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Abstract

We implement the Bellman-Ford algorithm for graphs with constant
or time-varying edge costs on a large-scale parallel computing platform.
We use the parallel computing library Combinatorial BLAS to achieve
high performance with minimal coding effort. We compare our results
with reported results using Google’s Pregel system to implement a similar
algorithm. We show that our implementation runs faster and scales well
on synthetic large graphs. We also show that our parallel implementation
has better scalability than the serial implementation in the Boost Graph
Library.



1 Introduction

Shortest path problems, time-dependent graphs and parallel computing are
three vital subjects in today’s computer science. Shortest path algorithms are
fundamental combinatorial algorithms which have a wide range of applications
in scientific research and practice. Time-dependent graphs model extensive real
world phenomena and are emerging more frequently due in part to the success
of social networks. In addition, parallel computing is gaining unprecedented
popularity thanks to the booming of cloud computing and the trend of big data
processing.

In this paper, we aim to combine shortest path problems, time-dependent
graphs and parallel computing as a whole and give a general solution with
high performance. The benchmark we achieved can be used as a baseline for
comparing with further optimizations and new implementations in the future.

In the past, each of the three subjects has been extensively investigated. A-
mong all shortest path algorithms, one of the most general is the Bellman-Ford
algorithm [1], which only requires that no negative loop exists in the graph.
A less general but more efficient algorithm, Dijkstra’s algorithm [2], requires
no negative edge costs. There exist many other special purpose shortest path
algorithms such as A* [3], planar graph shortest path algorithms [4], and Con-
traction Hierarchy [5], etc. Each of them has its own merits and limitations.

One challenge is to efficiently implement shortest path algorithms on parallel
platforms. It is a known fact that certain sequential data structures are hard
to parallelize. One of them is the priority queue [6], which is used by most
shortest path algorithms. The parallel implementation of such algorithms is
possible, such as ∆− Stepping [10]. However, it requires heavy tuning and the
performance is not guaranteed in theory.

Time-dependent graphs apply to a large space of computing problems, be it
the interactive graphs on social networks, or congestions in traffic networks in
heavily populated metropolises. Many classic graph problems are more difficult
to solve on time-dependent graphs than on static graphs since the exact cost of
each edge is not known without knowing either the departure time or arrival time
at the end points. However, when solving the shortest path problem on time-
dependent graphs [7], as we will show later, Bellman-Ford still works efficiently,
given the departure time at the source vertex in the graph.

In the following section we present a detailed formulation of the problem and
a theoretical analysis of the time-dependent Bellman-Ford, which we are going
to implement. In Section III we first implement Bellman-Ford on static graphs
using Combinatorial BLAS [9], a highly scalable parallel computing library.
Then we extend the implementation to solve shortest path problems on time-
dependent graphs as well. In Section IV we evaluate the performance of our
implementation on different types of metrics.
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2 Shortest Path Problem on parallel platforms

2.1 Shortest Paths on Static Graphs

Given a directed graph G with N vertices v1, v2, . . . , vN and M edges, ei,j from
vi to vj , each associated with a cost to traverse, ci,j , one can compute the cost
of traversing any path (ei1,i2 , ei2,i3 , . . . , eik−1,k

) as ci1,i2 + ci2,i3 + . . .+ cik−1,k
.

The shortest path from a source vertex vs to any vertex vi can then be
defined as the path with the minimum cost to traverse, among all paths from
vs to vi one can find in G, if it exists.

input : G: directed graph, vs: source vertex
output: d = {di}: distance from vs to each vertex,

p = {pi}: each vertex’s parent.

//Initialization;
V = {vi} = all vertices in G;
E = {ei,j} = all edges in G;
C = {ci,j} = costs of all edges;
foreach vertex vi in V do

if vi == vs then
di = 0;

else
di = inf;

end
pi = null;

end
//Edge relaxation;
for i← 1 to |V | − 1 do

foreach edge ei,j in E do
if di + ci,j < dj then

dj = di + ci,j ;
pj = i;

end

end

end
//Validation;
foreach edge ei,j in E do

if di + ci,j < dj then
print “G contains negative loops”;
break;

end

end

Algorithm 1: The Bellman-Ford algorithm
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Among all algorithms to solve this problem, the most general one is the
Bellman-Ford algorithm, which computes the shortest path tree (the shortest
path from vs to all vertices in G). Bellman-Ford is guaranteed to find the
shortest path tree unless there are loops with negative costs in G. If negative
loops exist, the shortest path does not exist since a cheaper path can always
be constructed by traversing a negative loop one more time. The algorithm is
described in Algorithm 1.

