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The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that @ € (P), find
an integer k such that kP = Q.
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The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that @ € (P), find
an integer k such that kP = Q.

» Typical setting for cryptosystems:

» P is a fixed system parameter,
> k is the secret (private) key,
> @ is the public key.

» Key generation needs to compute @Q = kP, given k and P
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EC Diffie-Hellman key exchange

» Users Alice and Bob have key pairs (ka,Q4) and (kp,Qp)
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EC Diffie-Hellman key exchange

» Users Alice and Bob have key pairs (ka,Q4) and (kp,Qp)
> Alice sends Q4 to Bob
» Bob sends Q5 to Alice
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EC Diffie-Hellman key exchange

Users Alice and Bob have key pairs (ka,Q4) and (kp,@B)
Alice sends Q 4 to Bob

Bob sends Qg to Alice

Alice computes joint key as K = k4Qp

vV v v v Yy

Bob computes joint key as K = kpQ 4
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Schnorr signatures

> Alice has key pair (ka,Q4)
» Order of (P) is ¢
» Use cryptographic hash function H
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Schnorr signatures

Alice has key pair (ka,Q4)
Order of (P) is ¢
Use cryptographic hash function H

vV v . v.vY

Sign: Generate secret random r € {1,...,¢}, compute signature
(H(R,M),S) on M with

R=rP
S=(r+H(R,M)ks) mod ¢
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Schnorr signatures

Alice has key pair (ka,Q4)
Order of (P) is ¢
Use cryptographic hash function H

vV v . v.vY

Sign: Generate secret random r € {1,...,¢}, compute signature
(H(R,M),S) on M with

R=rP
S=(r+H(R,M)ks) mod ¢

v

Verify: compute R = SP + H(R, M)Qa and check that

H(R,M) = H(R, M)
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Scalar multiplication

» Looks like all these schemes need computation of kP.
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Scalar multiplication

» Looks like all these schemes need computation of kP.
> Let's take a closer look:

> For key generation, the point P is fixed at compile time
» For Diffie-Hellman joint-key computation the point is received at
runtime
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Scalar multiplication

» Looks like all these schemes need computation of kP.

> Let's take a closer look:
> For key generation, the point P is fixed at compile time
» For Diffie-Hellman joint-key computation the point is received at
runtime
» Key generation and Diffie-Hellman need one scalar multiplication kP
» Schnorr signature verification needs double-scalar multiplication
k1P + k2 P2
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Scalar multiplication

» Looks like all these schemes need computation of kP.

> Let's take a closer look:

> For key generation, the point P is fixed at compile time

» For Diffie-Hellman joint-key computation the point is received at
runtime

» Key generation and Diffie-Hellman need one scalar multiplication kP

» Schnorr signature verification needs double-scalar multiplication
k1P + ko P

> In key generation and Diffie-Hellman joint-key computation, % is
secret

> The scalars in Schnorr signature verification are public

Scalar-multiplication algorithms



Scalar multiplication

» Looks like all these schemes need computation of kP.

> Let's take a closer look:

> For key generation, the point P is fixed at compile time

» For Diffie-Hellman joint-key computation the point is received at
runtime

» Key generation and Diffie-Hellman need one scalar multiplication kP

» Schnorr signature verification needs double-scalar multiplication
k1P + ko P

> In key generation and Diffie-Hellman joint-key computation, % is

secret
> The scalars in Schnorr signature verification are public

» In the following: Distinguish these cases
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Secret vs. public scalars

» The computation kP should have the same result for public or for
secret k
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Secret vs. public scalars

» The computation kP should have the same result for public or for
secret k

» True. We still want different algorithms.

» Problem: Timing information:

> Some fast scalar-multiplication algorithms have a running time that
depends on k
» An attacker can measure time and deduce information about &
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Secret vs. public scalars

» The computation kP should have the same result for public or for
secret k

» True. We still want different algorithms.

» Problem: Timing information:

» Some fast scalar-multiplication algorithms have a running time that
depends on k

» An attacker can measure time and deduce information about &

» Brumley, Tuveri, 2011: A few minutes to steal the private key of a
TLS server over the network.
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Secret vs. public scalars

» The computation kP should have the same result for public or for
secret k
» True. We still want different algorithms.
» Problem: Timing information:
» Some fast scalar-multiplication algorithms have a running time that
depends on k
» An attacker can measure time and deduce information about &
» Brumley, Tuveri, 2011: A few minutes to steal the private key of a
TLS server over the network.
» For secret k we need constant-time algorithms
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A first approach

» Let's compute 105 - P.
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A first approach

» Let's compute 105 - P.
» Obvious: Can do that with 104 additions P+ P+ P +---+ P
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A first approach

» Let's compute 105 - P.
» Obvious: Can do that with 104 additions P+ P+ P +---+ P

> Problem: 105 has 7 bits, we need roughly 27 additions, real scalars
have =~ 256 bits, we would need roughly 2256 additions (more
expensive than solving the ECDLP!)
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A first approach

» Let's compute 105 - P.
» Obvious: Can do that with 104 additions P+ P+ P +---+ P

> Problem: 105 has 7 bits, we need roughly 27 additions, real scalars
have =~ 256 bits, we would need roughly 2256 additions (more
expensive than solving the ECDLP!)

