code executing linters

Description

Linters that evaluate parts of the linted code, such as loading referenced packages. These linters
should not be used with untrusted code, and may need dependencies of the linted package or project
to be available in order to function correctly.

Linters

The following linters are tagged with "executing’:

* namespace_linter

* object_length_linter
* object_name_linter

* object_usage_linter

e unused_import_linter

See Also

linters for a complete list of linters available in lintr.

expect_comparison_linter 27

expect_comparison_linter
Require usage of expect_gt(x, y) over expect_true(x > y) (and similar)

Description

testthat::expect_gt(), testthat::expect_gte(), testthat::expect_1t(), testthat: :expect_lte(),
and testthat::expect_equal() exist specifically for testing comparisons between two objects.

testthat: :expect_true() can also be used for such tests, but it is better to use the tailored func-

tion instead.

Usage

expect_comparison_linter()

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

expect_identical_linter
Require usage of expect_identical(x, y) where appropriate

Description

At Google, testthat::expect_identical() should be the default/go-to function for compar-
ing an output to an expected value. expect_true(identical(x, y)) is an equivalent but unad-
vised method of the same test. Further, testthat::expect_equal() should only be used when
expect_identical() is inappropriate, i.e., when x and y need only be numerically equivalent
instead of fully identical (in which case, provide the tolerance= argument to expect_equal () ex-
plicitly). This also applies when it’s inconvenient to check full equality (e.g., names can be ignored,
in which case ignore_attr = "names" should be supplied to expect_equal() (or, for 2nd edition,
check.attributes = FALSE).

Usage

expect_identical_linter()

Exceptions
The linter allows expect_equal () in three circumstances:

1. A named argument is set (e.g. ignore_attr or tolerance)

2. Comparison is made to an explicit decimal, e.g. expect_equal(x, 1.0) (implicitly setting
tolerance)

3. ... ispassed (wrapper functions whcih might set arguments such as ignore_attr or tolerance)

28 expect_lint

Tags

package_development

See Also

linters for a complete list of linters available in lintr.

expect_length_linter Require usage of expect_length(x, n) over expect_equal(length(x), n)

Description
testthat: :expect_length() exists specifically for testing the length() of an object. testthat: :expect_equal()
can also be used for such tests, but it is better to use the tailored function instead.

Usage

expect_length_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

expect_lint Lint expectation

Description

This is an expectation function to test that the lints produced by 1int satisfy a number of checks.

Usage
expect_lint(content, checks, ..., file = NULL, language = "en")
Arguments
content a character vector for the file content to be linted, each vector element represent-
ing a line of text.
checks checks to be performed:

NULL check that no lints are returned.

single string or regex object check that the single lint returned has a matching
message.

named list check that the single lint returned has fields that match. Accepted
fields are the same as those taken by Lint ().

expect_lint_free 29

list of named lists for each of the multiple lints returned, check that it matches
the checks in the corresponding named list (as described in the point above).

Named vectors are also accepted instead of named lists, but this is a compatibil-
ity feature that is not recommended for new code.

arguments passed to 1int (), e.g. the linters or cache to use.
file if not NULL, read content from the specified file rather than from content.

language temporarily override Rs LANGUAGE envvar, controlling localisation of base R er-
ror messages. This makes testing them reproducible on all systems irrespective
of their native R language setting.

Value

NULL, invisibly.

Examples

no expected lint
expect_lint("a", NULL, trailing_blank_lines_linter)

one expected lint
expect_lint("a\n", "superfluous”, trailing_blank_lines_linter)
expect_lint("a\n", list(message="superfluous”, line_number=2), trailing_blank_lines_linter)

several expected lints
expect_lint("a\n\n", list("superfluous”, "superfluous"”), trailing_blank_lines_linter)
expect_lint(
"a\n\n",
list(list(message="superfluous”, line_number=2), list(message="superfluous”, line_number=3)),
trailing_blank_lines_linter()
)

expect_lint_free Test that the package is lint free

Description
This function is a thin wrapper around lint_package that simply tests there are no lints in the pack-
age. It can be used to ensure that your tests fail if the package contains lints.

Usage

expect_lint_free(...)

Arguments

arguments passed to lint_package ()

30 expect_not_linter

expect_named_linter Require usage of expect_named(x, n) over expect_equal(names(x), n)

Description
testthat: :expect_named() exists specifically for testing the names () of an object. testthat: :expect_equal()
can also be used for such tests, but it is better to use the tailored function instead.

Usage

expect_named_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

expect_not_linter Require usage of expect_false(.) over expect_true(!.)

Description

testthat: :expect_false() exists specifically for testing that an output is FALSE. testthat: :expect_true()
can also be used for such tests by negating the output, but it is better to use the tailored function
instead. The reverse is also true — use expect_false(A) instead of expect_true(!A).

Usage

expect_not_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

expect_null_linter 31

expect_null_linter expect_null Linter

Description

Require usage of expect_null(x) over expect_equal(x, NULL) and similar usages.

Usage

expect_null_linter()

Details

testthat: :expect_null() exists specifically for testing for NULL objects. testthat: :expect_equal(),
testthat::expect_identical(), and testthat::expect_true() can also be used for such
tests, but it is better to use the tailored function instead.

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

expect_s3_class_linter
Require usage of expect_s3_class()

Description

testthat: :expect_s3_class() exists specifically for testing the class of S3 objects. testthat: :expect_equal(),
testthat::expect_identical(), and testthat::expect_true() can also be used for such
tests, but it is better to use the tailored function instead.

Usage

expect_s3_class_linter()

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

32 expect_true_false_linter

expect_s4_class_linter
Require usage of expect_s4_class(x, k) over expect_true(is(x, k))

Description
testthat: :expect_s4_class() exists specifically for testing the class of S4 objects. testthat: :expect_true()
can also be used for such tests, but it is better to use the tailored function instead.

Usage

expect_s4_class_linter()

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

expect_true_false_linter
Require usage of expect_true(x) over expect_equal(x, TRUE)

Description

testthat::expect_true() and testthat: :expect_false() exist specifically for testing the TRUE/FALSE
value of an object. testthat::expect_equal() and testthat::expect_identical() can also
be used for such tests, but it is better to use the tailored function instead.

Usage

expect_true_false_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

expect_type_linter 33

expect_type_linter Require usage of expect_type(x, type) over expect_equal(typeofix),
nype)

Description

testthat: :expect_type() exists specifically for testing the storage type of objects. testthat: :expect_equal(),
testthat::expect_identical(), and testthat::expect_true() can also be used for such
tests, but it is better to use the tailored function instead.

Usage

expect_type_linter()

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

extraction_operator_linter
Extraction operator linter

Description
Check that the [[operator is used when extracting a single element from an object, not [(subset-
ting) nor $ (interactive use).

Usage

extraction_operator_linter()

Tags

best_practices, style

See Also

linters for a complete list of linters available in lintr.

34 function_argument_linter

fixed_regex_linter Require usage of fixed=TRUE in regular expressions where appropri-
ate

Description
Invoking a regular expression engine is overkill for cases when the search pattern only involves
static patterns.

Usage

fixed_regex_linter()

Details

NB: for stringr functions, that means wrapping the pattern in stringr::fixed().
NB: This linter is likely not able to distinguish every possible case when a fixed regular expression
is preferable, rather it seeks to identify likely cases. It should never report false positives, however;
please report false positives as an error.

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

function_argument_linter
Function argument linter

Description
Check that arguments with defaults come last in all function declarations, as per the tidyverse design
guide.

