Supplementary Information

The AnnotationSketch genome annotation
drawing library

Sascha Steinbiss, Gordon Gremme, Christin Scharfer, Malte Mader
and Stefan Kurtz

August 23,2012

Contents

[1.1.2 Phase 2: Layoutl,

[1.1.3° Phase 3: Rendering|

[1.1.4 Collapsing|

1.2 The gt sketchtool|

[1.3 Dynamic track assignment|

[1.3.1 Detault: Top level type decides track membership|.

[1.4.1 Anatomy of a custom track class|.

[(1.4.2 Writing an example custom track|

. Xamples

[1.5.1 Using AnnotationSketch to draw annotations from a filef.

[1.5.2 Using AnnotationSketch to draw user-generated annotations|

2.18 Class GtCstrTablel 46

[2.21 Class GtCustomTrackScriptWrapper| 48
[2.22 Class GtDiagram| 48
2.23 Class GEDIistl o o o 49

2.25 Class GtEEOFNodel 50
226 Class GtEncseq| 50
[2.27 Class GtEncseqBuilder], 53
[2.28 Class GtEncseqEncoder|. 56
[2.29 Class GtEncseqloader|] 59
[2.30 Class GtEncseqReader| L. 61

[2.58 Class GtMatchOpen|. 86
2.59 Class GtMatchSW| 86
[2.60 Class GtMergeFeatureStream|. 86
[2.61 Class GtMergeStream|. 0 i v i it e 87

2.63 Class GtNodeStream| 87
2.64 Cl reamClassl L 89
2.65 Class GtNodeVisitor] o o 89
[2.66 Class GtOption| e 89
[2.67 Class GtOptionParser| 94
2 1 Phasel 96
2.69 Class GtQueue| e 96
2.70 Class GtRDBVisitor. oo o 97
2771 Class GtRange| 97
2.72 Cl Readmodel L 98
D73 Class GIREOMAD| . » « « « o oo e oo 99
[2.74 Class GtRegionMapping| 99
[2.75 Class GtRegionNode| 101
.76 Class GtSelectStream| Lo 101
[2.77 Class GtSequenceNode], 102
.78 Class GtSortStreaml L 103
[2.79 Class GtSplitter] 103
2.80 Class GtStatStream| oL 104
DRI CIASS GISW . - - o v v e et e e e e e e e 104
[2.82 Class GtStrArray| e 106
283 ClassGtStrandl 107
2.84 Class GtStyle| 107
[2.85 Class GtTagValueMap| 109
2 1 TextWidthCalculatod 110
110

111

2.89 Class GtTransTablel 112
2 1 Translatod 112
291 Class GtlypeChecker] 114
.07 Class GITypeCheckerOBO| . . .« « o o o oo oo 114
[2.93 Class GtUnigStream| e 114
2.94 Cl VisitorStream| L e 115
[2.95 Module Array2dim| 115
296 Module Assertl. 115
297 Module Bsearchl. 116
[2.98 Module Countingsort] 116
299 Module Cstrl o 117
2.100Module Endianess|.o o 117
R10IModule Fileutilsl L 117
2.102Module FunctionPointed oL oo 118
. odule Grep| e 119
R2104Module Initl 119
[2.105Module Log| 119

120
2.108Module POSIX 121

121
2.110Module Qsort] e 122
R.111Module Stremp| 122
[2.112Module Symbol| 122
................................... 122
R114Module Unused| 123
R115SModule Version| L 123
2.116Module Warning| e 123
2. 117Module XANSI| e 124

1 AnnotationSketch

AnnotationSketch is a versatile and efficient C-based drawing library for GFF3-compatible ge-
nomic annotations. It is included in the GenomeTools distribution. In addition to the native C
interface, bindings to the Lua, Python and Ruby programming languages are provided.

1.1 Overview

AnnotationSketch consists of several classes, which take part in three visualization phases (see

Fig. [L1).

1.1.1 Phase 1: Feature selection

The GFF3 input data are parsed into a directed acyclic graph (annotation graph, see Fig.
for an example) whose nodes correspond to single features (i.e. lines from the GFF3 file).
Consequently, edges in the graph represent the part-of relationships between groups of genomic
features according to the Sequence Ontology hierarchy. Note that GFF3 input files must be
valid according to the GFF3 specification to ensure that they can be read for AnnotationSketch
drawing or any other kind of manipulation using GenomeTools. A validating GFF3 parser is
available in GenomeTools (and can be run using gt gff3validator).

Each top-level node (which is a node without a parent) is then registered into a persistent Fea-
turelndex object. The Featurelndex holds a collection of the top-level nodes of all features in
each sequence region in an interval tree data structure that can be efficiently queried for features
in a genomic region of interest. All child nodes of the top-level node are then available by the use
of traversal functions. Alternatively, annotation graphs can be built by the user by creating each
node explicitly and then connecting the nodes in a way such that the relationships are reflected
in the graph structure (see examples section for example annotation graph building code).

1.1.2 Phase 2: Layout

The next step consists of processing the features (given via a Featurelndex or a simple array of
top level nodes) into a Diagram object which represents a single view of the annotations of a
genomic region. First, semantic units are formed from the annotation subgraphs. This is done by
building blocks from connected features by grouping and overlaying them according to several
user-defined collapsing options (see “Collapsing”). By default, a separate track is then created
for each Sequence Ontology feature type. Alternatively, if more granularity in track assignment
is desired, track selector functions can be used to create tracks and assign blocks to them based
on arbitrary feature characteristics. This is simply done by creating a unique identifier string per
track. The Diagram object can also be used to hold one or more custom tracks, which allow

GFF3 parser GenomeNode annotation DAG

C program : /Q\ /Q\ 9\

Luascr!pt —>» O Q\ /Q p OO O

Ruby script —3»
Python script —3» O O O O /
‘ FeatureStream
import into efficiently
_ O‘}b l searchable structure ‘%%{% 0}:}%0&
Feature
selection ‘ Featurelndex ‘4—)‘ IntervalTree ‘
phase
- O}}b query for features in region
Diagram collapsing
Y
‘ Block H Block H Block H Block ‘ CustomTrack
L |
Layout compact layout of
phase non-overlapping blocks
Layout
‘ Track }—V‘ Line ‘
J J
: callbacks in Canvas visitor render each component
\J
‘ Canvas }—)‘ Imagelnfo
Rendering
phase v draw primitives using specific backend (e.g. Cairo)
Graphics }—l
PNG PDF SVG cairoLt
data data data data ro-

Figure 1.1: Schematic of the data flow through the classes involved in image creation.

users to develop their own graphical representations as plugins. The Diagram is then prepared
for image output by calculating a compact Layout in which the Block objects in a track are
distributed into Line objects, each containing non-overlapping blocks (see Fig. [I.3)). The overall
layout calculated this way tries to keep lines as compact as possible, minimising the amount of
vertical space used. How new Lines are created depends on the chosen implementation of the
LineBreaker interface, by default a Block is pushed into a new Line when either the Block or its
caption overlaps with another one.