» Conclusion: we need algorithms that run in polynomial time (in the
size of the scalar)
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Rewriting the scalar

> 105=64+32+8+1=20425423420
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Rewriting the scalar

> 105=64+32+8+1=20425423420
> 105=1-264+1-2540-244+1-2340-224+0-21+1-20
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Rewriting the scalar

> 105=64+32+8+1=20425423420
> 105=1-2641-2540-2*+1-224+0-224+0-214+1.20

> 105 = ((((((((L-2+1)-2) +0)-2) +1)-2) +0)-2) +0) - 2) + 1
(Horner's rule)
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Rewriting the scalar

> 105=64+32+8+1=20425423420
> 105=1-2641-2540-2*+1-224+0-224+0-214+1.20

> 105 = ((((((((L-2+1)-2) +0)-2) +1)-2) +0)-2) +0) - 2) + 1
(Horner's rule)

» 105-P = ((((((((((P-24+P)-2)+0)-2)+P)-2)+0)-2)+0)-2)+ P
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Rewriting the scalar

> 105=64+32+8+1=20425423420
> 105=1-2641-2540-2*+1-224+0-224+0-214+1.20

> 105 = ((((((((L-2+1)-2) +0)-2) +1)-2) +0)-2) +0) - 2) + 1
(Horner's rule)

» 105-P = (((((((((P-24+P)-2)+0)-2)+P)-2)+0)-2)+0)-2)+ P
» Cost: 6 doublings, 3 additions

Scalar-multiplication algorithms



Rewriting the scalar

» 105 =64 +32+8+1=20425423 420

» 105=1-2641-2240-24+1-2240-224+0-2' 41-2°

> 105 = ((((((((((1-241)-2) +0)-2) +1)-2) +0) - 2) +0) - 2) + 1
(Horner's rule)

» 105-P = ((((((((P-24P)-2)+0)-2)+ P)-2)+0)-2)+0)-2) + P

» Cost: 6 doublings, 3 additions

> General algorithm: “Double and add”

R+ P
for i <+ n — 2 downto 0 do
R+ 2R
if (k)2[i] =1 then
R+~ R+ P
end if
end for

return R
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Analysis of double-and-add

» Let n be the number of bits in the exponent
» Double-and-add takes n — 1 doublings
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Analysis of double-and-add

Let n be the number of bits in the exponent
Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent
Double-and-add takes m — 1 additions

vV v.v. v Yy

On average: = n/2 additions
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Analysis of double-and-add

Let n be the number of bits in the exponent
Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent
Double-and-add takes m — 1 additions

On average: = n/2 additions

vV v v v v Yy

P does not need to be known in advance, no precomputation
depending on P
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Analysis of double-and-add

vV v v v v Yy

Let n be the number of bits in the exponent
Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent
Double-and-add takes m — 1 additions

On average: = n/2 additions

P does not need to be known in advance, no precomputation
depending on P

Handles single-scalar multiplication
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Analysis of double-and-add

vV v v v v Yy

v

Let n be the number of bits in the exponent
Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent
Double-and-add takes m — 1 additions

On average: = n/2 additions

P does not need to be known in advance, no precomputation
depending on P

Handles single-scalar multiplication

» Running time clearly depends on the scalar: insecure for secret

scalars!
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Double-scalar double-and-add

> Let's modify the algorithm to compute k1 P + ko P
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Double-scalar double-and-add

> Let's modify the algorithm to compute k1 P + ko P
» Obvious solution:
» Compute k1 P1 (n1 — 1 doublings, m; — 1 additions)
» Compute k2 P> (n2 — 1 doublings, ma — 1 additions)
> Add the results (1 addition)
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Double-scalar double-and-add

> Let's modify the algorithm to compute k1 P + ko P
» Obvious solution:
» Compute k1 P1 (n1 — 1 doublings, m; — 1 additions)
» Compute k2 P> (n2 — 1 doublings, ma — 1 additions)
> Add the results (1 addition)

» We can do better (O denotes the neutral element):

R+ O
for i < max(ny,n2) — 1 downto 0 do
R+ 2R
if (kl)g[l] =1 then
R+ R + P1
end if
if (kQ)Q[Z] =1 then
R+ R+ P2
end if
end for
return R
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Double-scalar double-and-add

> Let's modify the algorithm to compute k1 P + ko P
» Obvious solution:
» Compute k1 P1 (n1 — 1 doublings, m; — 1 additions)
» Compute k2 P> (n2 — 1 doublings, ma — 1 additions)
> Add the results (1 addition)

» We can do better (O denotes the neutral element):

R+ O
for i < max(ny,n2) — 1 downto 0 do
R+ 2R
if (kl)g[l] =1 then
R+ R + P1
end if
if (kQ)Q[Z] =1 then
R+ R+ P2
end if
end for
return R

» max(ny,ny) doublings, m; + my additions
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Some precomputation helps

» Whenever k; and ko have a 1 bit at the same position, we first add
Py and then P, (on average for 1/4 of the bits)
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Some precomputation helps

» Whenever k; and ko have a 1 bit at the same position, we first add
Py and then P, (on average for 1/4 of the bits)
> Let's just precompute T = P; + P,

Scalar-multiplication algorithms

11



Some precomputation helps

» Whenever k; and ko have a 1 bit at the same position, we first add
Py and then P, (on average for 1/4 of the bits)

> Let's just precompute T = P; + P,

» Modified algorithm (special case of Strauss’ algorithm):

R+ O
for i < max(ni,n2) — 1 downto 0 do
R+ 2R
if (kl)Q[Z] =1 AND (/ﬂg)g[l] =1 then
R+~ R+T
else
if (kl)g[l} =1 then
R+ R+ Pl
end if
if (/ﬂg)gm =1 then
R+ R + P2
end if
end if
end for
return R
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Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline
precomputation)?
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Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline
precomputation)?