Usage

function_argument_linter()

Tags

best_practices, consistency, style

See Also

linters for a complete list of linters available in lintr.
https://design.tidyverse.org/args-data-details.html

https://design.tidyverse.org/args-data-details.html

function_left_parentheses_linter

35

function_left_parentheses_linter
Function left parentheses linter

Description

Check that all left parentheses in a function call do not have spaces before them.

Usage

function_left_parentheses_linter()

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#parentheses

get_source_expressions
Parsed sourced file from a filename

Description

This object is given as input to each linter

Usage

get_source_expressions(filename, lines = NULL)

Arguments

filename the file to be parsed.

lines a character vector of lines. If NULL, then filename will be read.
Details

The file is read in using the encoding setting. This setting found by taking the first valid result from

the following locations

1. The encoding key from the usual lintr configuration settings.

2. The Encoding field from a Package DESCRIPTION file in a parent directory.
3. The Encoding field from an R Project .Rproj file in a parent directory.

4. "UTF-8" as a fallback.

https://style.tidyverse.org/syntax.html#parentheses

36

Value

ids_with_token

A list with three components:

expressions a list of n+1 objects. The first n elements correspond to each expression in filename,
and consist of a list of 9 elements:

L]

filename (character)
line (integer) the line in filename where this expression begins
column (integer) the column in filename where this expression begins

lines (named character) vector of all lines spanned by this expression, named with the
line number corresponding to filename

parsed_content (data.frame) as given by utils::getParseData() for this expres-
sion

xml_parsed_content (xml_document) the XML parse tree of this expression as given
by xmlparsedata: :xml_parse_data()

content (character) the same as lines as a single string (not split across lines)
(Deprecated) find_line (function) a function for returning lines in this expression
(Deprecated) find_column (function) a similar function for columns

The final element of expressions is a list corresponding to the full file consisting of 6 ele-
ments:

filename (character)

file_lines (character) the readLines() output for this file

content (character) for .R files, the same as file_lines; for .Rmd scripts, this is the
extracted R source code (as text)

full_parsed_content (data.frame) as given by utils: :getParseData() for the full
content

full_xml_parsed_content (xml_document) the XML parse tree of all expressions as
given by xmlparsedata: : xml_parse_data()

terminal_newline (logical) records whether filename has a terminal newline (as de-
termined by readLines() producing a corresponding warning)

error A Lint object describing any parsing error.

lines The readLines() output for this file.

ids_with_token Get parsed IDs by token

Description

Gets the source IDs (row indices) corresponding to given token.

Usage

ids_with_token(source_expression, value, fun = ==, source_file)

with_id(source_expression, id, source_file)

ifelse_censor_linter 37

Arguments

source_expression
A list of source expressions, the result of a call to get_source_expressions(),
for the desired filename.

value Character. String corresponding to the token to search for. For example:
« "SYMBOL"
¢ "FUNCTION"
*« "EQ_FORMALS"
o "§"
o ("
fun For additional flexibility, a function to search for in the token column of parsed_content.
Typically == or %in%.
source_file (DEPRECATED) Same as source_expression. Will be removed.

id Integer. The index corresponding to the desired row of parsed_content.

Value

ids_with_token: The indices of the parsed_content data frame entry of the list of source ex-
pressions. Indices correspond to the rows where fun evaluates to TRUE for the value in the foken
column.

with_id: A data frame corresponding to the row(s) specified in id.

Functions

e with_id(): Return the row of the parsed_content entry of the [get_source_expressions]()
object. Typically used in conjunction with ids_with_token to iterate over rows containing
desired tokens.

ifelse_censor_linter Block usage of ifelse where pmin or pmax is more appropriate

Description
ifelse(x >M, M, x) is the same as pmin(x, M), but harder to read and requires several passes over
the vector.

Usage

ifelse_censor_linter()

Details
The same goes for other similar ways to censor a vector, e.g. ifelse(x <=M, x, M) is pmin(x, M),
ifelse(x <m, m, x) is pmax(x, m), and ifelse(x >=m, x, m) is pmax(x, m).

Tags

best_practices, efficiency

38

See Also

linters for a complete list of linters available in lintr.

infix_spaces_linter

implicit_integer_linter
Implicit integer linter

Description

Check that integers are explicitly typed using the form 1L instead of 1.

Usage

implicit_integer_linter()

Tags

best_practices, consistency, style

See Also

linters for a complete list of linters available in lintr.

infix_spaces_linter Infix spaces linter

Description

Check that infix operators are surrounded by spaces. Enforces the corresponding Tidyverse style
guide rule; see https://style.tidyverse.org/syntax.html#infix-operators.

Usage

infix_spaces_linter(exclude_operators = NULL, allow_multiple_spaces = TRUE)

Arguments

exclude_operators

Character vector of operators to exlude from consideration for linting. Default

is to include the following "low-precedence" operators: +, -, ~, >, >=, <, <=, ==,
1=,8,88&, |, ||, <-, :=, <<=, =>, =>>, =, /, *, and any infix operator (exclude
infixes by passing "%%"). Note that <-, :=, and <<- are included/excluded as a

group (indicated by passing "<-"), as are -> and ->> (viz, "->"), and that = for
assignment and for setting arguments in calls are treated the same.

allow_multiple_spaces

Logical, default TRUE. If FALSE, usage like x = 2 will also be linted; excluded by
default because such usage can sometimes be used for better code alignment, as

is allowed by the style guide.

https://style.tidyverse.org/syntax.html#infix-operators

inner_combine_linter 39

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#infix-operators

inner_combine_linter Require c¢() to be applied before relatively expensive vectorized func-
tions

Description

as.Date(c(a, b)) is logically equivalent to c(as.Date(a), as.Date(b)); ditto for the equiva-
lence of several other vectorized functions like as.P0OSIXct () and math functions like sin(). The
former is to be preferred so that the most expensive part of the operation (as.Date()) is applied
only once.

Usage

inner_combine_linter()

Tags

consistency, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

is_lint_level Is this an expression- or a file-level source object?

Description

Helper for determining whether the current source_expression contains all expressions in the
current file, or just a single expression.

Usage

is_lint_level(source_expression, level = c("expression”, "file"))

Arguments

source_expression
A parsed expression object, i.e., an element of the object returned by get_source_expressions().

level Which level of expression is being tested? "expression” means an individual
expression, while "file"” means all expressions in the current file are available.

https://style.tidyverse.org/syntax.html#infix-operators

40

lint

line_length_linter Line length linter

Description

Check that the line length of both comments and code is less than length.

Usage
line_length_linter(length = 80L)

Arguments

length maximum line length allowed.

Tags

configurable, default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#long-lines

lint Lint a file, directory, or package

Description

e lint() lints a single file.

e lint_dir() lints all files in a directory.

* lint_package() lints all likely locations for R files in a package, i.e. R/, tests/, inst/,

vignettes/, data-raw/, and demo/.