1.1.3 Phase 3: Rendering

In the final phase, the Layout object is used as a blueprint to create an image of a given type
and size, considering user-defined options. The rendering process is invoked by calling the
sketch () method of a Layout object. All rendering logic is implemented in classes implement-

sequence region

| gene | | gene |
| TF binding site | mRNA | mRNA | | mRNA |
| exon | CDS || exon || CDS | | exon || exon | exon || exon ‘

Figure 1.2: Example sequence region containing two genes in an annotation graph depicting the part-of
relationships between their components.

9.33M 9.34M

—
gene3968 gene3970
_ |:: —— | e
Tl'aCk - |_|ne gene3969
(S
e

gene3968/mRNA5728

Line

a
©
5
o
W
©
N
=
3
=
z
>
]
N
w
@

ms
N
!
B
A
9
N
=
<

Block

Figure 1.3: The components of the Layout class reflect sections of the resulting image.

ing the Canvas interface, whose methods are called during traversal of the Layout members. It
encapsulates the state of a drawing and works independently of the chosen rendering back-end.
Instead, rendering backend-dependent subclasses of Canvas are closely tied to a specific imple-
mentation of the Graphics interface, which provides methods to draw a number of primitives
to a drawing surface abstraction. It wraps around the respective low-level graphics engine and
allows for its easy extension or replacement. Currently, there is a Graphics implementation for
the Cairo 2D graphics library (GraphicsCairo) and two Canvas subclasses providing access to
the image file formats supported by Cairo (CanvasCairoFile) and to arbitrary Cairo contexts
(CanvasCairoContext, which directly accesses a cairo_t). This class can be used, for example,
to directly draw AnnotationSketch output in any graphical environment which is supported by
Cairo (http://www.cairographics.org/manual/cairo-surfaces.html).

1.1.4 Collapsing

By default, Lines are grouped by the Sequence Ontology type associated with the top-level
elements of their Blocks, resulting in one track per type. To obtain a shorter yet concise output,

http://www.cairographics.org/manual/cairo-surfaces.html

gene

mRNA

exon intron CDS

O —

Figure 1.4: Schematic of the relationships between the gene, mRNA, exon, intron and CDS types and
the colors of their representations in a diagram. The arrows illustrate how the relationships
influence the collapsing process if collapsing is enabled for the exon, intron and CDS types.
In this example, they will be drawn on top of their parent mRNA features.

tracks for parent types in the feature graph can be enabled to contain all the features of their
child types. The features with the given type are then drawn on top of their parent features (e.g.
all exon and intron features are placed into their parent mRNA or gene track). This process is
called collapsing. Collapsing can be enabled by setting the collapse_to_parent option for
the respective child type to true, e.g. the following options:

config = {
exon = {
collapse_to_parent = true,
N
},
intron = {
collapse_to_parent = true,
},
cps = {
collapse_to_parent = true,
1,
}

would lead to all features of the exon, intron and CDS types collapsing into the mRNA track (see

Fig. [[.4and[L.5).

1.1.5 Styles

The Lua scripting language is used to provide user-defined settings. Settings can be imported
from a script that is executed when loaded, thus eliminating the need for another parser. The
Lua configuration data are made accessible to C via the Style class. Configurable options in-

933m 334 33398 234 93414
1 1 = 5 I I 3
chs Cbs-RA/
ennenn-RC CGI00E2CCINNE2-RA chafchs-Ra
TP aaads [I W A
P o — " — |
ennienn-RE
LS GO ¢ Eaa— O S —— | S—— sy
F G C— " ——] S— ———
T S— S e —— E—— | chsichs-RA
100%
100%
0%
(a) collapsed view (b) uncollapsed view

Figure 1.5: Example image of the cnn and cbs genes from Drosophila melanogaster (Ensembl release
51, positions 9326816-9341000 on chromosome arm 2R) as drawn by AnnotationSketch.
At the bottom, the calculated GC content of the respective sequence is drawn via a custom
track attached to the diagram. (a) shows a collapsed view in which all exon, intron and CDS
types are collapsed into their parent type’s track. In contrast, (b) shows the cbs gene with all
collapsing options set to false, resulting in each type being drawn in its own track.

clude assignment of display styles to each feature type, spacer and margin sizes, and collapsing
parameters.

Instead of giving direct values, callback Lua functions can be used in some options to gener-
ate feature-dependent configuration settings at run-time. During layout and/or rendering, the
GenomeNode object for the feature to be rendered is passed to the callback function which can
then be evaluated and the appropriate type can be returned.

For example, setting the following options in the style file (or via the Lua bindings):

1 | config = {

2 R

3 mRNA = {

4 block_caption = function(gn)

5 rng = gn:get_range ()

6 return string.format ("%s/%s (%dbp, %d exomns)",
7 gn:get_attribute ("Parent"),

8 gn:get_attribute ("ID"),

9 rng:get_end() - rng:get_start() + 1,
10 #(gn:get_exons (D))

11 end,

12 [P

13 },

15 exon = {

16 -- Color definitions

17 £fill = function(gn)

18 if gn:get_score() then

19 aval = gn:get_score()*1.0

20 else

21 aval = 0.0

22 end

23 return {red=1.0, green=0.0, blue=0.0, alpha=aval}

10

1k 2k 3k 4k 5k 513 7k 8k gk

5 Lo b b by b b B b | 3

gened0001/

gened0001

gene00001/mRNA0000L (7951bp, 4 exons)

gene00001/mRNA00002 (7951bp, 3 exons)
gene00001/mRNAO0DO3 (7701bp, 4 exons)
IEREEHE B I I

Figure 1.6: Example rendering using callback functions to enable custom block captions and score-
dependent shading of exon features.