» First idea: Let's precompute a table containing 0P, P,2P, 3P, ...,
when we receive k, simply look up kP.
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Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline
precomputation)?

» First idea: Let's precompute a table containing 0P, P,2P, 3P, ...,
when we receive k, simply look up kP.
» Problem: k is large. For a 256-bit & we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB
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Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline
precomputation)?

» First idea: Let's precompute a table containing 0P, P,2P, 3P, ...,
when we receive k, simply look up kP.
» Problem: k is large. For a 256-bit & we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

» How about, for example, precompute P,2P,4P,8P,...,2" 'P
» This needs only about 8KB of storage for n = 256
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Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline
precomputation)?

» First idea: Let's precompute a table containing 0P, P,2P, 3P, ...,
when we receive k, simply look up kP.
» Problem: k is large. For a 256-bit & we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

» How about, for example, precompute P,2P,4P,8P,... 2" 1P
» This needs only about 8KB of storage for n = 256
» Modified scalar-multiplication algorithm:
R+ O
fori<~ 0ton—1do
if (k)2[i] =1 then
R+ R+2P
end if
end for
return R

Scalar-multiplication algorithms 12



Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline
precomputation)?

» First idea: Let's precompute a table containing 0P, P,2P, 3P, ...,
when we receive k, simply look up kP.
» Problem: k is large. For a 256-bit & we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

» How about, for example, precompute P,2P,4P,8P,... 2" 1P
» This needs only about 8KB of storage for n = 256
» Modified scalar-multiplication algorithm:
R+ O
fori< O0Oton—1do
if (k)2[i] =1 then
R+ R+2P
end if
end for
return R
» Eliminated all doublings in fixed-basepoint scalar multiplication!
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Double-and-add always

» All algorithms so far perform conditional addition where the
condition is secret

» For secret scalars (most common case!) we need something else
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Double-and-add always

» All algorithms so far perform conditional addition where the
condition is secret

» For secret scalars (most common case!) we need something else

> |dea: Always perform addition, discard result:
R+ P
for i <+ n — 2 downto 0 do
R+ 2R
Rt «~ R+ P
if (k)2[i] =1 then
R <+ R;
end if
end for
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Double-and-add always

» All algorithms so far perform conditional addition where the
condition is secret

» For secret scalars (most common case!) we need something else
> ldea: Always perform addition, discard result:
» Or simply add the neutral element O

R+ P
for i < n — 2 downto 0 do
R+ 2R
if (k)2[i] =1 then
R+~ R+ P
else
R+ R+0O
end if
end for
return R
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Double-and-add always

» All algorithms so far perform conditional addition where the
condition is secret

» For secret scalars (most common case!) we need something else
> ldea: Always perform addition, discard result:
» Or simply add the neutral element O

R+ P
for i < n — 2 downto 0 do
R+ 2R
if (k)2[i] =1 then
R+~ R+ P
else
R+ R+0O
end if
end for
return R

» Still not constant time, more later. ..
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Let's rewrite that a bit ...

» We have a table T = (O, P)
» Notation 70| = O, T[1] = P
» Scalar multiplication is

R+ P
for i < n — 2 downto 0 do
R+ 2R
R« R+ T[(k)2i]]
end for

Scalar-multiplication algorithms
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Changing the scalar radix

» So far we considered a scalar written in radix 2

» How about radix 37
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Changing the scalar radix

So far we considered a scalar written in radix 2
How about radix 3?

We precompute a Table T' = (O, P,2P)

Write scalar k as (kp—1,...,k0)3

vV v v v

Scalar-multiplication algorithms

15



Changing the scalar radix

So far we considered a scalar written in radix 2
How about radix 3?
We precompute a Table T' = (O, P,2P)
Write scalar k as (kp—1,...,k0)3
Compute scalar multiplication as
R« T[(k)s[n — 1]]
for i < n — 2 downto 0 do
R+ 3R
R+ R+ T[(k)sd]]
end for

vV vV v v Y
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Changing the scalar radix

vV vV v v Y

So far we considered a scalar written in radix 2
How about radix 3?7
We precompute a Table T' = (O, P,2P)
Write scalar k as (kp—1,...,k0)3
Compute scalar multiplication as

R« T[(k)s[n — 1]

for i < n — 2 downto 0 do

R+ 3R

R+ R+ T[(k)sd]]
end for

Advantage: The scalar is shorter, fewer additions
Disadvantage: 3 is just not nice (needs triplings)
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Changing the scalar radix

vV vV v v Y

So far we considered a scalar written in radix 2
How about radix 3?
We precompute a Table T' = (O, P,2P)
Write scalar k as (kp—1,...,k0)3
Compute scalar multiplication as
R« T[(k)s[n — 1]]
for i < n — 2 downto 0 do
R+ 3R
R+ R+ T[(k)sd]]
end for