Usage

lint(
filename,
linters = NULL,
cache = FALSE,
parse_settings = TRUE,
text = NULL

)

lint_dir(

n on

path = ".",

L

relative_path = TRUE,

https://style.tidyverse.org/syntax.html#long-lines

lint 41

exclusions = list("renv", "packrat"),

pattern = rex::rex("."”, one_of ("Rr"), or("", "html”, "md", "nw”, "rst"”, "tex", "txt"),
end),

parse_settings = TRUE

)

lint_package(
path = ".",
relative_path = TRUE,
exclusions = list("R/RcppExports.R"),

parse_settings = TRUE

)
Arguments
filename either the filename for a file to lint, or a character string of inline R code for lint-
ing. The latter (inline data) applies whenever filename has a newline character
(\n).
linters a named list of linter functions to apply. See linters for a full list of default and
available linters.
Provide additional arguments to be passed to:
e exclude() (in case of 1int();e.g. lints or exclusions)
e lint() (in case of lint_dir() and lint_package(); e.g. linters or
cache)
cache given a logical, toggle caching of lint results. If passed a character string, store

the cache in this directory.
parse_settings whether to try and parse the settings.

text Optional argument for supplying a string or lines directly, e.g. if the file is
already in memory or linting is being done ad hoc.

path For the base directory of the project (for 1int_dir ()) or package (for lint_package()).

relative_path if TRUE, file paths are printed using their path relative to the base directory. If
FALSE, use the full absolute path.

exclusions exclusions for exclude(), relative to the package path.

pattern pattern for files, by default it will take files with any of the extensions .R, .Rmd,
.Rnw, .Rhtml, .Rrst, .Rtex, .Rtxt allowing for lowercase r (.1, ...)

Details

Read vignette("lintr") to learn how to configure which linters are run by default. Note that
if files contain unparseable encoding problems, only the encoding problem will be linted to avoid
unintelligible error messages from other linters.

Value

A list of lint objects.

42 lint-s3

Examples
Not run:
lint("some/file-name.R") # linting a file
lint("a = 123\n") # linting inline-code

lint(text = "a = 123") # linting inline-code

End(Not run)

Not run:
lint_dir()
lint_dir(
linters = list(semicolon_linter())
exclusions = list("inst/doc/creating_linters.R"” = 1, "inst/example/bad.R", "renv")
)

End(Not run)
Not run:
lint_package()

lint_package(
linters = linters_with_defaults(semicolon_linter = semicolon_linter())
exclusions = list("inst/doc/creating_linters.R" = 1, "inst/example/bad.R")

)

End(Not run)

lint-s3 Create a 1int object

Description

Create a lint object

Usage

Lint(
filename,
line_number = 1L,
column_number = 1L,
type = c("style”, "warning”, "error"),
message = "",
line = "",
ranges = NULL,
linter = ""

Arguments

filename path to the source file that was linted.
line_number line number where the lint occurred.
column_number column number where the lint occurred.

type type of lint.

Linter 43

message message used to describe the lint error
line code source where the lint occurred
ranges a list of ranges on the line that should be emphasized.
linter deprecated. No longer used.
Value

an object of class ’lint’.

Linter Create a linter closure

Description

Create a linter closure

Usage

Linter(fun, name = linter_auto_name())

Arguments
fun A function that takes a source file and returns 1int objects.
name Default name of the Linter. Lints produced by the linter will be labelled with
name by default.
Value

The same function with its class set to ’linter’.

linters Available linters

Description

A variety of linters is available in lintr. The most popular ones are readily accessible through
default_linters().

Within a 1int () function call, the linters in use are initialized with the provided arguments and fed
with the source file (provided by get_source_expressions()).

A data frame of all available linters can be retrieved using available_linters(). Documentation
for linters is structured into tags to allow for easier discovery; see also available_tags().

44

Tags

The following tags exist:

Linters

best_practices (37 linters)
common_mistakes (6 linters)
configurable (20 linters)
consistency (17 linters)
correctness (7 linters)
default (24 linters)
deprecated (4 linters)
efficiency (16 linters)
executing (5 linters)
package_development (14 linters)
readability (37 linters)
robustness (12 linters)

style (36 linters)

The following linters exist:

absolute_path_linter (tags: best_practices, configurable, robustness)
any_duplicated_linter (tags: best_practices, efficiency)

any_is_na_linter (tags: best_practices, efficiency)

assignment_linter (tags: consistency, default, style)

backport_linter (tags: configurable, package_development, robustness)
brace_linter (tags: configurable, default, readability, style)
class_equals_linter (tags: best_practices, consistency, robustness)
closed_curly_linter (tags: configurable, deprecated, readability, style)
commas_linter (tags: default, readability, style)

commented_code_linter (tags: best_practices, default, readability, style)
condition_message_linter (tags: best_practices, consistency)
conjunct_test_linter (tags: best_practices, package_development, readability)
consecutive_stopifnot_linter (tags: consistency, readability, style)
cyclocomp_linter (tags: best_practices, configurable, default, readability, style)
duplicate_argument_linter (tags: common_mistakes, configurable, correctness)
equals_na_linter (tags: common_mistakes, correctness, default, robustness)
expect_comparison_linter (tags: best_practices, package_development)
expect_identical_linter (tags: package_development)
expect_length_linter (tags: best_practices, package_development, readability)
expect_named_linter (tags: best_practices, package_development, readability)
expect_not_linter (tags: best_practices, package_development, readability)

expect_null_linter (tags: best_practices, package_development)

linters

linters

expect_s3_class_linter (tags: best_practices, package_development)
expect_s4_class_linter (tags: best_practices, package_development)
expect_true_false_linter (tags: best_practices, package_development, readability)
expect_type_linter (tags: best_practices, package_development)
extraction_operator_linter (tags: best_practices, style)
fixed_regex_linter (tags: best_practices, efficiency, readability)
function_argument_linter (tags: best_practices, consistency, style)
function_left_parentheses_linter (tags: default, readability, style)
ifelse_censor_linter (tags: best_practices, efficiency)
implicit_integer_linter (tags: best_practices, consistency, style)
infix_spaces_linter (tags: default, readability, style)

inner_combine_linter (tags: consistency, efficiency, readability)
line_length_linter (tags: configurable, default, readability, style)
literal_coercion_linter (tags: best_practices, consistency, efficiency)
missing_argument_linter (tags: common_mistakes, configurable, correctness)
missing_package_linter (tags: common_mistakes, robustness)
namespace_linter (tags: configurable, correctness, executing, robustness)
nested_ifelse_linter (tags: efficiency, readability)

no_tab_linter (tags: consistency, default, style)

nonportable_path_linter (tags: best_practices, configurable, robustness)
numeric_leading_zero_linter (tags: consistency, readability, style)
object_length_linter (tags: configurable, default, executing, readability, style)
object_name_linter (tags: configurable, consistency, default, executing, style)
object_usage_linter (tags: correctness, default, executing, readability, style)
open_curly_linter (tags: configurable, deprecated, readability, style)
outer_negation_linter (tags: best_practices, efficiency, readability)
package_hooks_linter (tags: correctness, package_development, style)
paren_body_linter (tags: default, readability, style)

paren_brace_linter (tags: deprecated, readability, style)

paste_linter (tags: best_practices, consistency)

pipe_call_linter (tags: readability, style)

pipe_continuation_linter (tags: default, readability, style)
redundant_ifelse_linter (tags: best_practices, consistency, efficiency)
regex_subset_linter (tags: best_practices, efficiency)

semicolon_linter (tags: configurable, default, readability, style)
semicolon_terminator_linter (tags: configurable, deprecated, readability, style)
seq_linter (tags: best_practices, consistency, default, efficiency, robustness)
single_quotes_linter (tags: consistency, default, readability, style)
spaces_inside_linter (tags: default, readability, style)

spaces_left_parentheses_linter (tags: default, readability, style)

45

46

linters_with_defaults

sprintf_linter (tags: common_mistakes, correctness)
string_boundary_linter (tags: efficiency, readability)
strings_as_factors_linter (tags: robustness)
system_file_linter (tags: best_practices, consistency, readability)

T_and_F_symbol_linter (tags: best_practices, consistency, default, readability, robustness,
style)

todo_comment_linter (tags: configurable, style)
trailing_blank_lines_linter (tags: default, style)
trailing_whitespace_linter (tags: default, style)

undesirable_function_linter (tags: best_practices, configurable, efficiency, robustness,
style)

undesirable_operator_linter (tags: best_practices, configurable, efficiency, robustness,
style)

unneeded_concatenation_linter (tags: configurable, efficiency, readability, style)
unreachable_code_linter (tags: best_practices, readability)

unused_import_linter (tags: best_practices, common_mistakes, configurable, executing)
vector_logic_linter (tags: best_practices, default, efficiency)

yoda_test_linter (tags: best_practices, package_development, readability)

linters_with_defaults Create a linter configuration based on defaults

Description

Make a new list based on lintr’s default linters. The result of this function is meant to be passed to
the linters argument of 1int (), or to be put in your configuration file.