24 end,
25

26 },

27

N

will result in a changed rendering (see Fig. [I.6). The block_caption function (line 4) overrides
the default block naming scheme, allowing to set custom captions to each block depending on
feature properties. Color definitions such as the £i11 setting (line 17) for a feature’s fill color
can also be individually styled using callbacks. In this case, the color intensity is shaded by the
exon feature’s score value (e.g. given in a GFF file).

1.2 The gt sketch tool

The GenomeTools gt executable provides a new tool which uses the AnnotationSketch library to
create a drawing in PNG, PDF, PostScript or SVG format from GFF3 annotations. The annota-
tions can be given by supplying one or more file names as command line arguments:

$ gt sketch output.png annotation.gff3
$

or by receiving GFF3 data via the standard input, here prepared by the gt gf£3 tool (here called
with the —addintrons option to automatically add intron features between exons):

$ gt gff3 -addintrons annotation.gff3 | gt sketch output.png
$

The region to create a diagram for can be specified in detail by using the -seqid, -start
and -end parameters. For example, if the D. melanogaster gene annotation is given in the
dmel_annotation.gff3 file, use

11

$ gt sketch -format pdf -seqid 2R -start 9326816 -end 9332879 output.pdf \
dmel_annotation.gff3
$

to plot a graphical representation of the cnn and cbs gene region from the FlyBase default view
in PDF format. The -force option can be used to force overwriting of an already existing output
file. The -pipe option additionally allows passing the GFF3 input through the sketch tool via
the standard output, allowing the intermediate visualisation of results in a longer pipeline of
connected GFF3 tools. More command line options are available; their documentation can be
viewed using the ~help option.

If an input file is not plotted due to parsing errors, GenomeTools includes a strict GFF3 validator
tool to check whether the input file is in valid GFF3 format. Simply run a command like the
following:

$ gt gff3validator input_file.gff3
input is valid GFF3
$

This validator also allows one to check the SO types occurring in a GFF3 file against a given
OBO ontology file. This checking can be enabled by specifying the file as an argument to the
-typecheck option.

If the PDF, SVG and/or PostScript output format options are not available in the gt binary,
the most likely cause is that PDF, SVG and/or PostScript support is disabled in your local Cairo
headers and thus also not available in your local Cairo library. This issue is not directly related to
AnnotationSketch and can be resolved by recompiling the Cairo library with the proper backend
support enabled.

1.3 Dynamic track assignment

A special kind of function, called track selector function, can be used to customise the Annota-
tionSketch output by using arbitrary features of a block to assign blocks to tracks (and implicitly
creating new tracks this way).

1.3.1 Default: Top level type decides track membership

By default, for each Block in a Diagram, its source filename and/or the type attribute of its top
level element decides into which track the block is finally inserted during the layout phase. So by
default, an annotation graph parsed from the GFF3 input file ‘example.gff3’ with gene, mRNA
and exon type nodes will be rendered into two separate tracks (exon—mRNA collapsing enabled,

see Fig. [1.7):

e example.gff3|gene, and

e example.gff3|mRNA.

12

1K 2K 3K 4K 5K 1.4 TK 8K 9K

5o b b b b b b b s L 3

First test gene Second test gene

First test gene/First test mRNA Second test gene/Second test mRNA

JARRNRRA| 4 BT Fd [l

Figure 1.7: Default AnnotationSketch output for a simple GFF?3 file with simple exon—mRNA collapsing.

“l”

We will call the second part (after the
of this document.

While automatically determining tracks from the types actually present in the input annotations
is convenient in many use cases, one could imagine cases in which more control about block
handling may be desired. This leads to the question: How can one extract blocks with specific
characteristics and assign them to a special track? The answer is simple: By overriding the
default track identifier string, new tracks can be created and named on the fly as soon as a block
satisfying user-defined rules is encountered.

) of these track titles track identifier strings in the rest

1.3.2 Track selector functions

These rules take the form of track selector functions. Basically, a track selector function is a
function which takes a block reference as an argument, and returns an appropriate track identifier
string. For example, in Python the default track selector function would look like this:

def default_track_selector(block):
return block.get_type ()

This function simply returns a string representation of the type of a block’s top level element,
creating the tracks just like depicted in Fig.

For a very simple example, let’s assume that we want to create separate tracks for all mRNAs
on the plus strand and for all mRNAs on the minus strand. The idea now is to change the
strand identifier for blocks of the mRNA type to include the strand as additional information,
thus creating different track identifiers for plus and minus strand features. In Python, this track
selector function would construct a new string which contains both the type and the strand:

def strand_track_selector(block):

if block.get_type() == "mRNA":
return "%s (%s strand)" % (block.get_type(), block.get_strand())
else:

return block.get_type ()

Using this track selector function would produce the desired result of separate tracks for the
mRNA features for each strand (see Fig. [1.8).

A track selector function can be set for a Diagram object using the diagram.set_track_se-
lector_func() method. In C, its argument is a pointer to a function of the signature

13

1K 2K 3K 4K 5K 1.4 TK 8K 9K

5o b b b b b b b s L 3

First test gene Second test gene

First test gene/First test mRNA

JARRNRRA| 4

Second test gene/Second test mRNA

BT i [l

Figure 1.8: AnnotationSketch output with strand_track_selector () track selector function. This im-
age now shows separate tracks for plus and minus strand features.

void (*GtTrackSelectorFunc) (GtBlock*, GtStr*, voidx)

where arbitrary data can be passed via the third void* argument. The Python set_track_se-
lector_func() method directly accepts a Python function as an argument, while the Ruby
version takes a Proc object:

strand_track_selector = Proc.new { |block, datal
"#{block.get_type} (#{block.get_strand} strand)"
}

diagram.set_track_selector_func(strand_track_selector)

Note that in Python and Ruby, it is also possible to reference data declared outside of the track
selector function. For example, this can be used to filter blocks by pulling blocks whose descrip-
tion matches a pattern into a separate track:

interesting_genes = ["First test gene", "another gene"]

def filter_track_selector(block):
if block.get_caption() in interesting_genes:
return "interesting genes"
else:
return block.get_type ()

diagram.set_track_selector_func(filter_track_selector)