Advantage: The scalar is shorter, fewer additions
Disadvantage: 3 is just not nice (needs triplings)

How about some nice numbers, like 4, 8,167

Scalar-multiplication algorithms
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Fixed-window scalar multiplication

» Fix a window width w
» Precompute T = (O, P,2P,...,(2* —1)P)
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Fixed-window scalar multiplication

Fix a window width w
Precompute T' = (O, P,2P,...,(2¥ — 1)P)
Write scalar k as (kp—1, ..., ko)aw

This is the same as chopping the binary scalar into “windows” of
fixed length w

vV v v v

Scalar-multiplication algorithms

16



Fixed-window scalar multiplication

Fix a window width w
Precompute T' = (O, P,2P,...,(2¥ — 1)P)
Write scalar k as (kp—1, ..., ko)aw

vV v v v

This is the same as chopping the binary scalar into “windows” of
fixed length w

v

Compute scalar multiplication as
R« T[(k)gw[m — 1]]
for i < m — 2 downto 0 do
for j + 1 to w do
R« 2R
end for
R R+ T[(k)z0]i]
end for

Scalar-multiplication algorithms
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Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings
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Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings

» Precomputation costs us w/2 — 1 additions and w/2 — 1 doublings

Scalar-multiplication algorithms

17



Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings
» Precomputation costs us w/2 — 1 additions and w/2 — 1 doublings

» Number of additions in the loop is [n/w]
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Analysis of fixed window

For an n-bit scalar we still have n — 1 doublings

Precomputation costs us w/2 — 1 additions and w/2 — 1 doublings
Number of additions in the loop is [n/w]

Larger w: More precomputation

vV v v v Y

Smaller w: More additions inside the loop
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Analysis of fixed window

For an n-bit scalar we still have n — 1 doublings

Precomputation costs us w/2 — 1 additions and w/2 — 1 doublings
Number of additions in the loop is [n/w]

Larger w: More precomputation

Smaller w: More additions inside the loop

vV v.v v v .Y

For ~ 256-bit scalars choose w =4 or w =5

Scalar-multiplication algorithms
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Is fixed-window constant time?

» For each window of the scalar perform w doublings and one
addition, sounds good.
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Is fixed-window constant time?

» For each window of the scalar perform w doublings and one
addition, sounds good.
» The devil is in the detail:

> Is addition running in constant time? Also for O7
» We can make that work, but how easy and efficient it is depends on
the curve shape (hint: you want to use Edward's curves)
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Is fixed-window constant time?

» For each window of the scalar perform w doublings and one
addition, sounds good.

» The devil is in the detail:
> Is addition running in constant time? Also for O7
» We can make that work, but how easy and efficient it is depends on
the curve shape (hint: you want to use Edward's curves)
> Are lookups from the table T running in constant time?

> Usually not!

Scalar-multiplication algorithms
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Cache-timing attacks

» We load from table T at position p = (k)qw|[i]
» The position is part of the secret scalar, so also secret
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Cache-timing attacks

» We load from table T at position p = (k)qw|[i]
» The position is part of the secret scalar, so also secret

» Most processors load data through several caches (transparent, fast
memory)

> loads are fast if data is found in cache (cache hit)
> loads are slow if data is not found in cache (cache miss)
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Cache-timing attacks

» We load from table T at position p = (k)qw|[i]
» The position is part of the secret scalar, so also secret
» Most processors load data through several caches (transparent, fast
memory)
> loads are fast if data is found in cache (cache hit)
> loads are slow if data is not found in cache (cache miss)
» Solution (part 1): Load all items, pick the right one:
R+ O
for i from 1 to 2¥ — 1 do
if p =i then
R+ TVi]
end if
end for
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Cache-timing attacks

» We load from table T at position p = (k)qw|[i]
» The position is part of the secret scalar, so also secret

» Most processors load data through several caches (transparent, fast
memory)
> loads are fast if data is found in cache (cache hit)
> loads are slow if data is not found in cache (cache miss)
» Solution (part 1): Load all items, pick the right one:
R+ O
for i from 1 to 2¥ — 1 do
if p =i then
R+ TVi]
end if
end for

» Problem 1: if-statements are not constant time
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Cache-timing attacks

» We load from table T at position p = (k)qw|[i]
» The position is part of the secret scalar, so also secret

» Most processors load data through several caches (transparent, fast
memory)

> loads are fast if data is found in cache (cache hit)
> loads are slow if data is not found in cache (cache miss)
» Solution (part 1): Load all items, pick the right one:
R+ O
for i from 1 to 2% — 1 do
if p =i then
R+ TVi]
end if
end for
> Problem 1: if-statements are not constant time

» Problem 2: Comparisons are not (guaranteed to be) constant time
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Constant-time ifs

> A general if statement looks as follows:
if s then
R+ A
else
R+ B
end if
» This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