Usage
linters_with_defaults(..., defaults = default_linters)
with_defaults(..., default = default_linters)
Arguments

See Also

Arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in the list of linters, it is replaced
by the new element. If it does not exist, it is added. If the value is NULL, the
linter is removed.

defaults, default

Default list of linters to modify. Must be named.

linters_with_tags for basing off tags attached to linters, possibly across multiple packages. avail-
able_linters to get a data frame of available linters. linters for a complete list of linters available in

linters_with_tags 47

Examples

When using interactively you will usually pass the result onto ~1lint™ or “lint_package()~
Not run:
lint("foo.R", linters = linters_with_defaults(line_length_linter = line_length_linter(120)))

End(Not run)
the default linter list with a different line length cutoff
my_linters <- linters_with_defaults(line_length_linter = line_length_linter(120))

omit the argument name if you are just using different arguments
my_linters <- linters_with_defaults(defaults = my_linters, object_name_linter("camelCase"))

remove assignment checks (with NULL), add absolute path checks
my_linters <- linters_with_defaults(

defaults = my_linters,

assignment_linter = NULL,

absolute_path_linter()
)

linters_with_tags Create a tag-based linter configuration

Description

Make a new list based on all linters provided by packages and tagged with tags. The result of this
function is meant to be passed to the linters argument of 1int (), or to be put in your configuration
file.

Usage
linters_with_tags(tags, ..., packages = "lintr"”, exclude_tags = "deprecated”)
Arguments
tags Optional character vector of tags to search. Only linters with at least one match-
ing tag will be returned. If tags is NULL, all linters will be returned.
Arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in the list of linters, it is replaced
by the new element. If it does not exist, it is added. If the value is NULL, the
linter is removed.
packages A character vector of packages to search for linters.

exclude_tags Tags to exclude from the results. Linters with at least one matching tag will not
be returned. If except_tags is NULL, no linters will be excluded.

Value

A modified list of linters.

See Also

linters_with_defaults for basing off lintr’s set of default linters. available_linters to get a data frame
of available linters. linters for a complete list of linters available in lintr.

48 missing_argument_linter

Examples

"linters_with_defaults()" and ~linters_with_tags("default”)™ are the same:
all.equal(linters_with_defaults(), linters_with_tags("default”))

Get all linters useful for package development
linters_with_tags(tags = "package_development")

Get all linters provided by lintr
linters_with_tags(tags = NULL)

Get all linters tagged as "default” from lintr and mypkg
Not run: linters_with_tags("default”, packages = c("lintr"”, "mypkg"))

literal_coercion_linter
Require usage of correctly-typed literals over literal coercions

Description
as.integer(1) (or rlang::int (1)) is the same as 1L but the latter is more concise and gets typed
correctly at compilation.

Usage

literal_coercion_linter()

Details

The same applies to missing sentinels like NA — typically, it is not necessary to specify the storage
type of NA, but when it is, prefer using the typed version (e.g. NA_real_) instead of a coercion (like
as.numeric(NA)).

Tags

best_practices, consistency, efficiency

See Also

linters for a complete list of linters available in lintr.

missing_argument_linter
Missing argument linter

Description

Check for missing arguments in function calls.

Usage

missing_argument_linter(except = c("switch”, "alist"”), allow_trailing = FALSE)

missing_package_linter 49

Arguments

except a character vector of function names as exceptions.

allow_trailing always allow trailing empty arguments?

Tags

common_mistakes, configurable, correctness

See Also

linters for a complete list of linters available in lintr.

missing_package_linter
Missing package linter

Description

Check for missing packages in library(), require(), loadNamespace() and requireNamespace()
calls.

Usage

missing_package_linter()

Tags

common_mistakes, robustness

See Also

linters for a complete list of linters available in lintr.

modify_defaults Modify lintr defaults

Description

Modify a list of defaults by name, allowing for replacement, deletion and addition of new elements.

Usage
modify_defaults(defaults, ...)
Arguments
defaults named list of elements to modify.

arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in defaults, it is replaced by the
new element. If it does not exist, it is added. If the value is NULL, the element is
removed.

50 namespace_linter

Value
A modified list of elements, sorted by name. To achieve this sort in a platform-independent way,
two transformations are applied to the names: (1) replace _ with @ and (2) convert tolower ().

See Also

linters_with_tags, linters_with_defaults for creating linter lists.

Examples

custom list of undesirable functions:
remove sapply (using NULL)

add cat (with a accompanying message),
add print (unnamed, i.e. with no accompanying message)
add return (as taken from all_undesirable_functions)

my_undesirable_functions <- modify_defaults(defaults = default_undesirable_functions,
sapply=NULL, "cat"="No cat allowed”, "print"”, all_undesirable_functions[["return”]])

namespace_linter Namespace linter

Description

Check for missing packages and symbols in namespace calls. Note that using check_exports=TRUE
or check_nonexports=TRUE will load packages used in user code so it could potentially change the
global state.

Usage

namespace_linter(check_exports = TRUE, check_nonexports = TRUE)

Arguments

check_exports Check if symbol is exported from namespace in namespace: : symbol calls.

check_nonexports
Check if symbol exists in namespace in namespace: : : symbol calls.

Tags

configurable, correctness, executing, robustness

See Also

linters for a complete list of linters available in lintr.

nested_ifelse_linter 51

nested_ifelse_linter Block usage of nested ifelse() calls

Description
Calling ifelse in nested calls is problematic for two main reasons:

1. It can be hard to read — mapping the code to the expected output for such code can be a messy
task/require a lot of mental bandwidth, especially for code that nests more than once

2. Itisinefficient — ifelse can evaluate all of its arguments at both yes and no (see https://stackoverflow.com/q/16275]1
this issue is exacerbated for nested calls
Usage

nested_ifelse_linter()

Details

Users can instead rely on a more readable alternative modeled after SQL CASE WHEN statements,
such as data.table: :fcase or dplyr::case_when, or use a look-up-and-merge approach (build
a mapping table between values and outputs and merge this to the input).

Tags

efficiency, readability

See Also

linters for a complete list of linters available in lintr.

nonportable_path_linter
Non-portable path linter

Description

Check that file.path() is used to construct safe and portable paths.

