Actual source code: test3.c
slepc-3.20.2 2024-03-15
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test PEP interface functions.\n\n";
13: #include <slepcpep.h>
15: int main(int argc,char **argv)
16: {
17: Mat A[3],B; /* problem matrices */
18: PEP pep; /* eigenproblem solver context */
19: ST st;
20: KSP ksp;
21: DS ds;
22: PetscReal tol,alpha;
23: PetscScalar target;
24: PetscInt n=20,i,its,nev,ncv,mpd,Istart,Iend,nmat;
25: PEPWhich which;
26: PEPConvergedReason reason;
27: PEPType type;
28: PEPExtract extr;
29: PEPBasis basis;
30: PEPScale scale;
31: PEPRefine refine;
32: PEPRefineScheme rscheme;
33: PEPConv conv;
34: PEPStop stop;
35: PEPProblemType ptype;
36: PetscViewerAndFormat *vf;
38: PetscFunctionBeginUser;
39: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
40: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nDiagonal Quadratic Eigenproblem, n=%" PetscInt_FMT "\n\n",n));
42: PetscCall(MatCreate(PETSC_COMM_WORLD,&A[0]));
43: PetscCall(MatSetSizes(A[0],PETSC_DECIDE,PETSC_DECIDE,n,n));
44: PetscCall(MatSetFromOptions(A[0]));
45: PetscCall(MatSetUp(A[0]));
46: PetscCall(MatGetOwnershipRange(A[0],&Istart,&Iend));
47: for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[0],i,i,i+1,INSERT_VALUES));
48: PetscCall(MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY));
49: PetscCall(MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY));
51: PetscCall(MatCreate(PETSC_COMM_WORLD,&A[1]));
52: PetscCall(MatSetSizes(A[1],PETSC_DECIDE,PETSC_DECIDE,n,n));
53: PetscCall(MatSetFromOptions(A[1]));
54: PetscCall(MatSetUp(A[1]));
55: PetscCall(MatGetOwnershipRange(A[1],&Istart,&Iend));
56: for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[1],i,i,1.0,INSERT_VALUES));
57: PetscCall(MatAssemblyBegin(A[1],MAT_FINAL_ASSEMBLY));
58: PetscCall(MatAssemblyEnd(A[1],MAT_FINAL_ASSEMBLY));
60: PetscCall(MatCreate(PETSC_COMM_WORLD,&A[2]));
61: PetscCall(MatSetSizes(A[2],PETSC_DECIDE,PETSC_DECIDE,n,n));
62: PetscCall(MatSetFromOptions(A[2]));
63: PetscCall(MatSetUp(A[2]));
64: PetscCall(MatGetOwnershipRange(A[1],&Istart,&Iend));
65: for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(A[2],i,i,n/(PetscReal)(i+1),INSERT_VALUES));
66: PetscCall(MatAssemblyBegin(A[2],MAT_FINAL_ASSEMBLY));
67: PetscCall(MatAssemblyEnd(A[2],MAT_FINAL_ASSEMBLY));
69: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
70: Create eigensolver and test interface functions
71: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
72: PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
73: PetscCall(PEPSetOperators(pep,3,A));
74: PetscCall(PEPGetNumMatrices(pep,&nmat));
75: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Polynomial of degree %" PetscInt_FMT "\n",nmat-1));
76: PetscCall(PEPGetOperators(pep,0,&B));
77: PetscCall(MatView(B,NULL));
79: PetscCall(PEPSetType(pep,PEPTOAR));
80: PetscCall(PEPGetType(pep,&type));
81: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Type set to %s\n",type));
83: PetscCall(PEPGetProblemType(pep,&ptype));
84: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Problem type before changing = %d",(int)ptype));
85: PetscCall(PEPSetProblemType(pep,PEP_HERMITIAN));
86: PetscCall(PEPGetProblemType(pep,&ptype));
87: PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d.\n",(int)ptype));
89: PetscCall(PEPGetExtract(pep,&extr));
90: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Extraction before changing = %d",(int)extr));
91: PetscCall(PEPSetExtract(pep,PEP_EXTRACT_STRUCTURED));