It first associates a distance di with each vertex vi and initializes all dis to
+∞ except for the source vertex vs, whose distance is 0. It then iterates until all
ti converges. In each iteration, it updates the distance of each vi independently,
according to the update rule di = minej,i{cj,i + dj}.

It is proven [1] that Bellman-Ford terminates in N − 1 iterations if the
shortest paths do exist. Furthermore, the time complexity of the algorithm
is O(MN). There exist a large amount of less general algorithms that trade
generality for efficiency. As a consequence, most of them use a more sophisti-
cated data structure — priority queue [6]. Priority queues do not have a clean
and efficient parallel implementation so far, which makes those more efficient
algorithms less ideal for solving shortest path problems on parallel platforms.
While in the Bellman-Ford algorithm, each di is updated independently in each
iteration. Therefore, it is inherently a parallel operation.

For the sake of maintaining generality, ease of complexity analysis and the
actual implementation, we choose the Bellman-Ford algorithm to implement in
parallel and focus our attention on pursuing high performance on large parallel
computing platforms.

2.2 Shortest Paths on Time-Dependent Graphs

We may think of cost ci,j as the time required to traverse edge ei,j and the
distance di is the total time needed to go to vi from vs. Then the shortest path
problem becomes a real world analogy which is, to find the path from vs to a
destination vertex vd such that vd can be reached the earliest. Furthermore,
instead of a cost value ci, we can associate a function ci,j(t) of time t with
each edge ei,j , denoting the shortest traverse time of ei,j when leaving from
vi at time no earlier than t. Then we effectively turn the graph into a time-
dependent graph with a dynamic version of the shortest path problem defined
as the following:

Given a directed graph G with time-dependent edge costs ci,j(t) for each
edge ei,j , a source vertex vs, and a departure time ts, compute the earliest
possible arrival time at any vertex vi if one leaves vs at ts.

The reason that we choose not to interpret ci,j(t) as the traverse time of
ei,j when leaving from vi at exact time t, is to take non first-in-first-out (FIFO)
edges into consideration. That is, for some edge ei,j , it may be possible to leave
from vi later, but arrive at vj earlier. Therefore one gains from simply waiting
at vi until a better departure time. For the simplicity of the following analysis,
we incorporate such a wait time into ci,j(t) to make all edges “look FIFO”, so
that we do not need to consider the “waiting time” when implementing Bellman-
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Ford, which has no concept of “waiting” built-in since such a scenario does not
exist on static graphs.

For the ease of the following analysis, we derive an arrival-time function
ai,j(t) = ci,j(t) + t for each edge ei,j , meaning the arrival time at vj if leaving
from vi no earlier than t. For any path (ei1,i2 , ei2,i3 , . . . , eik−1,k

), the arrival time
at vik , when leaving from vi1 no earlier than t, is aik−1,ik(· · · ai2,i3(ai1,i2(t)) · · ·).
Notice that for static graphs, since the cost to traverse each edge does not
depend on the departure time, the arrival time at vj along the same path,
(ei1,i2 , ei2,i3 , . . . , eik−1,k

), is simply aik−1,ik(· · · ai2,i3(ai1,i2(t)) · · ·) = ci1,i2+ci2,i3+
. . .+ cik−1,ik + t.

The key difference between time-dependent graphs and static graphs lies in
the capability to know an edge’s cost without knowing the departure time. For
instance, bidirectional shortest path algorithms will not work for solving time-
dependent shortest path problems in that the reverse search started from the
destination vd needs that the edge costs of all in-edges of vd to be available.
But they remain unknown until the forward search from vs reaches those edges.
Fortunately, single directional shortest path algorithms can easily be generalized
to solve time-dependent shortest path problems [7]. They start from vs and
whenever an edge ei,j is encountered, the departure time at vi, which is di,
would already be computed from the previous iteration. Therefore ci,j can be
obtained by a simple lookup, just like in the static scenarios.