Usage

nonportable_path_linter(lax = TRUE)

Arguments

lax Less stringent linting, leading to fewer false positives. If TRUE, only lint path
strings, which
* contain at least two path elements, with one having at least two characters
and
 contain only alphanumeric chars (including UTF-8), spaces, and win32-
allowed punctuation

52

Tags

best_practices, configurable, robustness

See Also

linters for a complete list of linters available in lintr.

numeric_leading_zero_linter

no_tab_linter No tab linter

Description

Check that only spaces are used for indentation, not tabs.

Usage

no_tab_linter()

Tags

consistency, default, style

See Also

linters for a complete list of linters available in lintr.

numeric_leading_zero_linter

Require usage of a leading zero in all fractional numerics

Description

While .1 and 0.1 mean the same thing, the latter is easier to read due to the small size of the °.

glyph.

Usage

numeric_leading_zero_linter()

Tags

consistency, readability, style

See Also

linters for a complete list of linters available in lintr.

object_length_linter 53

object_length_linter Object length linter

Description

Check that object names are not too long. The length of an object name is defined as the length in
characters, after removing extraneous parts:

Usage
object_length_linter(length = 30L)

Arguments

length maximum variable name length allowed.

Details

* generic prefixes for implementations of S3 generics, e.g. as.data.frame.my_class has
length 8.

* leading ., e.g. .my_hidden_function has length 18.
* "%%" for infix operators, e.g. %my_op% has length 5.
* trailing <- for assignment functions, e.g. my_attr<- has length 7.

Note that this behavior relies in part on having packages in your Imports available; see the detailed
note in object_name_linter () for more details.

Tags

configurable, default, executing, readability, style

See Also

linters for a complete list of linters available in lintr.

object_name_linter Object name linter

Description

Check that object names conform to a naming style. The default naming styles are "snake_case"
and "symbols".

Usage

object_name_linter(styles = c("snake_case”, "symbols"))

54 object_usage_linter

Arguments
styles A subset of ‘symbols’, ‘CamelCase’, ‘camelCase’, ‘snake_case’, ‘SNAKE_CASE’,
‘dotted.case’, ‘lowercase’, ‘UPPERCASE’. A name should match at least one
of these styles.
Details

Note when used in a package, in order to ignore objects imported from other namespaces, this lin-
ter will attempt getNamespaceExports() whenever an import(PKG) or importFrom(PKG, ...)
statement is found in your NAMESPACE file. If requireNamespace() fails (e.g., the package is
not yet installed), the linter won’t be able to ignore some usages that would otherwise be allowed.

Suppose, for example, you have import (upstream) in your NAMESPACE, which makes available
its exported S3 generic function a_really_quite_long_function_name that you then extend in
your package by defining a corresponding method for your class my_class. Then, if upstream is
not installed when this linter runs, a lint will be thrown on this object (even though you don’t "own"
its full name).

The best way to get lintr to work correctly is to install the package so that it’s available in the session
where this linter is running.

Tags

configurable, consistency, default, executing, style

See Also

linters for a complete list of linters available in lintr.

object_usage_linter Object usage linter

Description
Check that closures have the proper usage using codetools: :checkUsage(). Note that this runs
base: :eval() on the code, so do not use with untrusted code.

Usage

object_usage_linter(interpret_glue = TRUE)

Arguments

interpret_glue If TRUE, interpret glue::glue() calls to avoid false positives caused by local
variables which are only used in a glue expression.

Tags

correctness, default, executing, readability, style

See Also

linters for a complete list of linters available in lintr.

open_curly_linter 55

open_curly_linter Open curly linter

Description

Check that opening curly braces are never on their own line and are always followed by a newline.

Usage

open_curly_linter(allow_single_line = FALSE)

Arguments

allow_single_line
if TRUE, allow an open and closed curly pair on the same line.
Tags

configurable, deprecated, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#indenting

outer_negation_linter Require usage of !any(.) over all(!.), lall(.) over any(!.)

Description

any(!x) is logically equivalent to !any(x); ditto for the equivalence of all(!x) and !any(x).
Negating after aggregation only requires inverting one logical value, and is typically more readable.

Usage

outer_negation_linter()

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

https://style.tidyverse.org/syntax.html#indenting

56 package_hooks_linter

package_development_linters
Package development linters

Description

Linters useful to package developers, for example for writing consistent tests.

Linters

The following linters are tagged with *package_development’:

* backport_linter

e conjunct_test_linter

e expect_comparison_linter
e expect_identical_linter
e expect_length_linter

e expect_named_linter

e expect_not_linter

e expect_null_linter

* expect_s3_class_linter

* expect_s4_class_linter

* expect_true_false_linter
* expect_type_linter

* package_hooks_linter

e yoda_test_linter

See Also

linters for a complete list of linters available in lintr.

package_hooks_linter Package hooks linter

Description

Check various common "gotchas" in .onLoad(), .onAttach(), .Last.1lib(), and .onDetach()
namespace hooks that will cause R CMD check issues. See Writing R Extensions for details.

Usage

package_hooks_linter()

paren_body_linter 57

Details

1. .onLoad() shouldn’tcall cat(), message(), print(),writeLines(), packageStartupMessage(),
require(), library(), or installed.packages().

2. .onAttach() shouldn’tcall cat(), message(), print(),writeLines(), library.dynam(),
require(), library(), or installed.packages().

3. .Last.lib() and .onDetach() shouldn’t call library.dynam.unload().

4. .onLoad() and .onAttach() should take two arguments, with names matching *1ib and
*pkg; .Last.1lib() and .onDetach() should take one argument with name matching *1ib.

Tags

correctness, package_development, style

See Also

linters for a complete list of linters available in lintr.

paren_body_linter Parenthesis before body linter

Description

Check that there is a space between right parenthesis and a body expression.

Usage

paren_body_linter()

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#parentheses

https://style.tidyverse.org/syntax.html#parentheses

58 parse_exclusions

paren_brace_linter Parentheses before brace linter

Description

Check that there is a space between right parentheses and an opening curly brace.

Usage

paren_brace_linter()

Tags

deprecated, readability, style

See Also

linters for a complete list of linters available in lintr.

parse_exclusions read a source file and parse all the excluded lines from it

Description

read a source file and parse all the excluded lines from it

Usage

parse_exclusions(
file,
exclude = settings$exclude,
exclude_start = settings$exclude_start,
exclude_end = settings$exclude_end,
exclude_linter = settings$exclude_linter,
exclude_linter_sep = settings$exclude_linter_sep,

lines = NULL,
linter_names = NULL
)
Arguments
file R source file
exclude regular expression used to mark lines to exclude

exclude_start regular expression used to mark the start of an excluded range
exclude_end regular expression used to mark the end of an excluded range

exclude_linter regular expression used to capture a list of to-be-excluded linters immediately
following a exclude or exclude_start marker.

paste_linter 59

exclude_linter_sep

regular expression used to split a linter list into indivdual linter names for exclu-
sion.

lines a character vector of the content lines of file

linter_names Names of active linters

Value

A possibly named list of excluded lines, possibly for specific linters.

paste_linter Raise lints for several common poor usages of paste()

Description

The following issues are linted by default by this linter (and each can be turned off optionally):

Usage

paste_linter(allow_empty_sep = FALSE, allow_to_string = FALSE)

Arguments

allow_empty_sep

Logical, default FALSE. If TRUE, usage of paste() with sep = "" is not linted.
allow_to_string

Logical, default FALSE. If TRUE, usage of paste() and paste@() with collapse

=" "is not linted.

Details

1. Block usage of paste() with sep = "". paste®@() is a faster, more concise alternative.

2. Block usage of paste() or paste@() with collapse =", ". toString() is a direct wrap-
per for this, and alternatives like glue: :glue_collapse() might give better messages for
humans.