92: PetscCall(PEPGetExtract(pep,&extr));
93: PetscCall(PetscPrintf(PETSC_COMM_WORLD," ... changed to %d\n",(int)extr));
95: PetscCall(PEPSetScale(pep,PEP_SCALE_SCALAR,.1,NULL,NULL,5,1.0));
96: PetscCall(PEPGetScale(pep,&scale,&alpha,NULL,NULL,&its,NULL));
97: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Scaling: %s, alpha=%g, its=%" PetscInt_FMT "\n",PEPScaleTypes[scale],(double)alpha,its));
99: PetscCall(PEPSetBasis(pep,PEP_BASIS_CHEBYSHEV1));
100: PetscCall(PEPGetBasis(pep,&basis));
101: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Polynomial basis: %s\n",PEPBasisTypes[basis]));
103: PetscCall(PEPSetRefine(pep,PEP_REFINE_SIMPLE,1,1e-9,2,PEP_REFINE_SCHEME_SCHUR));
104: PetscCall(PEPGetRefine(pep,&refine,NULL,&tol,&its,&rscheme));
105: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Refinement: %s, tol=%g, its=%" PetscInt_FMT ", scheme=%s\n",PEPRefineTypes[refine],(double)tol,its,PEPRefineSchemes[rscheme]));
107: PetscCall(PEPSetTarget(pep,4.8));
108: PetscCall(PEPGetTarget(pep,&target));
109: PetscCall(PEPSetWhichEigenpairs(pep,PEP_TARGET_MAGNITUDE));
110: PetscCall(PEPGetWhichEigenpairs(pep,&which));
111: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Which = %d, target = %g\n",(int)which,(double)PetscRealPart(target)));
113: PetscCall(PEPSetDimensions(pep,4,PETSC_DEFAULT,PETSC_DEFAULT));
114: PetscCall(PEPGetDimensions(pep,&nev,&ncv,&mpd));
115: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Dimensions: nev=%" PetscInt_FMT ", ncv=%" PetscInt_FMT ", mpd=%" PetscInt_FMT "\n",nev,ncv,mpd));
117: PetscCall(PEPSetTolerances(pep,2.2e-4,200));
118: PetscCall(PEPGetTolerances(pep,&tol,&its));
119: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Tolerance = %.5f, max_its = %" PetscInt_FMT "\n",(double)tol,its));
121: PetscCall(PEPSetConvergenceTest(pep,PEP_CONV_ABS));
122: PetscCall(PEPGetConvergenceTest(pep,&conv));
123: PetscCall(PEPSetStoppingTest(pep,PEP_STOP_BASIC));
124: PetscCall(PEPGetStoppingTest(pep,&stop));
125: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Convergence test = %d, stopping test = %d\n",(int)conv,(int)stop));
127: PetscCall(PetscViewerAndFormatCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,&vf));
128: PetscCall(PEPMonitorSet(pep,(PetscErrorCode (*)(PEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))PEPMonitorFirst,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy));
129: PetscCall(PEPMonitorCancel(pep));
131: PetscCall(PEPGetST(pep,&st));
132: PetscCall(STGetKSP(st,&ksp));
133: PetscCall(KSPSetTolerances(ksp,1e-8,1e-35,PETSC_DEFAULT,PETSC_DEFAULT));
134: PetscCall(STView(st,NULL));
135: PetscCall(PEPGetDS(pep,&ds));
136: PetscCall(DSView(ds,NULL));
138: PetscCall(PEPSetFromOptions(pep));
139: PetscCall(PEPSolve(pep));
140: PetscCall(PEPGetConvergedReason(pep,&reason));
141: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Finished - converged reason = %d\n",(int)reason));
143: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
144: Display solution and clean up
145: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
146: PetscCall(PEPErrorView(pep,PEP_ERROR_RELATIVE,NULL));
147: PetscCall(PEPDestroy(&pep));
148: PetscCall(MatDestroy(&A[0]));
149: PetscCall(MatDestroy(&A[1]));
150: PetscCall(MatDestroy(&A[2]));
151: PetscCall(SlepcFinalize());
152: return 0;
153: }
155: /*TEST
157: test:
158: suffix: 1
159: args: -pep_tol 1e-6 -pep_ncv 22
160: filter: sed -e "s/[+-]0\.0*i//g"
162: TEST*/