Actual source code: test18.c

slepc-3.20.2 2024-03-15
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Symmetric-indefinite eigenproblem.\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
 14:   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";

 16: #include <slepceps.h>

 18: int main(int argc,char **argv)
 19: {
 20:   Mat            A,B;             /* problem matrices */
 21:   EPS            eps;             /* eigenproblem solver context */
 22:   PetscInt       N,n=10,m,Istart,Iend,II,nev,i,j;
 23:   PetscBool      flag,terse;

 25:   PetscFunctionBeginUser;
 26:   PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
 27:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
 28:   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
 29:   if (!flag) m=n;
 30:   N = n*m;
 31:   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nSymmetric-indefinite eigenproblem, N=%" PetscInt_FMT "\n\n",N));

 33:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 34:           Compute the matrices that define the eigensystem, Ax=kBx
 35:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 37:   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
 38:   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
 39:   PetscCall(MatSetFromOptions(A));
 40:   PetscCall(MatSetUp(A));

 42:   PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
 43:   PetscCall(MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N));
 44:   PetscCall(MatSetFromOptions(B));
 45:   PetscCall(MatSetUp(B));

 47:   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
 48:   for (II=Istart;II<Iend;II++) {
 49:     i = II/n; j = II-i*n;
 50:     if (i>0) PetscCall(MatSetValue(A,II,II-n,-1.0,INSERT_VALUES));
 51:     if (i<m-1) PetscCall(MatSetValue(A,II,II+n,-1.0,INSERT_VALUES));
 52:     if (j>0) PetscCall(MatSetValue(A,II,II-1,-1.0,INSERT_VALUES));
 53:     if (j<n-1) PetscCall(MatSetValue(A,II,II+1,-1.0,INSERT_VALUES));
 54:     PetscCall(MatSetValue(A,II,II,4.0,INSERT_VALUES));
 55:     PetscCall(MatSetValue(B,II,N-II-1,1.0,INSERT_VALUES));
 56:   }

 58:   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
 59:   PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
 60:   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
 61:   PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));

 63:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 64:                 Create the eigensolver and set various options
 65:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 67:   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
 68:   PetscCall(EPSSetOperators(eps,A,B));
 69:   PetscCall(EPSSetProblemType(eps,EPS_GHIEP));
 70:   PetscCall(EPSSetFromOptions(eps));

 72:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 73:                       Solve the eigensystem
 74:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 76:   PetscCall(EPSSolve(eps));
 77:   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
 78:   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));

 80:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 81:                     Display solution and clean up
 82:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 84:   /* show detailed info unless -terse option is given by user */
 85:   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
 86:   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
 87:   else {
 88:     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
 89:     PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
 90:     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
 91:     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
 92:   }

 94:   PetscCall(EPSDestroy(&eps));
 95:   PetscCall(MatDestroy(&A));
 96:   PetscCall(MatDestroy(&B));
 97:   PetscCall(SlepcFinalize());
 98:   return 0;
 99: }

101: /*TEST

103:    testset:
104:       args: -eps_nev 4 -eps_ncv 12 -terse -st_type sinvert -eps_krylovschur_restart .3
105:       requires: !single
106:       output_file: output/test18_1.out
107:       test:
108:          suffix: 1_ks
109:       test:
110:          suffix: 1_ks_gnhep
111:          args: -eps_gen_non_hermitian
112:          requires: !__float128
113:       test:
114:          suffix: 2_cuda_ks
115:          args: -mat_type aijcusparse
116:          requires: cuda
117:       test:
118:          suffix: 2_cuda_ks_gnhep
119:          args: -eps_gen_non_hermitian -mat_type aijcusparse
120:          requires: cuda

122:    test:
123:       suffix: 2
124:       args: -n 10 -m 11 -eps_type {{gd jd}} -eps_target 0.2 -eps_harmonic -eps_nev 2 -eps_ncv 11 -terse
125:       requires: !single
126:       filter: sed -e "s/[+-]0\.0*i//g"

128: TEST*/