This code results in the image shown in Fig.[I.9]:

1.4 Custom tracks

There are kinds of data which may be interesting to see together with annotation renderings, but
that can not be expressed — or only in a complicated way — in GFF3 format. It may even be

14

1K 2K 3K 4K 5K 1.4 TK 8K 9K

5o b b b b b b b s L 3

Second test gene

First test gene

First test gene/First test mRNA Second test gene/Second test mRNA

ARGNNRRA| 1 BT i [l

Figure 1.9: AnnotationSketch output with filter _track_selector () track selector function. This im-
age now shows a separate track for features with a specific caption.

too difficult or counterintuitive to properly represent this data as typical AnnotationSketch box
graphics. For example, this may be sequence data, numerical sequence analysis results, or other
kinds of data which does not fit into the simple genomic feature scheme. For an example, see
Fig. [L.10}

With custom tracks, AnnotationSketch provides a mechanism to use the internal drawing func-
tionality to create user-defined output which can be tailored to fit this kind of data. A custom
track looks just like a normal AnnotationSketch track, but is completely in control of the devel-
oper. While native AnnotationSketch primitives such as boxes can of course be used, the author
of a custom track is not restricted to the layout algorithm and can draw anything anywhere (as
long as it is provided by the Graphics class), taking arbitrary external data into account.

1.4.1 Anatomy of a custom track class

Simply put, custom tracks are classes which are derived from a CustomTrack base class and
must implement a set of mandatory methods:

e get_height (): Returns the amount of vertical space (in pixels or points) the custom track
will occupy in the final image. Must return a numeric value.

e get_title(): Returns a title for the custom track which is displayed at the top of the
track. Note that, unlike a track identifier string e.g. produced by a track selector function,
the string returned by this function is not prepended by a file name.

e render(graphics, ypos, range, style, error): Performs the actual rendering
operations. As parameters, this function receives
— a Graphics object to draw on,
— the vertical offset ypos of the drawing area assigned to the custom track,

— the Range of the sequence positions for which annotations are currently displayed,

15

NI syt7
NFI/NFI-RE Syt7/Syt7-RF
I K CH 1 4 | B
Syt7/Syt7-RA
| I
Syt7/Syt7-RE
| |
Syt7/Syt7-RH
<
Syt7/syt7-RE
<
Syt7/Syt7-RG
| | |

100%

0%

Figure 1.10: Example AnnotationSketch output with a custom track at the bottom, displaying the GC
content over a window size of 200 bp.

— a Style object which can be used to obtain style information specific to this custom
track, and

— an Error object which can be used to return an error message if the custom track
needs to signal a problem.

The render () method must return O if drawing was successful, or a negative value if an error
occurred.

Optionally, a free () method can be implemented if the subclass needs to clean up any private
space allocated by itself. These methods are then called by the rendering code in Annotation-
Sketch when a Diagram containing a custom track is laid out and rendered. No other constraints
apply on such a class besides that these methods are implemented (in the scripting language
bindings, the parent classes’ constructor must be called once).

1.4.2 Writing an example custom track

Let’s suppose we are not satisfied with the display of single base features, such as transposable
element insertion sites or SNPs. Instead of a single line denoting the feature location, we would
like to have a small triangle pointing at the location. Suppose we also do not have this data in an
annotation graph, so we cannot use the built-in rendering functions. It is straightforward to write

16

a small custom track class which does this for us. This tutorial uses Python code for simplicity,

but

the general approach is common to all supported languages.

First, we need to define a class inheriting from CustomTrack, call the parent constructor to regis-
ter the functions and set instance variables for the triangle sidelength and a dictionary containing

the

feature positions and a description:

[NI VO SR

class CustomTrackInsertions (CustomTrack):
def __init__(self, sidelength, data):
super (CustomTrackInsertions, self).__init__()
self.sidelength = sidelength
self.data = data

We define the height to be 20 pixels:

def get_height (self):
return 20

a track title, we set “Insertion site”:

def get_title(self):
return "Insertion site"

The rendering code then calculates the triangle coordinates and draws the respective lines:

def render (self, graphics, ypos, rng, style, error):
height = (self.sidelength*math.sqrt(3))/2
margins = graphics.get_xmargins ()
red = Color(1, 0, 0, 0.7)
for pos, desc in self.data.iteritems ():
drawpos = margins + (float(pos)-rng.start)/(rng.end-rng.start+1)
* (graphics.get_image_width () -2*margins)
graphics.draw_line (drawpos-self.sidelength/2, ypos + height,
drawpos, ypos,
red, 1)
graphics.draw_line (drawpos, ypos,
drawpos+self.sidelength/2, ypos + height,
red, 1)
graphics.draw_line (drawpos-self.sidelength/2, ypos + height,
drawpos+self.sidelength/2, ypos + height,
red, 1)
graphics.draw_text_centered (drawpos, ypos + height + 13, str(desc))
return 0O

For a Python custom track, that’s it! No more code is necessary for this very simple custom
track. We can now instantiate this class and attach the instance to a Diagram object:

diagram = Diagram(feature_index, seqid, range, style)

ctt = CustomTrackInsertions (15, {2000:"foo", 4400:"bar", 8000:"baz"})
diagram.add_custom_track(ctt)

Running layout and drawing functions on this diagram then produces the desired image (see

Fig. [.1T]

17

1K 2K 3K 4K 5K 1.4 TK 8K 9K

5o b b b b b b b s L 3

First test gene Second test gene
First test gene/First test mRNA Second test gene/Second test mRNA
foo bar baz

Figure 1.11: The example insertion site custom track (at the bottom), displaying three sample data points.

1.5 Examples

This section will show how to use the AnnotationSketch library in custom applications. As
AnnotationSketch is distributed as a part of GenomeTools, its code is compiled into the 1ib-
genometools.so shared library. Please refer to the INSTALL file inside the GenomeTools
distribution for installation instructions.

For a general idea about how to use the library, a simple implementation of the GFF3 valida-
tor is included in the source package (see src/examples/gff3validator.c) as an exam-
ple showing how to create GenomeTools-based programs. In the same directory, there is also
an appropriate Makefile to build and link this application against the installed shared library
libgenometools.so.