3. Block usage of paste@() that supplies sep= — this is not a formal argument to paste®, and is
likely to be a mistake.

Tags

best_practices, consistency

See Also

linters for a complete list of linters available in lintr.

60 pipe_continuation_linter

pipe_call_linter Pipe call linter

Description

Force explicit calls in magrittr pipes, e.g., 1:3 %>% sum() instead of 1:3 %>% sum.

Usage

pipe_call_linter()

Tags

readability, style

See Also

linters for a complete list of linters available in lintr.

pipe_continuation_linter
Pipe continuation linter

Description

Check that each step in a pipeline is on a new line, or the entire pipe fits on one line.

Usage

pipe_continuation_linter()

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/pipes.html#long-lines-2

https://style.tidyverse.org/pipes.html#long-lines-2

readability_linters

readability_linters Readability linters

Description

Linters highlighting readability issues, such as missing whitespace.

Linters
The following linters are tagged with ‘readability’:

* brace_linter

e closed_curly_linter

e commas_linter

e commented_code_linter

e conjunct_test_linter

e consecutive_stopifnot_linter
e cyclocomp_linter

* expect_length_linter

e expect_named_linter

e expect_not_linter

e expect_true_false_linter

e fixed_regex_linter

e function_left_parentheses_linter
e infix_spaces_linter

* inner_combine_linter

e line_length_linter

* nested_ifelse_linter

* numeric_leading_zero_linter
* object_length_linter

e object_usage_linter

e open_curly_linter

e outer_negation_linter

* paren_body_linter

* paren_brace_linter

e pipe_call_linter

* pipe_continuation_linter

* semicolon_linter

e semicolon_terminator_linter
e single_quotes_linter

* spaces_inside_linter

e spaces_left_parentheses_linter

62 read_settings

e string_boundary_linter

* system_file_linter

e T_and_F_symbol_linter

e unneeded_concatenation_linter
* unreachable_code_linter

e yoda_test_linter

See Also

linters for a complete list of linters available in lintr.

read_settings Read lintr settings

Description

Lintr searches for settings for a given source file in the following order.

1. options defined as linter.setting.
linter_file in the same directory
linter_file in the project directory

linter_file in the user home directory

A

default_settings()

Usage

read_settings(filename)

Arguments

filename source file to be linted

Details

The default linter_file name is . lintr but it can be changed with option lintr.linter_file. This
file is a dcf file, see base: :read.dcf () for details.

redundant_ifelse_linter 63

redundant_ifelse_linter
Prevent ifelse() from being used to produce TRUE/FALSE or 1/0

Description

Expressions like ifelse(x, TRUE, FALSE) and ifelse(x, FALSE, TRUE) are redundant; just x
or !x suffice in R code where logical vectors are a core data structure. ifelse(x, 1, @) is also
as.numeric(x), but even this should only be needed rarely.

Usage

redundant_ifelse_linter(allow1@ = FALSE)

Arguments
allowl10 Logical, default FALSE. If TRUE, usage like ifelse(x, 1, @) is allowed, i.e.,
only usage like ifelse(x, TRUE, FALSE) is linted.
Tags

best_practices, consistency, efficiency

See Also

linters for a complete list of linters available in lintr.

regex_subset_linter Require usage of direct methods for subsetting strings via regex.

Description

Using value = TRUE in grep () returns the subset of the input that matches the pattern, e.g. grep(”[a-m]",
letters, value = TRUE) will return the first 13 elements (a through m).

Usage

regex_subset_linter()

Details

letters[grep(”[a-m]", letters)] and letters[grepl(”[a-m]", letters)] both return the
same thing, but more circuitously and more verbosely.

The stringr package also provides an even more readable alternative, namely str_subset(),
which should be preferred to versions using str_detect() and str_which().

64

Exceptions

robustness_linters

Note that x[grep(pattern, x)] and grep(pattern, x, value = TRUE) are not completely inter-
changeable when x is not character (most commonly, when x is a factor), because the output of
the latter will be a character vector while the former remains a factor. It still may be preferable to
refactor such code, as it may be faster to match the pattern on levels(x) and use that to subset
instead.

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

robustness_linters

Robustness linters

Description

Linters highlighting code robustness issues, such as possibly wrong edge case behaviour.

Linters

The following linters are tagged with 'robustness’:

See Also

linters for a complete list of linters available in lintr.

absolute_path_linter
backport_linter
class_equals_linter
equals_na_linter
missing_package_linter
namespace_linter
nonportable_path_linter
seq_linter
strings_as_factors_linter
T_and_F_symbol_linter
undesirable_function_linter

undesirable_operator_linter

sarif_output 65

sarif_output SARIF Report for lint results

Description

Generate a report of the linting results using the SARIF format.

Usage
sarif_output(lints, filename = "lintr_results.sarif")
Arguments
lints the linting results.
filename the name of the output report
semicolon_linter Semicolon linter
Description

Check that no semicolons terminate expressions.

Usage

semicolon_linter(allow_compound = FALSE, allow_trailing = FALSE)

semicolon_terminator_linter(semicolon = c(”compound”, "trailing"))

Arguments

allow_compound Logical, default FALSE. If TRUE, "compound" semicolons (e.g. as in x; v, i.e.,
on the same line of code) are allowed.

allow_trailing Logical, default FALSE. If TRUE, "trailing" semicolons (i.e., those that terminate
lines of code) are allowed.

semicolon A character vector defining which semicolons to report:

compound Semicolons that separate two statements on the same line.
trailing Semicolons following the last statement on the line.
Tags

configurable, default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#semicolons

https://sarifweb.azurewebsites.net/
https://style.tidyverse.org/syntax.html#semicolons

66 single_quotes_linter

seg_linter Sequence linter

Description

This linter checks for 1:1length(...), 1:nrow(...),T7:ncol(...), T:NROW(...)and 1:NCOL(...)

expressions in base-R, or their usage in conjunction with seq() (e.g., seq(length(...)), seq(nrow(..

etc.).

Usage

seq_linter()

Details

Additionally, it checks for 1:n() (from dplyr) and 1: .N (from data.table).

These often cause bugs when the right-hand side is zero. It is safer to use base: :seq_len() or
base: :seq_along() instead.

Tags

best_practices, consistency, default, efficiency, robustness

See Also

linters for a complete list of linters available in lintr.

single_quotes_linter Single quotes linter

Description

Check that only double quotes are used to delimit string constants.

Usage

single_quotes_linter()

Tags

consistency, default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#character-vectors

)

https://style.tidyverse.org/syntax.html#character-vectors

spaces_inside_linter 67

spaces_inside_linter Spaces inside linter

Description
Check that parentheses and square brackets do not have spaces directly inside them, i.e., directly
following an opening delimiter or directly preceding a closing delimiter.

Usage

spaces_inside_linter()

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#parentheses

spaces_left_parentheses_linter
Spaces before parentheses linter

Description

Check that all left parentheses have a space before them unless they are in a function call.

Usage

spaces_left_parentheses_linter()

Tags

default, readability, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#parentheses

https://style.tidyverse.org/syntax.html#parentheses
https://style.tidyverse.org/syntax.html#parentheses

68 strings_as_factors_linter

sprintf_linter sprintf linter

Description

Check for an inconsistent number of arguments or arguments with incompatible types (for literal
arguments) in sprintf calls.