However, there is one restriction for the time-dependent graphs, in order
for Bellman-Ford to work properly and efficiently. The restriction is that no
negative loops should ever exist in G. That is, for any vi in G, it should not be
possible to depart from vi at t1 and return to vi at t2 through some loop, with
t2 < t1. It is worth noting that unlike static graphs, time-dependent graphs
containing negative loops occasionally may still have shortest paths defined,
given the loop does not remain negative for unlimited times of traversing, i.e.,
after some times of traversing the loop, all further traversing the loop will result
in non-negative costs. Even with this relaxation, it is no longer guaranteed that
Bellman-Ford would stop within N − 1 iterations, as proven on static graphs.
Therefore, the total running time would not be O(MN) any more. In fact, one
can easily construct time-dependent graphs which have negative loops but allow
Bellman-Ford to finish in arbitrarily many iterations.

With no negative loops in the time-decadent graphs, we now prove that
Bellman-Ford is guaranteed to finished within N − 1 iterations. It is easy to
argue that the shortest path from vs to any vertex vi is composed of at most
N − 1 edges. Therefore we only need to prove that after the nth iteration, all
shortest paths with length no greater than n will be found. Again, this can be
easily proven by induction.

Given that in each iteration at most M edges could be processed, the worst-
case time complexity of time-dependent Bellman-Ford is O(MN), the same as
that of the static version.
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3 Parallel Bellman-Ford Implementation

We aim to implement Bellman-Ford in parallel efficiently so large graphs can be
processed quickly using this general algorithm. We choose to use a C++ library:
Combinatorial BLAS (CombBLAS) [9] to facilitate our implementation. The
Combinatorial BLAS is an extensible distributed-memory parallel graph library
offering a small but powerful set of linear algebra primitives specifically targeting
graph analytics. It uses MPI for distributed memory communications. Using
CombBLAS allows us to achieve the high performance and scalability we pursue
with light coding effort.

input : G: directed graph, vs: source vertex
output: x: distance and parent of all vertices.

//Initialization;
V = {vi} = all vertices in G;
finished = false;
foreach vertex vi in V do

if vi == vs then
xi.d = 0;

else
xi.d = inf;

end
xi.p = null;

end
//Semi-ring operations;
for i← 1 to |V | − 1 do

x = G⊙ x;
if x is not changed then

finished = true;
break;

end

end
//Validation;
if finished == false then

print “G contains negative loops”;
end

Algorithm 2: Parallel Bellman-Ford, not efficient.

CombBLAS has several data structures to support graph computations in-
ternally. Graphs can be represented as adjacency matrices, which are stored as
sparse matrices in distributed memory. A large number of operations interact-
ing with matrices and sparse/dense vectors have been implemented in highly
scalable ways in CombBLAS to facilitate massive graph operations. A very
useful type of operation involves semi-rings. They enable customized matrix-
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vector-multiplication-type operations G⊙ x with user defined element-wise ‘+’
and ‘·’ operations. For instance, if ‘+’ is defined as arithmetic addition and ‘·’
arithmetic multiplication, then G⊙ x becomes traditional matrix-vector multi-
plication Gx. As it turns out, each iteration in static Bellman-Ford, which is
d′i = minj (di + cj,i), can be viewed as a semi-ring operation with ‘+’ defined as
min() and ‘·’ defined as (di + cj,i). Similarly, each iteration in time-dependent
Bellman-Ford, d′i = minj (dj + cj,i(dj)), can be viewed as a semi-ring operation
with ‘+’ defined as min() and ‘·’ defined as dj + cj,i(dj).

Given the transformations above, we implement each iteration in Bellman-
Ford based on a semi-ring operation G ⊙ x, where x = {d, p} is a dense vector
containing the information about the distance di and parent pi of each vi in G.
Our first implementation of parallel Bellman-Ford is shown in Algorithm 2.

The implementation works, yet not efficiently. As one can see, all elements
in x are processed in each iteration. Since x is a dense vector, the distance
and parent values of all vertices are going to be updated in every iteration,
regardless of whether or not those values of their neighbors have been changed
in the previous iteration or not. Therefore, much unnecessary processing is
being done.