1.5.1 Using AnnotationSketch to draw annotations from a file

The following code examples (in C and Lua) illustrate how to produce an image from a given
GFF3 file using AnnotationSketch. The result is shown in Fig. In essence, these code
examples implement something like a simple version of the gt sketch tool from GenomeTools
without most command-line options. The C-based examples mentioned below are compiled
along with the GenomeTools library itself and available in the bin/examples directory.

C code

(See src/examples/sketch_parsed. c in the source distribution.)

1 |#include "genometools.h"

3 |static void handle_error (GtError *err)

4 |4

5 fprintf (stderr, "error: %s\n", gt_error_get(err));
6 exit (EXIT_FAILURE);

7}

9 | int main(int argc, char xargv[])

10 |{

18

22
23
24
25

27
28
29

31
32

34
35

37
38
39

41
42
43

45
46

1lkbp 2kbp 3kbp 4kbp Skbp 6kbp Tkbp 8kbp 9kbp

g Lo b b by b b B b | 3

EDEN/tfbs00001

EDEN

EDEN/EDEN. 1

}.i I I I)
EDEN/EDEN. 2
}.i I I)

EDENJEDEN. 3
}.. I| I T

| | |
EDENJEDEN. 3

B] | |

Figure 1.12: Example rendering of a GFF3 file with default style.

const char *style_file, *png_file, *gff3_file;
char *seqid;

GtStyle *style;

GtFeatureIndex *feature_index;

GtRange range;

GtDiagram *diagram;

GtLayout x*layout;

GtCanvas *canvas;

unsigned long height;

GtError *err;

if (argc != 4) {
fprintf (stderr, "Usage: %s style_file PNG_file GFF3_file\n", argv[0]);
return EXIT_FAILURE;

}

style_file = argv[1];
png_file = argv[2];
gff3_file = argv[3];

/* initialize x*/
gt_lib_init ();

/* create error object x/
err = gt_error_new();

/* create style x/
if (!(style = gt_style_new(err)))
handle_error (err);

/* load style file %/
if (gt_style_load_file(style, style_file, err))

handle_error (err);

/* create feature index */
feature_index = gt_feature_index_memory_new();

19

48 /* add GFF3 file to index x*/

49 if (gt_feature_index_add_gff3file(feature_index, gff3_file, err))

50 handle_error (err);

52 /* create diagram for first sequence ID in feature index */

53 if (!(seqid = gt_feature_index_get_first_seqid(feature_index, err))) {
54 if (gt_error_is_set(err))

55 handle_error (err);

56 }

57 if (gt_feature_index_get_range_for_seqid(feature_index, &range, seqid, err))
58 handle_error (err);

59 diagram = gt_diagram_new(feature_index, seqid, &range, style, err);

60 gt_free(seqid);

61 if (gt_error_is_set(err))

62 handle_error (err);

64 /* create layout with given width, determine resulting image height */
65 layout = gt_layout_new(diagram, 600, style, err);

66 if (!layout)

67 handle_error (err);

68 if (gt_layout_get_height (layout, &height, err))

69 handle_error (err);

71 /* create PNG canvas */

72 canvas = gt_canvas_cairo_file_new(style, GT_GRAPHICS_PNG, 600, height,
73 NULL, err);

74 if (!canvas)

75 handle_error (err);

77 /* sketch layout on canvas */

78 if (gt_layout_sketch(layout, canvas, err))

79 handle_error (err);

81 /* write canvas to file */

82 if (gt_canvas_cairo_file_to_file((GtCanvasCairoFile*) canvas, png_file, err))
83 handle_error (err);

85 /* free */

86 gt_canvas_delete (canvas);

87 gt_layout_delete (layout) ;

88 gt_diagram_delete(diagram) ;

89 gt_feature_index_delete(feature_index);

90 gt_style_delete(style);

91 gt_error_delete (err);

92 /* perform static data cleanup */

93 gt_lib_clean();

94 return EXIT_SUCCESS;

95 |}

Lua code

(See gtscripts/sketch_parsed.lua in the source distribution. This example can be run by
the command line gt gtscripts/sketch _parsed.lua <style_file> <PNG_file> <GFF3_file>)

1 | function usage ()

2 io.stderr:write(string.format("Usage: %s Style_file PNG_file GFF3_file\n",
arg[0]))

3 io.stderr:write("Create PNG representation of GFF3 annotation file.\n")

4 os.exit (1)

5 | end

20

7 |if #arg == 3 then

8 style_file = argl[1]
9 png_file = argl[2]
10 gff3_file = argl3]
11 |else

12 usage ()

13 | end

15 | -— load style file

16 |dofile(style_file)

18 | -- create feature index
19 | feature_index = gt.feature_index_memory_new ()
21 [-- add GFF3 file to index

22 | feature_index:add_gff3file(gff3_file)

24 | -- create diagram for first sequence ID in feature index
25 | seqid = feature_index:get_first_seqid ()

26 | range = feature_index:get_range_for_seqid(seqid)

27 |diagram = gt.diagram_new(feature_index, seqid, range)

29 | -- create layout

30 |layout = gt.layout_new(diagram, 600)
31 |height = layout:get_height ()

33 | -- create canvas
34 | canvas = gt.canvas_cairo_file_new_png(600, height, nil)
36 | -—— sketch layout on canvas

37 | layout:sketch(canvas)

39 | -- write canvas to file
40 | canvas:to_file(png_file)

Ruby code

(See gtruby/sketch_parsed.rb in the source distribution.)

1 | require ’gtruby’

3 |if ARGV.size != 3 then

4 STDERR.puts "Usage: #{$0} style_file PNG_file GFF3_file"

5 STDERR .puts "Create PNG representation of GFF3 annotation file."
6 exit (1)

7 | end

9 | (stylefile, pngfile, gff3file) = ARGV

11 |# load style file
12 | style = GT::Style.new()
13 | style.load_file(stylefile)

15 |# create feature index
16 | feature_index = GT::FeatureIndexMemory.new ()

18 |# add GFF3 file to index
19 | feature_index.add_gff3file(gff3file)

21

21 |# create diagram for first sequence ID in feature index

22 | seqid = feature_index.get_first_seqid ()
23 |range = feature_index.get_range_for_seqid(seqid)
24 |diagram = GT::Diagram.from_index(feature_index, seqid, range, style)

26 |# create layout for given width
27 | layout = GT::Layout.new(diagram, 800, style)

29 |# create canvas with given width and computed height
30 | canvas = GT::CanvasCairoFile.new(style, 800, layout.get_height, nil)

32 |# sketch layout on canvas
33 | layout.sketch(canvas)

35 |# write canvas to file
3 |canvas.to_file(pngfile)

Python code

(See gtpython/sketch_parsed.py in the source distribution.)