» Reason: branch prediction
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Constant-time ifs

v

A general if statement looks as follows:
if s then
R+ A
else
R+ B
end if

This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

v

v

Reason: branch prediction

v

Suitable replacement:
R«<s-A+(1-5s)-B
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Constant-time ifs

v

A general if statement looks as follows:
if s then
R+ A
else
R+ B
end if

This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

v

v

Reason: branch prediction

v

Suitable replacement:

R«<s-A+(1-5s)-B
Can replace multiplication and addition with bit-logical operations
(AND and XOR)

v
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Constant-time ifs

v

A general if statement looks as follows:
if s then
R+ A
else
R+ B
end if

This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

v

v

Reason: branch prediction

v

Suitable replacement:

R«<s-A+(1-5s)-B
Can replace multiplication and addition with bit-logical operations
(AND and XOR)

For very fast A and B, this can even be faster than the conditional
branch

v

v
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Constant-time comparison

static unsigned long long eq(unsigned char a, unsigned char b)
{

unsigned long long t = a ~ b;

t = (-t) > 63;

return 1-t;

}
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More offline precomputation

> Let's get back to fixed-basepoint multiplication
» So far we precomputed P,2P,4P,8P,...
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More offline precomputation

> Let's get back to fixed-basepoint multiplication
» So far we precomputed P,2P,4P,8P,...
» We can combine that with fixed-window scalar multiplication
» Precompute T; = (O, P,2P,3P,...,(2¥ — 1)P) - 2 for
i =0,w,2w,3w, [n/w] — 1
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Let's get back to fixed-basepoint multiplication
So far we precomputed P,2P,4P,8P,...
We can combine that with fixed-window scalar multiplication
Precompute T; = (O, P,2P,3P,...,(2¥ — 1)P) - 2! for
i =0,w,2w,3w, [n/w] — 1
Perform scalar multiplication as

R« Ty|(k)2 0]

for i+ 1to [n/w] —1 do

R+ R+ T;[(k)2w[i]]
end for
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More offline precomputation

Let's get back to fixed-basepoint multiplication
So far we precomputed P,2P,4P,8P,...
We can combine that with fixed-window scalar multiplication
Precompute T; = (O, P,2P,3P,...,(2¥ — 1)P) - 2! for
i =0,w,2w,3w, [n/w] — 1
Perform scalar multiplication as

R« To[(k)2w [0]

for i+ 1to [n/w] —1 do

R+ R+ T;[(k)2w[i]]

end for

No doublings, only [b/w] — 1 additions

v

v
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More offline precomputation

vV v v v

Let's get back to fixed-basepoint multiplication
So far we precomputed P,2P,4P,8P,...
We can combine that with fixed-window scalar multiplication
Precompute T; = (O, P,2P,3P,...,(2¥ — 1)P) - 2! for
i =0,w,2w,3w, [n/w] — 1
Perform scalar multiplication as

R« Ty|(k)2 0]

for i+ 1to [n/w] —1 do

R R+ Ti[(k)ow[i]
end for

» No doublings, only [b/w] — 1 additions
» Can use huge w, but:

> at some point the precomputed tables don’t fit into cache anymore.
» constant-time loads get slow for large w
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Fixed-window limitations

» Consider the scalar 22 = (101 10)3 and window size 2

> |nitialize R with P
» Double, double, add P
» Double, double, add 2P
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> |nitialize R with P
» Double, double, add P
» Double, double, add 2P

» More efficient:

> |nitialize R with P
» Double, double, double, add 3P
» double

» Problem with fixed window: it's fixed.
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Fixed-window limitations

v

Consider the scalar 22 = (101 10)3 and window size 2

> |nitialize R with P
» Double, double, add P
» Double, double, add 2P

More efficient:

> |nitialize R with P
» Double, double, double, add 3P
» double

v

v

Problem with fixed window: it's fixed.

Idea: “Slide” the window over the scalar

v
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Sliding window scalar multiplication

» Choose window size w

» Rewrite scalar k as k = (ko, ..., k) with &; in
{0,1,3,5,...,2¥ — 1} with at most one non-zero entry in each
window of length w
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Sliding window scalar multiplication

» Choose window size w

» Rewrite scalar k as k = (ko, ..., k) with &; in
{0,1,3,5,...,2¥ — 1} with at most one non-zero entry in each
window of length w

» Do this by scanning k from right to left, expand window from each
1-bit

» Precompute P,3P,5P,..., (2% — 1)P

» Perform scalar multiplication

R+ O
for i < m to 0 do
R+ 2R
if k; then
R+ R+ kP
end if
end for
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Analysis of sliding window

» We still do n — 1 doublings for an n-bit scalar
» Precomputation needs 2%~!

» Expected number of additions in the main loop: n/(w + 1)
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Analysis of sliding window

We still do n — 1 doublings for an n-bit scalar
Precomputation needs 2% ~!

Expected number of additions in the main loop: n/(w + 1)

vV v vv

For the same w only half the precomputation compared to
fixed-window scalar multiplication

v

For the same w fewer additions in the main loop
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Analysis of sliding window

vV v vv

v

We still do n — 1 doublings for an n-bit scalar
Precomputation needs 2% ~!
Expected number of additions in the main loop: n/(w + 1)

For the same w only half the precomputation compared to
fixed-window scalar multiplication

For the same w fewer additions in the main loop

» But: It's not running in constant time!