Usage

sprintf_linter()

Tags

common_mistakes, correctness

See Also

linters for a complete list of linters available in lintr.

strings_as_factors_linter
Identify cases where stringsAsFactors should be supplied explicitly

Description

Designed for code bases written for versions of R before 4.0 seeking to upgrade to R >= 4.0, where
one of the biggest pain points will surely be the flipping of the default value of stringsAsFactors
from TRUE to FALSE.

Usage

strings_as_factors_linter()

Details

It’s not always possible to tell statically whether the change will break existing code because R
is dynamically typed — e.g. in data.frame(x) if x is a string, this code will be affected, but if
x is a number, this code will be unaffected. However, in data.frame(x = "'a"'), the output will
unambiguously be affected. We can instead supply stringsAsFactors = TRUE, which will make
this code backwards-compatible.

See https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/.

Tags

robustness

See Also

linters for a complete list of linters available in lintr.

https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/

string_boundary_linter 69

string_boundary_linter

Require usage of startsWith() and endsWith() over grepl()/substr() ver-
sions

Description

startsWith() is used to detect fixed initial substrings; it is more readable and more efficient
than equivalents using grepl() or substr(). c.f. startsWith(x, "abc"), grepl("*abc”, x),
substr(x, 1L, 3L) == "abc".

Usage

string_boundary_linter(allow_grepl = FALSE)

Arguments

allow_grepl Logical, default FALSE. If TRUE, usages with grepl() are ignored. Some authors
may prefer the NA input to FALSE output conciseness offered by grepl(), which
doesn’t have a direct equivalent with startsWith() or endsWith().

Details

Ditto for using endsWith() to detect fixed terminal substrings.

Note that there is a difference in behavior between how grepl () and startsWith() (and endsWith())
handle missing values. In particular, for grepl(), NA inputs are considered FALSE, while for
startsWith(), NA inputs have NA outputs. That means the strict equivalent of grepl("*abc”,
x) is !is.na(x) & startsWith(x, "abc").

We lint grepl() usages by default because the !is.na() version is more explicit with respect to
NA handling — though documented, the way grepl() handles missing inputs may be surprising to
some readers.

Tags

efficiency, readability

See Also

linters for a complete list of linters available in lintr.

style_linters Style linters

Description

Linters highlighting code style issues.

70

Linters

The following linters are tagged with ’style’:

See Also

linters for a complete list of linters available in lintr.

assignment_linter
brace_linter
closed_curly_linter
commas_linter
commented_code_linter
consecutive_stopifnot_linter
cyclocomp_linter
extraction_operator_linter
function_argument_linter
function_left_parentheses_linter
implicit_integer_linter
infix_spaces_linter
line_length_linter
no_tab_linter
numeric_leading_zero_linter
object_length_linter
object_name_linter
object_usage_linter
open_curly_linter
package_hooks_linter
paren_body_linter
paren_brace_linter
pipe_call_linter
pipe_continuation_linter
semicolon_linter
semicolon_terminator_linter
single_quotes_linter
spaces_inside_linter
spaces_left_parentheses_linter
T_and_F_symbol_linter
todo_comment_linter
trailing_blank_lines_linter
trailing_whitespace_linter
undesirable_function_linter
undesirable_operator_linter

unneeded_concatenation_linter

style_linters

system_file_linter 71

system_file_linter Block usage of file.path() with system.file()

Description
system.file() hasa ... argument which, internally, is passed to file.path(), so including it in
user code is repetitive.

Usage

system_file_linter()

Tags

best_practices, consistency, readability

See Also

linters for a complete list of linters available in lintr.

todo_comment_linter TODO comment linter

Description

Check that the source contains no TODO comments (case-insensitive).

Usage

todo_comment_linter(todo = c("todo”, "fixme"))
Arguments

todo Vector of strings that identify TODO comments.
Tags

configurable, style

See Also

linters for a complete list of linters available in lintr.

72

trailing_whitespace_linter

trailing_blank_lines_linter
Trailing blank lines linter

Description

Check that there are no trailing blank lines in source code.

Usage

trailing_blank_lines_linter()

Tags

default, style

See Also

linters for a complete list of linters available in lintr.

trailing_whitespace_linter
Trailing whitespace linter

Description

Check that there are no space characters at the end of source lines.

Usage

trailing_whitespace_linter(allow_empty_lines = FALSE, allow_in_strings = TRUE)

Arguments

allow_empty_lines

Suppress lints for lines that contain only whitespace.

allow_in_strings

Suppress lints for trailing whitespace in string constants.

Tags

default, style

See Also

linters for a complete list of linters available in lintr.

T_and_F_symbol_linter 73

T_and_F_symbol_linter T and F symbol linter

Description

Avoid the symbols T and F (for TRUE and FALSE).

Usage
T_and_F_symbol_linter()

Tags

best_practices, consistency, default, readability, robustness, style

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#logical-vectors

undesirable_function_linter
Undesirable function linter

Description

Report the use of undesirable functions, e.g. base: :return(), base: :options(), orbase: :sapply()
and suggest an alternative.

Usage

undesirable_function_linter(
fun = default_undesirable_functions,
symbol_is_undesirable = TRUE

)

Arguments

fun Named character vector. names (fun) correspond to undesirable functions, while
the values give a description of why the function is undesirable. If NA, no addi-
tional information is given in the lint message. Defaults to default_undesirable_functions.
To make small customizations to this list, use modify_defaults().
symbol_is_undesirable
Whether to consider the use of an undesirable function name as a symbol unde-
sirable or not.

Tags

best_practices, configurable, efficiency, robustness, style

https://style.tidyverse.org/syntax.html#logical-vectors

74 unneeded_concatenation_linter

See Also

linters for a complete list of linters available in lintr.

undesirable_operator_linter
Undesirable operator linter

Description

Report the use of undesirable operators, e.g. : :: or <<- and suggest an alternative.

Usage

undesirable_operator_linter(op = default_undesirable_operators)

Arguments
op Named character vector. names (op) correspond to undesirable operators, while
the values give a description of why the operator is undesirable. If NA, no addi-
tional information is given in the lint message. Defaults to default_undesirable_operators.
To make small customizations to this list, use modify_defaults().
Tags

best_practices, configurable, efficiency, robustness, style

See Also

linters for a complete list of linters available in lintr.

unneeded_concatenation_linter
Unneeded concatenation linter

Description

Check that the c() function is not used without arguments nor with a single constant.

Usage

unneeded_concatenation_linter(allow_single_expression = TRUE)

Arguments

allow_single_expression
Logical, default TRUE. If FALSE, one-expression usages of c() are always linted,
e.g. c(x) and c(matrix(...)). In some such cases, c() is being used for
its side-effect of stripping non-name attributes; it is usually preferable to use
as.vector () to accomplish the same more readably.

unreachable_code_linter 75

Tags

configurable, efficiency, readability, style

See Also

linters for a complete list of linters available in lintr.

unreachable_code_linter
Block unreachable code and comments following return statements

Description

Code after a top-level return() or stop() can’t be reached; typically this is vestigial code left after
refactoring or sandboxing code, which is fine for exploration, but shouldn’t ultimately be checked
in. Comments meant for posterity should be placed before the final return().

Usage

unreachable_code_linter()

Tags

best_practices, readability

See Also

linters for a complete list of linters available in lintr.

unused_import_linter Check that imported packages are actually used

Description

Check that imported packages are actually used

Usage

unused_import_linter(

allow_ns_usage = FALSE,

except_packages = c("bit64", "data.table”, "tidyverse")
)

Arguments

allow_ns_usage Suppress lints for packages only used via namespace. This is FALSE by de-
fault because pkg: : fun() doesn’t require library(pkg). You can use require-
Namespace("pkg") to ensure a package is installed without loading it.
except_packages
Character vector of packages that are ignored. These are usually attached for
their side effects.