1 |#!/usr/bin/python

2 |# -*- coding: utf-8 -x*-

4 |from gt.annotationsketch import *

5 | from gt.core.gtrange import Range

6 | import sys

8 |if __name__ == "__main__":

9 if len(sys.argv) != 4:

10 sys.stderr.write("Usage: " + (sys.argv) [0] +

11 " Style_file PNG_file GFF3_file\n")
12 sys.stderr.write("Create PNG representation of GFF3 annotation file.")
13 sys.exit (1)

15 pngfile = (sys.argv) [2]

17 # load style file

19 style = Style()

20 style.load_file((sys.argv) [1])

22 # create feature index

24 feature_index = FeatureIndexMemory ()

26 # add GFF3 file to index

28 feature_index.add_gff3file ((sys.argv) [3])

30 # create diagram for first sequence ID in feature index

32 seqid = feature_index.get_first_seqid()

33 range = feature_index.get_range_for_seqid(seqid)

34 diagram = Diagram.from_index(feature_index, seqid, range, style)
36 # create layout

38 layout = Layout(diagram, 600, style)

39 height = layout.get_height ()

22

100bp 200bp 300bp 400bp 500bp 600bp 700bp 800bp 900bp 1kbp

g [RTTRTET] SYRTTRTETI AT ETRTRTI T TERERTI RNRETRERT] SARTANTNTI SURTRRNRTI ARRRTRTRT] ARRTIRTRR] RARTARTRTL| 3

{EHE T

Figure 1.13: Example rendering of user-generated annotations with default style.

41 # create canvas

43 canvas = CanvasCairoFile(style, 600, height)
45 # sketch layout on canvas

47 layout.sketch(canvas)

49 # write canvas to file

51 canvas.to_file(pngfile)

1.5.2 Using AnnotationSketch to draw user-generated annotations

The following C code example illustrates how to produce an image from annotation graphs
created by user code. The result is shown in Fig. [[.13]

C code

(See src/examples/sketch_constructed. c in the source distribution.)

1 |#include "genometools.h"

3 | static GtArray* create_example_features(void)

4 | {

5 GtArray *features;

6 GtGenomeNode *gene, *exon, *intron; /* features x/

7 GtStr #*seqid; /* holds the sequence id the features refer to */

9 /* construct the example features */

10 features = gt_array_new(sizeof (GtGenomeNodex));

11 seqid = gt_str_new_cstr("chromosome_21");

13 /* construct a gene on the forward strand with two exons */

14 gene = gt_feature_node_new(seqid, "gene", 100, 900, GT_STRAND_FORWARD);
15 exon = gt_feature_node_new(seqid, "exon", 100, 200, GT_STRAND_FORWARD);
16 gt_feature_node_add_child ((GtFeatureNode*) gene, (GtFeatureNode*) exon);
17 intron = gt_feature_node_new(seqid, "intron", 201, 799, GT_STRAND_FORWARD) ;
18 gt_feature_node_add_child ((GtFeatureNode*) gene, (GtFeatureNode*) intron);
19 exon = gt_feature_node_new(seqid, "exon", 800, 900, GT_STRAND_FORWARD);
20 gt_feature_node_add_child ((GtFeatureNode*) gene, (GtFeatureNode*) exon);
22 /* store forward gene in feature array x*/

23 gt_array_add (features, gene);

23

25 /* construct a single-exon gene on the reverse strand

26 (within the intron of the forward strand gene) */

27 gene = gt_feature_node_new(seqid, "gene", 400, 600, GT_STRAND_REVERSE);
28 exon = gt_feature_node_new(seqid, "exon", 400, 600, GT_STRAND_REVERSE);
29 gt_feature_node_add_child ((GtFeatureNode*) gene, (GtFeatureNode*) exon);
31 /* store reverse gene in feature array */

32 gt_array_add (features, gene);

34 /*x free x/

35 gt_str_delete (seqid);

37 return features;

38 |}

40 | static void handle_error (GtError *err)

41 | {

42 fprintf (stderr, "error writing canvas %s\n", gt_error_get(err));

8 exit (EXIT_FAILURE);

4 |}

46 |static void draw_example_features(GtArray *features, const char *style_file,
47 const char *output_file)

48 | {

49 GtRange range = { 1, 1000 }; /* the genomic range to draw */

50 GtStyle *style;

51 GtDiagram *diagram;

52 GtLayout *layout;

53 GtCanvas *canvas;

54 unsigned long height;

55 GtError *err = gt_error_new();

57 /* create style */

58 if (!(style = gt_style_new(err)))

59 handle_error (err);

61 /* load style file x/

62 if (gt_style_load_file(style, style_file, err))

63 handle_error (err);

65 /* create diagram */

66 diagram = gt_diagram_new_from_array(features, &range, style);

68 /* create layout with given width, determine resulting image height */
69 layout = gt_layout_new(diagram, 600, style, err);

70 if (!layout)

71 handle_error (err);

72 if (gt_layout_get_height (layout, &height, err))

73 handle_error (err);

75 /* create PNG canvas */

76 canvas = gt_canvas_cairo_file_new(style, GT_GRAPHICS_PNG, 600, height,
77 NULL, err);

78 if (!canvas)

79 handle_error (err);

81 /* sketch layout on canvas */

82 if (gt_layout_sketch(layout, canvas, err))

83 handle_error (err);

85 /* write canvas to file %/

86 if (gt_canvas_cairo_file_to_file((GtCanvasCairoFile*) canvas, output_file,

24

87 err)) {

88 handle_error (err);

89 }

91 /x free */

92 gt_canvas_delete (canvas);

93 gt_layout_delete (layout);

94 gt_diagram_delete (diagram);

95 gt_style_delete(style);

96 gt_error_delete (err);

97 |}

99 |static void delete_example_features (GtArray *features)
100 | {

101 unsigned long ij;

102 for (i = 0; i < gt_array_size(features); i++)

