
Indentation logic of kotlin-mode

2019-12-01

Basic idea (1/2)
Programs consist of...

List of statements/expressions①,
sorrounded by (curly/round) brackets ②,
preceded by some texts ③

for (x in xs) {
 print(x);
 print(x);
 print(x);
}

1

2

3

2

return foo(
 a + b,
 b + c,
 c + d
)

1

2

2

3

return foo(
 a + b,
 b + c,
 ccc +
 ddd
)

Basic idea (2/2)
We have four cases to indent

Case 1. after an element delimiter, such as semicolon or comma
Case 2. after an open bracket
Case 3. before close bracket
Case 4. other case, that is to say, inside a list element

1

2

3
4

Case 1: after an element delimiter
return foo(
 a, b,
 c, d,
 e, f
)

Align with the preceding element at the start of a line.

To seek the preceding element at the start of a line,
we seek an element delimiter (comma or semicolon)
at the end of a line or open bracket before the element.

Then the next token is the token we align to.

Elements may start with tokens of various types,
but it ends with tokens of handful types, so seeking it is easier.

←Seek this
then align with the next token→

We call this token “parent”.

bar();

return foo(
a, b,
c, d,
e, f

)

Case 2. after an open bracket

Align with the start of the “preceding text” with offset.

The procedure of seeking the start of the preceding text is
same as the case 1. Seek a parent token, then the next token
is the token align to.

←Seek this

then align with the next token→
with offset

bar();

return foo(
a, b,
c, d,
e, f

)

Case 3. before close bracket

Align with the start of the preceding text of the open bracket
without offset.

To find the open bracket, we can use the ‘backward-list’.

←then seek this

then align with the next token→

Seek this

Case 4. other case, inside a list element

foo();

val x =
 1 +
 2 +
 3

foo();

val x =
 1 +
 2 +
 3

If the line is the second line,
align with the start of
the element with offset.

If the line is the third or
following lines,
align with the the previous line.

if-else statement
aaa();

if (foo)
 bar()
else
 baz();

aaa();

if (foo)
 bar()
else
 baz();

aaa();

if (foo)
 bar()
else
 baz();

If the point is after if (...),
then align with the if token with offset.

If the point is before else token,
then align with the matching if token without offset.

If the point is after else token,
then align with the else token with offset.

Note that if-else can be nested,
so when seeking the matching if token,
we have to count number of else and if tokens.

We have similar rules for for, while, and do-while.

Advanced topics

Implicit semicolons
In Kotlin and other languages, a statement may end with a newline.
We use a heuristic function ‘kotlin-mode--implicit-semi-p’
to detect it.
It examines tokens before and after the newline.

Example:

for (x in xs) {
aaa()
if (bbb)

if (ccc)
ddd()

else
eee()

fff()
}
ccc()

← No implicit semicolon here...

← Implicit semicolon here
← ... to aligh this line to the first if token
 rather than the else token.

← ... only here ...

← Implicit semicolon here

← Implicit semicolon here

Ambiguous commas, colons, curly brackets, and objects
Commas are not always contained by brackets.
Texts before brackets may contain another brackets.
We handle them carefully.

class C: A by object: A1,
 A2 {
 fun aaa() {}
 },
 B by object: B1,
 B2 {
 fun bbb() {}
 } {
 fun ccc(x: X): Int {
 return when (x) {
 object: X1 by object: XX1 {
 fun xxx1() {}
 },
 X2 {
 fun xxx2() {}
 },
 object: Y1,
 Y2 {
 fun yyy() {}
 } ->
 1

 else ->
 2
 }
 }
}

When seeking the previous element of this line,
if we got a pair of curly brackets,

then jump to the object token
and resume seeking,

to skip this comma.

Ambiguous arrows

val f = { g:
 (Int) ->
 (Int) ->
 Int ->
 g(1, 2)
}

when (x) {
 1 ->
 f1 as (Int) ->
 Int

 f2 as (Int) ->
 Int ->
 f3

 is (Int) ->
 Int ->
 f4
}

← arrow for function type
← arrow for function type
← arrow for lambda parameters

← arrow for when-entry
← arrow for function type

← arrow for function type
← arrow for when-entry

← arrow for function type
← arrow for when-entry

Arrows have many meanings and indentation rules.
We use heuristics for this, but it is not precise.

Cannot handle those cases for now.
We assume all arrows inside a when-
expression are parts of when-entries.

Angle brackets <>

Token ‘<’ and ‘>’ may be used as inequality operators or
angle brackets for type parameters.

We use heuristics to distinguish them:

- Angle bracket must be balanced.
- Angle bracket cannot contain some kind of tokens.

Ambiguous operators
We cannot handle those cases for now.

var shl = 1
val x = shl shl shl // The last “shl” is a variable named “shl”.
shl < 100 && foo() // This is not a continuation of the previous line.

var shl = 1
val x = shl shl // The last “shl” is a shift operator.
 shl < 100 && foo() // This is a continuation of the previous line.

var shl = 1
val x = shl shl shl ++ // postfix increment operator
shl < 100 && foo() // This is not a continuation of the previous line.

var shl = 1
val x = shl shl ++ // prefix increment operator
 shl < 100 && foo() // This is a continuation of the previous line.

val x = foo()!! // postfix operator
foo() // This is not a continuation of the previous line.

val x = !! // two prefix operators
 foo() // This is a continuation of the previous line.

Implementation
kotlin-mode--indent-line ← entry point for indenting line
 kotlin-mode--calculate-indent ← calculate the amount of the indentation
 kotlin-mode--calculate-indent-of-multiline-comment ← when the point is inside a multiline comment
 kotlin-mode--calculate-indent-of-multiline-string ← when the point is inside a multiline string
 kotlin-mode--calculate-indent-of-single-line-comment ← when the point is before a single-line comment
 kotlin-mode--calculate-indent-of-code ← other case, including before a single-line string
 kotlin-mode--forward-token ← lexer
 kotlin-mode--forward-token-simple ← lexer without unbounded recursion
 kotlin-mode--implicit-semi-p ← determinate implicit semicolon
 ...
 kotlin-mode--backward-token ← lexer
 kotlin-mode--backward-token-simple ← lexer without unbounded recursion
 kotlin-mode--implicit-semi-p
 ...
 kotlin-mode--calculate-indent-after-open-curly-brace ← when the point is after ‘{’
 kotlin-mode--curly-brace-type ← determinate the type of the block
 kotlin-mode--find-parent-and-align-with-next
 kotlin-mode--backward-sexps-until
 kotlin-mode--backward-token-or-list
 kotlin-mode--backward-token
 kotlin-mode--forward-token-or-list
 kotlin-mode--forward-token
 kotlin-mode--calculate-indent-after-comma
 ...
 kotlin-mode--calculate-indent-after-semicolon
 ...
 kotlin-mode--calculate-indent-of-expression
 ...
 kotlin-mode--find-parent-and-align-with-next
 ...
 ...

Overview of functions for indentation. Details are omitted.

Data types
kotlin-mode--token
 Lexical tokens. Consists of the type, the text, and the location (start and end) of the token.

kotlin-mode--indentation
 Location of anchor point paired with offset.

Other notable functions
kotlin-mode--indent-new-comment-line
 Replacement for indent-new-comment-line. Break a line, indent it, and tweak comment delimiters.

kotlin-mode--post-self-insert
 Do electric indentation.