Still nice (in double-scalar version) for signature verification
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Using efficient negation

» So far everything we did works for any cyclic group (P)

» Elliptic curves have so much more to offer

» For example, efficient negation: —(z,y) = (
curves)

x,—y) (on Weierstrass
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Using efficient negation

» So far everything we did works for any cyclic group (P)
» Elliptic curves have so much more to offer
» For example, efficient negation: —(z,y) = (z, —y) (on Weierstrass
curves)
> Idea: use a signed representation for the scalar
» Fixed-window scalar multiplication:
» Write scalar as (ko, ..., km—1) with k; € [-2¥,...,2% — 1]
» Precompute T' = (—2YP,(—2" + 1)P,..., O, P,...,(2¥ —1)P
» Perform normal fixed-window scalar multiplication
» Half of the precomputation is almost free, we get one bit of w for free
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» Fixed-window scalar multiplication:

» Write scalar as (ko, ..., km—1) with k; € [-2¥,...,2% — 1]
Precompute T'= (=2 P, (-2 + 1)P,...,O,P,...,(2¥ = 1)P
Perform normal fixed-window scalar multiplication
Half of the precomputation is almost free, we get one bit of w for free
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Using efficient negation

» So far everything we did works for any cyclic group (P)

» Elliptic curves have so much more to offer

» For example, efficient negation: —(z,y) = (z, —y) (on Weierstrass
curves)

> Idea: use a signed representation for the scalar

» Fixed-window scalar multiplication:

>

vy vy VY

Write scalar as (ko, ..., km—1) with k; € [-2",...,2¥ — 1]
Precompute T'= (=2 P, (-2 + 1)P,...,O,P,...,(2¥ = 1)P
Perform normal fixed-window scalar multiplication

Half of the precomputation is almost free, we get one bit of w for free
Negation is so fast that we can do it on the fly (saves half the table,
faster constant-time lookups)

» Similar scalar-negation speedup for sliding-window multiplication
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Using other efficient endomorphisms

» Ben showed us before that there are efficient endomorphisms on
elliptic curves

> Let’s now just take an efficient endomorphism ¢
> Let’s assume that ¢(Q) corresponds to AQ for all Q € (P)
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Using other efficient endomorphisms

v

Ben showed us before that there are efficient endomorphisms on
elliptic curves

v

Let's now just take an efficient endomorphism ¢

Let's assume that ¢(Q) corresponds to AQ for all Q € (P)
We can use this for faster scalar multiplication (Gallant, Lambert,
Vanstone, 2000; and Galbraith, Lin, Scott, 2009)
» Write scalar k = k1 + k2 with k1 and ko half the length of &
> Perform half-size double-scalar multiplication k1 (P) + k2(p(P))
> Save half of the doublings (estimated speedup: 30 — 40%)

v

v
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Using other efficient endomorphisms

Ben showed us before that there are efficient endomorphisms on
elliptic curves

Let's now just take an efficient endomorphism ¢
> Let’s assume that ¢(Q) corresponds to AQ for all Q € (P)

» We can use this for faster scalar multiplication (Gallant, Lambert,

Vanstone, 2000; and Galbraith, Lin, Scott, 2009)

» Write scalar k = k1 + k2 with k1 and ko half the length of &
> Perform half-size double-scalar multiplication k1 (P) + k2(p(P))
> Save half of the doublings (estimated speedup: 30 — 40%)

With two efficient endomorphisms we can do a 4-dimensional
decomposition

Perform quarter-size quad-scalar multiplication (save another 25% of
doublings)
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Differential addition

» Consider elliptic curves of the form By? = 2® + Axz? + z.
» Montgomery in 1987 showed how to perform z-coordinate-based
arithmetic:

> Given the z-coordinate xp of P, and
> given the z-coordinate z¢ of @, and
> given the z-coordinate zp_g of P — Q
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Differential addition

» Consider elliptic curves of the form By? = 2® + Axz? + z.

» Montgomery in 1987 showed how to perform z-coordinate-based
arithmetic:

>

>
>
>

Given the z-coordinate xp of P, and

given the z-coordinate z¢g of @, and

given the z-coordinate zp_g of P — Q
compute the x-coordinate zgr of R=P + Q
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Differential addition

» Consider elliptic curves of the form By? = 2® + Axz? + z.

» Montgomery in 1987 showed how to perform z-coordinate-based

arithmetic:
» Given the z-coordinate zp of P, and
> given the z-coordinate z¢ of @, and
> given the z-coordinate zp_g of P — Q
» compute the z-coordinate xr of R =P 4+ Q

» This is called differential addition
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Differential addition

v

v

v

v

Consider elliptic curves of the form By? = 23 + Ax? + z.

Montgomery in 1987 showed how to perform z-coordinate-based

arithmetic:
» Given the z-coordinate zp of P, and
> given the z-coordinate z¢ of @, and
> given the z-coordinate zp_g of P — Q
» compute the z-coordinate xr of R =P 4+ Q

This is called differential addition

Less efficient differential-addition formulas for other curve shapes
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Differential addition

» Consider elliptic curves of the form By? = 2® + Axz? + z.