103 gt_genome_node_delete (*(GtGenomeNode**) gt_array_get (features, 1i));
104 gt_array_delete (features);

105 |}

107 | int main(int argc, char x*argv[])

108 | {

109 GtArray *features; /* stores the created example features */
111 if (argc !'= 3) {

112 fprintf (stderr, "Usage: %s style_file output_file\n", argv[0]);
113 return EXIT_FAILURE;

114 }

116 gt_lib_init ();

118 features = create_example_features();

120 draw_example_features (features, argv[1], argv([2]);

122 delete_example_features (features);

124 gt_lib_clean();

125 return EXIT_SUCCESS;

126 |}

Lua code

(See gtscripts/sketch_constructed.lua in the source distribution. This example can be
run by the command line gt gtscripts/sketch_constructed.lua <style_file> <PNG_file>)

1 | function usage ()

2 io.stderr:write(string.format ("Usage: %s Style_file PNG_file\n", argl[0]))
3 os.exit (1)

4 | end

6 |if #arg == 2 then

7 style_file = argl[1]
8 png_file = argl2]
9 |else

10 usage ()

11 | end

13 | -- load style file

14 |dofile(style_file)

25

16 | -- construct the example features
17 | seqid = "chromosome_21"
18 |nodes = {}

20 | -- construct a gene on the forward strand with two exons

21 | gene = gt.feature_node_new(seqid, "gene", 100, 900, "+")

22 | exon = gt.feature_node_new(seqid, "exon", 100, 200, "+")

23 | gene:add_child (exon)

24 |intron = gt.feature_node_new(seqid, "intromn", 201, 799, "+")

25 | gene:add_child(intron)

26 | exon = gt.feature_node_new(seqid, "exon", 800, 900, "+")

27 | gene:add_child (exon)

28 |nodes[1] = gene

30 [-- construct a single-exon gene on the reverse strand

31 [-- (within the intron of the forward strand gene)

32 | reverse_gene = gt.feature_node_new(seqid, "gene", 400, 600, "-")
33 |reverse_exon = gt.feature_node_new(seqid, "exon", 400, 600, "-")
34 | reverse_gene:add_child(reverse_exon)

35 |nodes[2] = reverse_gene

37 | -- create diagram

38 |diagram = gt.diagram_new_from_array(nodes, 1, 1000)

39 |layout = gt.layout_new(diagram, 600)
40 |height = layout:get_height ()

42 | -- create canvas
43 | canvas = gt.canvas_cairo_file_new_png (600, height, nil)
45 | -—- sketch layout on canvas

46 | layout:sketch(canvas)

48 | -- write canvas to file
49 | canvas:to_file(png_file)

Ruby code

(See gtruby/sketch_constructed.rb in the source distribution.)

1 | require ’gtruby’

3 |if ARGV.size != 2 then

4 STDERR.puts "Usage: #{$0} style_file PNG_file"
5 exit (1)

6 | end

8 | seqid = "chromosome_21"

10 [# construct a gene on the forward strand with two exons

11 | gene = GT::FeatureNode.create(seqid, "gene", 100, 900, "+")

12 | exon = GT::FeatureNode.create(seqid, "exon", 100, 200, "+")

13 | gene.add_child (exon)

14 | intron = GT::FeatureNode.create(seqid, "intromn", 201, 799, "+")
15 | gene.add_child(intron)

16 | exon = GT::FeatureNode.create(seqid, "exon", 800, 900, "+")

17 | gene.add_child (exon)

19 |# construct a single-exon gene on the reverse strand
20 |# (within the intron of the forward strand gene)

26

21 |reverse_gene = GT::FeatureNode.create(seqid, "gene", 400, 600, "-")
22 | reverse_exon = GT::FeatureNode.create(seqid, "exon", 400, 600, "-")
23 |reverse_gene.add_child(reverse_exon)

25 | pngfile = ARGV [1]

27 | style = GT::Style.new()
28 | style.load_file (ARGV[0])

30 |rng = GT::Range.new(1l, 1000)

32 |diagram = GT::Diagram.from_array([gene, reverse_genel, rng, style)
34 | layout = GT::Layout.new(diagram, 600, style)

35 | canvas = GT::CanvasCairoFile.new(style, 600, layout.get_height, nil)

36 | layout.sketch(canvas)

33 | canvas.to_file(pngfile)

Python code

(See gtpython/sketch_constructed.py in the source distribution.)

1 |#!/usr/bin/python

2 |# -*- coding: utf-8 -*-

4 |from gt.core import *

5 | from gt.extended import *

6 |from gt.annotationsketch import *

7 |from gt.annotationsketch.custom_track import CustomTrack

8 |from gt.core.gtrange import Range

9 | import sys

11 |if __name__ == "__main__":

12 if len(sys.argv) != 3:

13 sys.stderr.write("Usage: " + (sys.argv)[0] +

14 " style_file PNG_file\n")

15 sys.exit (1)

17 seqid = "chromosome_21"

18 nodes = []

20 # construct a gene on the forward strand with two exons

22 gene = FeatureNode.create_new(seqid, "gene", 100, 900, "+")

23 exon = FeatureNode.create_new(seqid, "exon", 100, 200, "+")

24 gene.add_child (exon)

25 intron = FeatureNode.create_new(seqid, "intron", 201, 799, "+")
26 gene.add_child (intron)

27 exon = FeatureNode.create_new(seqid, "exon", 800, 900, "+")

28 gene.add_child (exon)

30 # construct a single-exon gene on the reverse strand

31 # (within the intron of the forward strand gene)

33 reverse_gene = FeatureNode.create_new(seqid, "gene", 400, 600, "-")
34 reverse_exon = FeatureNode.create_new(seqid, "exon", 400, 600, "-")
35 reverse_gene.add_child(reverse_exon)

37 pngfile = (sys.argv) [2]

27

39
40

42
43

45
46
47
48

50

style

Style ()

style.load_file((sys.argv) [1])

diagram

layout
height
canvas

layout.

canvas

= Diagram.from_array([gene, reverse_gene], Range(1,

style)

= Layout (diagram, 600, style)

= layout.get_height ()

= CanvasCairoFile(style, 600, height)
sketch(canvas)

.to_file(pngfile)