Our next implementation eliminates these unnecessary updates by incorpo-
rating a intermediate result holder called the frontier f . f is a sparse vector
containing only the information of the vertices which has been updated in the
last iteration. The new implementation is shown in Algorithm 3.
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input : G: directed graph, vs: source vertex
output: x: distance and parent of all vertices.

//Initialization;
V = {vi} all vertices in G;
finished = false;
f = [];
foreach vertex vi in V do

if vi == vs then
xi.d = 0;
fi.d = 0;

else
xi.d = inf;

end
xi.p = null;

end
//Semi-ring operations;
for i← 1 to sizeof(V )− 1 do

f = G⊙ f ;
trim f ;
if f is empty then

finished = true;
break;

end
merge f into x;

end
//Validation;
if finished == false then

print “G contains negative loops”;
else

print “done”;
end

Algorithm 3: Parallel Bellman-Ford, efficient.

After the semi-ring operation in each iteration, we trim f so that it only
contains vertices with smaller distance than in x. If no vertex remains, x has
converged so we terminate the iterations, otherwise we merge the updated in-
formation to x and start the next iteration. Experiments show the optimized
implementation outperforms the naive implementation significantly.

The static Bellman-Ford and the time-dependent Bellman-Ford differ only in
the ‘·’ operation defined in the semi-ring. For static graphs, computing (di+cj,i)
takes constant time. If the time-dependent variant, dj + cj,i(dj), can be carried
out in the similar amount of time as well, then both of the implementations
would have almost the same running time.
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4 Experiments

To check whether our implementation has good performance and scalability,
we conduct extensive experiments on two types of graphs — binary trees and
random graphs. We first compare the performance of our static implementation
of Bellman-Ford with that of the time-dependent implementation. Then for
each type of the graphs, we first fix the number of cores and test the scalability
against the size of the graph. Then we fix the size of the graph and test the
scalability against the number of cores. Finally we compare the performance of
our static implementation on a single core with the performance of the Bellman-
Ford implementation in the Boost Graph Library.

We try to compare our implementation with previous serial/parallel imple-
mentations of Bellman-Ford. As far as we know there are no time-dependent
implementations available. So we focus on comparing with the static implemen-
tations. There are two main implementations that we are aware of, which are in
Google’s Pregel system (parallel) and Boost Graph Library (serial). Since the
exact implementation and architecture of Pregel is not available publicly, we
only use their reported performance and compare it with ours, assuming linear
scalability. For BGL, we do the comparison on the same machine using one
core.

The parallel computing platform that we have access to in this project is a 4
processor Westmere-EX system with 40 physical cores, 80 logical cores (SMT),
and 256 GiB of memory. The system runs RHEL 6.1 with gcc version 4.4.6 and
Open MPI 1.5.3.

To achieve load balancing across multiple cores, the vertices in the graph are
randomly permuted before the Bellman-Ford iterations. The results show our
implementation has very high performance and scalability.

4.1 Static Bellman-Ford and time-dependent Bellman-Ford

We artificially generate some random graphs by uniformly creating x out-going
edges from each vertex in the graph, where the random variable d follows a
log-normal distribution p(d) = 1√

2πσd
e−(ln d−µ)2/σ2

with µ = 4, σ = 1.3 [8]. The

mean out-degree is about 127. The static graphs have uniform edge weight 1
and the time-dependent graphs have edge weights ci,j(t) = 2t. Figures 1 and 2
show the runtime of the static and time-dependent implementation with respect
to the size of the graphs and the number of cores we use. As we concluded in
the previous section, both implementations have nearly identical performance
due to the fact that the time to fetch ci,j in the time-dependent implementation
is similar to the time for a lookup in the static implementation. Therefore, in
the following experiments, we only show the results obtained from the static
implementation for simplicity.

8



0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

Number of vertices (106)

R
un

tim
e 

(s
ec

on
ds

)

 

 

static
time−dependent

Figure 1: Comparison between static and time-dependent implementations.
(Random graphs, single core.)
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Figure 2: Comparison between static and time-dependent implementations.
(Random graphs, 10M vertices.)

4.2 Shortest Paths on Binary Trees

We generate binary trees of different sizes where each non-root vertex has exactly
one incoming edge, with all edges’ costs set to one.