76

use_lintr
Tags
best_practices, common_mistakes, configurable, executing
See Also
linters for a complete list of linters available in lintr.
use_lintr Use lintr in your project
Description
Create a minimal lintr config file as a starting point for customization
Usage
use_lintr(path = ".", type = c("tidyverse"”, "full"))
Arguments
path Path to project root, where a .lintr file should be created. If the .lintr file
already exists, an error will be thrown.
type What kind of configuration to create?
e tidyverse creates a minimal lintr config, based on the default linters (1inters_with_defaults
These are suitable for following the tidyverse style guide.
e full creates a lintr config using all available linters via linters_with_tags().
Value

Path to the generated configuration, invisibly.

See Also

vignette("lintr") for detailed introduction to using and configuring lintr.

Examples

Not run:

use the default set of linters
lintr::use_lintr()

or try all linters
lintr::use_lintr(type = "full")

then
lintr::lint_dir()

End(Not run)

https://style.tidyverse.org/

vector_logic_linter 77

vector_logic_linter Enforce usage of scalar logical operators in conditional statements

Description

Usage of & in conditional statements is error-prone and inefficient. condition in if (condition)
expr must always be length-1, in which case && is to be preferred. Ditto for | vs. |].

Usage

vector_logic_linter()

Details
This linter covers inputs to if() and while() conditions and to testthat: :expect_true() and
testthat: :expect_false().

Note that because & and | are generics, it is possible that &/ | | are not perfect substitutes because
& is doing method dispatch in an incompatible way.

Moreover, be wary of code that may have side effects, most commonly assignments. Consider
if ((@<-foo(x)) | (b<=bar(y))) { ... }vs. if ((a<-foo(x)) || (b<=bar(y))){...}.

Because || exits early, if a is TRUE, the second condition will never be evaluated and b will not
be assigned. Such usage is not allowed by the Tidyverse style guide, and the code can easily be
refactored by pulling the assignment outside the condition, so using | | is still preferable.

Tags

best_practices, default, efficiency

See Also

linters for a complete list of linters available in lintr.
https://style.tidyverse.org/syntax.html#if-statements

xml_nodes_to_lints Convert an XML node or nodeset into a Lint

Description

Convenience function for converting nodes matched by XPath-based linter logic into a Lint()
object to return.

Usage

xml_nodes_to_lints(
xml,
source_expression,
lint_message,
type = c("style”, "warning”, "error"),
column_number_xpath = range_start_xpath,
range_start_xpath = "number(./@col1)",
range_end_xpath = "number(./@col2)"

https://style.tidyverse.org/syntax.html#if-statements

78 yoda_test_linter

Arguments

xml An xml_node object (to generate one Lint) or an xml_nodeset object (to gener-
ate several Lints), e.g. as returned by xm12: :xml_find_all() orxml2: :xml_find_first()
or a list of xml_node objects.
source_expression
A source expression object, e.g. as returned typically by 1int (), or more gen-
erally by get_source_expressions().

lint_message The message to be included as the message to the Lint object. If 1int_message
is a character vector the same length as xml, the i-th lint will be given the i-th
message.

type type of lint.

column_number_xpath
XPath expression to return the column number location of the lint. Defaults to
the start of the range matched by range_start_xpath. See details for more
information.

range_start_xpath
XPath expression to return the range start location of the lint. Defaults to the
start of the expression matched by xml. See details for more information.

range_end_xpath
XPath expression to return the range end location of the lint. Defaults to the end
of the expression matched by xml. See details for more information.

Details

The location XPaths, column_number_xpath, range_start_xpath and range_end_xpath are eval-
vated using xm12: : xml_find_num() and will usually be of the form "number(./relative/xpath)".
Note that the location line number cannot be changed and lints spanning multiple lines will ignore
range_end_xpath. column_number_xpath and range_start_xpath are assumed to always refer
to locations on the starting line of the xml node.

Value

For xml_nodes, a 1lint. For xml_nodesets, lints (a list of 1ints).

yoda_test_linter Block obvious "yoda tests"

Description

Yoda tests use (expected, actual) instead of the more common (actual, expected). This is
not always possible to detect statically; this linter focuses on the simple case of testing an expression
against a literal value, e.g. (1L, foo(x)) should be (foo(x), 1L).

Usage

yoda_test_linter()

Tags

best_practices, package_development, readability

yoda_test_linter 79

See Also

linters for a complete list of linters available in lintr. https://en.wikipedia.org/wiki/Yoda_
conditions

https://en.wikipedia.org/wiki/Yoda_conditions
https://en.wikipedia.org/wiki/Yoda_conditions

	absolute_path_linter
	all_undesirable_functions
	any_duplicated_linter
	any_is_na_linter
	assignment_linter
	available_linters
	backport_linter
	best_practices_linters
	brace_linter
	checkstyle_output
	class_equals_linter
	clear_cache
	closed_curly_linter
	commas_linter
	commented_code_linter
	common_mistakes_linters
	condition_message_linter
	configurable_linters
	conjunct_test_linter
	consecutive_stopifnot_linter
	consistency_linters
	correctness_linters
	cyclocomp_linter
	default_linters
	default_settings
	deprecated_linters
	duplicate_argument_linter
	efficiency_linters
	equals_na_linter
	exclude
	executing_linters
	expect_comparison_linter
	expect_identical_linter
	expect_length_linter
	expect_lint
	expect_lint_free
	expect_named_linter
	expect_not_linter
	expect_null_linter
	expect_s3_class_linter
	expect_s4_class_linter
	expect_true_false_linter
	expect_type_linter
	extraction_operator_linter
	fixed_regex_linter
	function_argument_linter
	function_left_parentheses_linter
	get_source_expressions
	ids_with_token
	ifelse_censor_linter
	implicit_integer_linter
	infix_spaces_linter
	inner_combine_linter
	is_lint_level
	line_length_linter
	lint
	lint-s3
	Linter
	linters
	linters_with_defaults
	linters_with_tags
	literal_coercion_linter
	missing_argument_linter
	missing_package_linter
	modify_defaults
	namespace_linter
	nested_ifelse_linter
	nonportable_path_linter
	no_tab_linter
	numeric_leading_zero_linter
	object_length_linter
	object_name_linter
	object_usage_linter
	open_curly_linter
	outer_negation_linter
	package_development_linters
	package_hooks_linter
	paren_body_linter
	paren_brace_linter
	parse_exclusions
	paste_linter
	pipe_call_linter
	pipe_continuation_linter
	readability_linters
	read_settings
	redundant_ifelse_linter
	regex_subset_linter
	robustness_linters
	sarif_output
	semicolon_linter
	seq_linter
	single_quotes_linter
	spaces_inside_linter
	spaces_left_parentheses_linter
	sprintf_linter
	strings_as_factors_linter
	string_boundary_linter
	style_linters
	system_file_linter
	todo_comment_linter
	trailing_blank_lines_linter
	trailing_whitespace_linter
	T_and_F_symbol_linter
	undesirable_function_linter
	undesirable_operator_linter
	unneeded_concatenation_linter
	unreachable_code_linter
	unused_import_linter
	use_lintr
	vector_logic_linter
	xml_nodes_to_lints
	yoda_test_linter