» Montgomery in 1987 showed how to perform z-coordinate-based
arithmetic:

> Given the z-coordinate xp of P, and

> given the z-coordinate z¢ of @, and

> given the z-coordinate zp_g of P — Q

» compute the z-coordinate xr of R =P 4+ Q

» This is called differential addition
> Less efficient differential-addition formulas for other curve shapes

» Can be used for efficient computation of the z-coordinate of kP
given only the xz-coordinate of P

> For this, let's use projective representation (X : Z) with z = (X/Z)
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One Montgomery “ladder step”

const a24 = (A+2)/4 (A from the curve equation)

function ladderstep(Xq_p, Xp, Zp, X0, Zq)

t1 < Xp+Zp
tg < t2
tQ(*Xp7ZP
ty < t3

ts < tg — t7
tg(—XQ+ZQ
t4(—XQ—ZQ
tg < tg - 11

tg < t3 - to

Xpiq « (ts + 1)

Zpiq — Xq-p - (ts —t9)?

Xpjp ¢ to - t7

Zigp < t5 - (t7 + a24 - t5)

return (Xpo)p, Zj9)p, XP1Qs ZP+Q)
end function
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The Montgomery ladder

Require: A scalar 0 < k € Z and the z-coordinate xp of some point P
Ensure: (X[k]p, Z[k]P) fulfllllng Tkp = X[k]P/Z[k]P
Xi=ap; Xo=1,2Z,=0;, Xz =2p; Z3=1
for i < n — 1 downto 0 do
if bit 7 of k is 1 then
(X3,73,X2,72) < ladderstep(X1, X3, Z3, X2, Z2)
else
(X2,22,X3,73) + ladderstep(X1, X2, 22, X3, Z3)
end if
end for
return (X5, Z5)
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Advantages of the Montgomery ladder

» Very regular structure, easy to protect against timing attacks

» Replace the if statement by conditional swap
» Be careful with constant-time swaps
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> Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

Scalar-multiplication algorithms

31



Advantages of the Montgomery ladder

» Very regular structure, easy to protect against timing attacks

» Replace the if statement by conditional swap
» Be careful with constant-time swaps

> Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

» Point compression/decompression is free

Scalar-multiplication algorithms

31



Advantages of the Montgomery ladder

» Very regular structure, easy to protect against timing attacks

» Replace the if statement by conditional swap
» Be careful with constant-time swaps

> Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

» Point compression/decompression is free
» Easy to implement

» No ugly special cases (see Bernstein's “Curve25519" paper)
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Multi-scalar multiplication

» Consider computation @ = >} k; P;
» We looked at n = 2 before, how about n = 1287
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Multi-scalar multiplication

Consider computation Q = > | k; P;
We looked at n = 2 before, how about n = 1287
Idea: Assume k1 > ko > - > k.

vV v v v

Bos-Coster algorithm: recursively compute
Q = (k1 — ko) Py + kao(Pr + Po) + k3P - - - + kp Py
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v

Consider computation Q = > | k; P;
We looked at n = 2 before, how about n = 1287
Idea: Assume k1 > ko > - > k.

Bos-Coster algorithm: recursively compute
Q = (k1 — ko) Py + kao(Pr + Po) + k3P - - - + kp Py
Each step requires one scalar subtraction and one point addition

» Each step “eliminates” expected logn scalar bits

Can be very fast (but not constant-time)
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Multi-scalar multiplication

vV v v v

vV v v v

Consider computation Q = > | k; P;

We looked at n = 2 before, how about n = 1287

Idea: Assume k1 > ko > - > k.

Bos-Coster algorithm: recursively compute

Q= (k1 —ko)PL +ko(PL+ Py) + k3P3---+ kn P,

Each step requires one scalar subtraction and one point addition
Each step “eliminates” expected logn scalar bits

Can be very fast (but not constant-time)

Requires fast access to the two largest scalars: put scalars into a
heap

Crucial for good performance: fast heap implementation
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A fast heap

» Heap is a binary tree, each parent node is larger than the two child
nodes

» Data structure is stored as a simple array, positions in the array
determine positions in the tree

» Root is at position 0, left child node at position 1, right child node
at position 2 etc.

» For node at position 7, child nodes are at position 2 -7+ 1 and
2 -1+ 2, parent node is at position [(i —1)/2]
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A fast

heap

Heap is a binary tree, each parent node is larger than the two child
nodes

Data structure is stored as a simple array, positions in the array
determine positions in the tree

Root is at position 0, left child node at position 1, right child node
at position 2 etc.

For node at position 4, child nodes are at position 2 -4+ 1 and

2 -1+ 2, parent node is at position [(i —1)/2]

Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times
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A fast heap

Heap is a binary tree, each parent node is larger than the two child
nodes

Data structure is stored as a simple array, positions in the array
determine positions in the tree

Root is at position 0, left child node at position 1, right child node
at position 2 etc.