First we fix the size of the graph to be 100 million vertices and vary the
number of cores to use. The results are shown in Figure 3. We obtain a speedup
of 18 when increasing the number of cores from 1 to 36. We also depict the
number of traversed edges per second (TEPS) per core in Figure 4. The results
show that our implementation scales reasonably well with the the number of
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Figure 3: Runtime on binary trees with 100M vertices.
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Figure 4: TEPS/core on Binary trees with 100M vertices.

cores on binary graphs.
Then, by fixing the number of cores at 36, we increase the size of the graph

gradually from 100 million to 1 billion vertices. As shown in Figure 5, the
running time increased by about 10 times when the size of the graph grows by
10 times, demonstrating a very good scalability. TEPS/core results are shown
in Figure 6.

We compare our results with reported performance of Google’s Pregel sys-
tem. Using 50 cores, their Bellman-Ford-flavored implementation takes 174
seconds on the binary tree with 1 billion vertices, while ours takes 147 seconds
using 36 cores. Both results show a linear increase of runtime against the graph
size.
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Figure 5: Runtime on binary trees using 36 cores.
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Figure 6: TEPS/core on binary trees using 36 cores.

4.3 Shortest Paths on Random Graphs

As was done for Google’s Pregel [8], we also conducted experiments on random
graphs introduced in Section 4.1. This kind of graph bears more similarity with
social networks and is more parallelism-friendly than binary trees due to the
large number of out-degrees. Fixing the number of vertices to be 10 million
(hence approximately 1.27 billion edges), the runtime and TEPS/core against
the number of cores are shown in Figure 7 and 8. We obtain a speedup of 27
when the number of cores is increased from 1 to 36.

Figures 9 and 10 show the runtime and TEPS/core against the size the
graph using 36 cores. From 10 million vertices (1.27 billion edges) to 100 million
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Figure 7: Runtime on random graphs with 10M vertices.
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Figure 8: TEPS/core on random graphs with 10M vertices.

vertices (12.7 billion edges), the running time also increased 10 times.
Again, we compare our result with Pregel’s. The closest comparison we

obtain is that, when the graph size is 100 million vertices, our runtime is 325
seconds on 36 cores, while Pregel’s runtime is about 80 seconds on 800 cores.
That is, we use 1/22 of their resources and achieve performance 4 times worse
than theirs. We speculate a better performance than theirs when we increase
the number of cores to 800.
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Figure 9: Runtime on random graphs using 36 cores.
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Figure 10: TEPS/core on random graphs using 36 cores.

4.4 Scalability on a Single-Core Machine

We compare our implementation with the one in the Boost Graph Library
(BGL) on a single core. Figures 11 and 12 show the results on binary trees
and random graphs, respectively. As one can see, our implementation typically
has better performance and scalability on binary trees than the BFL version.

However, on random graphs, BGL outperforms ours by about a factor of
about 5 in the beginning. This factor gets smaller when the graph gets larger,
which shows that our implementation has a better scalability than BGL’s. Since
our implementation is built upon Combinatorial BLAS, which is specifically
optimized for parallel efficiency. The slow down by 5 times when the graph is
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Figure 11: Comparison between our implementations and BGL’s. (Binary trees,
single core.)
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Figure 12: Comparison between our implementations and BGL’s. (Random
graphs, single core.)

small is a penalty we consider reasonable brought by the parallelization.
The correctness of our implementation is ensured by the fact that it does

the same number of Bellman-Ford iterations with BGL’s implementation. And
for any vertex, its distance converges to the same value in both of the imple-
mentations.
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5 Conclusion

Despite much work that has been done in the past, the parallelization of shortest
path algorithms remains a difficult problem. In this project we present a par-
allel implementation of the Bellman-Ford algorithm using a C++ distributed-
memory parallel graph library, Combinatorial BLAS. Experiments show that
the our implementation scales up to 36 cores with graphs which have up to
more than 10 billion edges.

Given that CombBLAS is still a work in progress, we expect better per-
formance from optimizing the library and our implementation in the future.
We hope our general and efficient solution of solving shortest path problems in
parallel can be exploited by real-world problems, such as highway routing and
social network analysis, on large-scale distributed systems.
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