For node at position 4, child nodes are at position 2 -4+ 1 and

2 -1+ 2, parent node is at position [(i —1)/2]

Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

Floyd's heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

» Each swap-down step needs only one comparison (instead of two)
» Swap-down loop is more friendly to branch predictors
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Coming back to finite-field inversion

» Inversion with Fermat's theorem uses exponentiation with p — 2

» Exponentiation is not really different from scalar multiplication
(doublings become squarings, additions become multiplications)
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Coming back to finite-field inversion

v

Inversion with Fermat’s theorem uses exponentiation with p — 2

v

Exponentiation is not really different from scalar multiplication
(doublings become squarings, additions become multiplications)

v

The prime p is public, so also p — 2 is public

v

First idea: use sliding window to compute exponentiation
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Coming back to finite-field inversion

Inversion with Fermat’s theorem uses exponentiation with p — 2

v

v

Exponentiation is not really different from scalar multiplication
(doublings become squarings, additions become multiplications)

v

The prime p is public, so also p — 2 is public

v

First idea: use sliding window to compute exponentiation

v

But wait, p is not only public, it's a fixed system parameter, can we
do better?
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Addition chains

Definition
Let k£ be a positive integer. A sequence s1, S, ..., S, is called an
addition chain of length m for & if

>51:1
>8m:k

» for each s; it holds that s; = s; + s; and j,k <
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Addition chains

Definition
Let k£ be a positive integer. A sequence s1, S, ..., S, is called an
addition chain of length m for & if

>51:1
>8m:k

» for each s; it holds that s; = s; + s; and j,k <

» An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP:

» Start with s1P = P
> Compute s;P =s;P+syPfori=2,....,m
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Addition chains

Definition
Let k£ be a positive integer. A sequence s1, S, ..., S, is called an
addition chain of length m for & if

> s51=1

> S =k

» for each s; it holds that s; = s; + s; and j,k <

v

v

v

An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP:

» Start with s1P = P
> Compute s;P =s;P+syPfori=2,....,m

All algorithms so far basically just computed additions chains “on the
fly”

Signed-scalar representations are “addition-subtraction chains”
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Addition chains

Definition
Let k£ be a positive integer. A sequence s1, S, ..., S, is called an
addition chain of length m for k if

>51:1
Fsm:k

» for each s; it holds that s; = s; + s; and j,k <

» An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP:

» Start with s1P = P
> Compute s;P =s;P+syPfori=2,....,m

» All algorithms so far basically just computed additions chains “on the
fly”

» Signed-scalar representations are “addition-subtraction chains”

» For inversion we know k at compile time, we can spend a lot of time
to find a good addition chain.
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Inversion in 255 _1g

void fe25519_invert(fe25519 *r, const fe25519 *x)

{

fe25519 z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;
int i;

/* 2 */ fe25519_square (&z2,x) ;

/* 4 x/ fe25519_square(&t,&z2) ;

/*x 8 */ fe25519_square (&t,&t);

/*x 9 */ fe25519_mul (&z9,&t,x) ;

/* 11 *x/ fe25519_mul (&z11,&z9,&z2) ;

/* 22 x/ fe25519_square (&t,&z11);

/* 275 - 20 = 31 */fe25519_mul (&z2_5_0,&t,&z9);

/* 276 - 2°1 x/ fe25519_square (&t,&z2_5_0) ;

/* 2720 - 2710 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
/* 2710 - 270 */ fe25519_mul (&z2_10_0,&t,&z2_5_0);

/% 2711 - 271 %/ fe25519_square (&t,&z2_10_0) ;

/* 2720 - 2710 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
/* 2720 - 270 */ fe25519_mul (&z2_20_0,&t,&z2_10_0);

/*x 2721 - 271 %/ fe25519_square (&t,&z2_20_0) ;

/* 2740 - 2720 x/ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
/* 2740 - 270 */ fe25519_mul (&t,&t,&z2_20_0);
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Inversion in 255 _1g

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
}

241 - 2°1 %/
2°50 - 2°10 */
2°50 - 270 */
2°51 - 2°1 %/

27100
27100
27101
27200
27200
27201
27250
27250
27251
27252
272563
27254
27255
272565

- 2750 */

- 270
- 271

- 27100 */

- 270
- 271
- 2~

N NNNDNDDN
ad W N~ O

*/
*/

*/
*/

50 */

*/
*/
*/
*/
*/
*/

- 21 %/

fe25519_square (&t,&t) ;

for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
£fe25519_mul (&z2_50_0,&t,&z2_10_0) ;
fe25519_square (&t ,&z2_50_0) ;

for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
fe25519_mul (&z2_100_0,&t,&z2_50_0) ;
fe25519_square (&t,&z2_100_0) ;

for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
fe25519_mul (&t,&t,&z2_100_0);

fe25519_square (&t,&t) ;

for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
fe25519_mul (&t,&t,&z2_50_0);

fe25519_square (&t,&t) ;

fe25519_square (&t,&t) ;

fe25519_square (&t,&t) ;

fe25519_square (&t,&t) ;

fe25519_square (&t,&t) ;

fe25519_mul (r,&t,&z11);
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Summary

» Remember double-and-add

» Remember not to use it (at least never with a secret scalar)
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A beer of your choice for anybody who computes a2”° =21 in 254
squarings and 10 multiplications
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Summary

Remember double-and-add
Remember not to use it (at least never with a secret scalar)

Keep in mind that writing constant-time code is hard

vV v v v

A beer of your choice for anybody who computes a2”° =21 in 254
squarings and 10 multiplications

» Two beers of your choice for anybody who computes a2””°~2! in 254
squarings and 9 multiplications

> Slides of both talks will be online at

http://cryptojedi.org/
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