1000) ,

28

2 API Reference

Table of Classes

e Class GtAdAIntronSStrEam. . ..\ttt ettt et e e e e page
@ Class GEALDPRADEt ..o\ttt ettt et e page[34]
e Class GEANNODBSCREMAo\ttt ettt et e e e page[37]
@ ClaSS GLATTAY . o\t ettt ettt et e et e page[37]
e Class GEATTAYOULSEI@AM\ttt ettt e e page[39]
@ Class GEBEDTINSTI@AM . . .ttt ettt ettt et e et e et e e page
@ Class GEBItEaD o\ttt et e page [40]
@ Cla8S GEBLOCK . ..ttt ettt ettt e e e e e page[42]
@ Class GECDSStT @AM\ttt ettt ettt et et e et et e page[43]
® Class GECSASTEIOAIMttt ettt ettt et e page[43]
© Class GECAIMVEAS .t .ttt ettt ettt ettt page[44]
e Class GtCanvasCaiToCOonteXt . .uvurer et et e etete e page[44]
e Class GtCanvasCairoFile.ttt e e page [44]
@ Class GECOAONIteTrator . . v ittt et ettt e et et e page[45]
@ C1a8S GECOLOT . o vttt ettt et e et e e e page [46]
o Class GECOMMENTNOGE\ttt e ettt e e e e page[46]
@ Class GECSETTADLE ..o\ttt ettt ettt ettt e e e page[46]
@ Class GECUSTOMTTACK . ..t vttt ettt et et et e e et et e e e e page[d7]
e Class GtCustomTrackGCCONtentv vttt it et ee e eeieaaans page[d7]
e Class GtCustomTrackSCriptWrapper ...ttt page [48]
® Class GEDIAGTAIM . .ottt ettt et e ettt et e e e e e page[4§|

29

@) P T 3/) I =1 page[49]

Class GEDLiSteLem . .o\ttt ittt et ettt page[50]
Class GEEOFNOGE . . vt vet ettt ettt et e e et e e e et e et e page[50]
Class GEEICS@Q « vt et ettt et et ettt e e e e e page[50]
Class GEtENCSeqBUILAET « ..ttt ettt e e e e page
Class GEENCSEQENCOAOT . ..o\ttt ettt et et page[56]
Class GEENCSEQLOAART « .\ vttt ettt ettt et et e e e et page[59
Class GEENCSEQREAACT . ..\ o\t et ettt e e e et page
Class GEETTOT . .ottt ettt e ettt e e e e e e page[62]
Class GtExtractFeatureStream.o.vvirininiieneiera e aaennns. page
Class GtFeatureIndeXuurtnt et ettt ettt et et e e e aaenss page[63]
Class GtFeatureIndeXMemoOTy . ..o vvvnurtt ettt page[64]
Class GEFeatureNOdeu ittt ettt e e e e e e page[65]
Class GtFeatureNodeIteratorouvutirir et et eieiaieaennss page[69]
ClasS GEF AL . ottt ettt page[69]
Class GEGFF3INSEI@AIM « .« v vt ettt e ettt ettt et e e e e e eeaas page
Class GEGFF30UtStI@amM . ..\ o .ttt it ettt e et e e et page
Class GEGFF P AT SO . .ottt e ettt et e ettt et e page
Class GEGFFBVASItOr « vttt ittt ettt et et e page
Class GEGTFINSEI@AM . ..ot ottt et et et e et e et e e e e e e e page
Class GEGTEFOULSTTaIM « . v oottt e et e e e et e e e e e e ae e page
Class GEGenOomMENOGEo\ttt ettt et e et e page
Class GEGTAPRICS « vttt ettt ettt et e e e page
Class GEHASHMAD . .« .t vttt ettt e e ettt e e e e page
Class GEIDTOMDSSET @AM . . .o o\ttt e et et et e et ettt et e et e e e aeeas page[30]
Class GEIMageInE O ..o\ttt ittt e ettt e et e e page[30]
Class GtInterFeatureStreamvu ittt et et eee e, page

30

Class GEINterVaALlTI@e ... vttt et ettt e et e e e e page[8]]

Class GtIntervalTreeNOde.ur ittt eeeeenanas page
Class GELAYTOUL + .ttt ettt e ettt et e e e e page[82]
ClaSS GO OT « vttt ettt et ettt e e e e page[83]
Class GEMDETOIDSEL@AM . ..« v vttt ettt ettt et et et et aie e page
Class GEMAatChBLAST ..o\t ettt et et et et e et et e e e page[84]
Class GEMat ChIteTator ..\ttt e ettt e et e page[85]
Class GEMat ChLAST . .o\ttt ettt et ettt e e e e e page
Class GEMatChOPeIttt ettt ettt et e e e e page[36]
Class GEMatChSW . .ottt e page
Class GtMergeFeatureStreamvuvu ittt e et eeeeeenens page[36]
Class GEMErGeStIEaM « . o .\ttt ettt ettt page (87|
Class GtMetaNodeottt e e page
Class GENOAESET @AMttt t ettt e et et ettt ettt page (87|
Class GtNOAeStTeamCLasSttt et et etet ettt et et et page[39]
Class GENOAEVISITOT « .ttt ettt ettt e e page
Class GEOPLION . oo v et ettt ettt et et e e e page[89]
Class GEOPtIOnParSeT . .ottt ittt et e e e e page
ClaSS GEPASE . . ottt ettt et ettt e e e e e page 96|
Class GEQUEUEo ottt ettt et et e et e et e e e page[96]
Class GERDBV IS OT . .t ettt ettt et e et e et e e e page
Class GERAIEE . .« e ettt ettt e e et e page
Class GEREAAMOAEo\ttt ettt et et et e e e page[98]
Class GERECMAD . .ttt ettt et e ettt e e e e page
Class GEtREeGIONMAPPIIE « .ottt ettt et e e e e page[99]
Class GEREZIONNOAEo\ttt ettt et e e et page
Class GtSeleCt Stream ...\ ou ittt ettt et e page [10]]

31

o Class GEtSequenceNOdeouiu ittt ettt page[102]

@ Class GESOTESEI@AM. . .o\ttt ettt et et e e et et e e e e e page[103]
@ Class GEOPLatter oottt t ettt e e page[103]
@ Class GEStLatSTIEamM. ..ttt ettt e e e page|104
@ ClaSS Gt T ot ettt ettt page [104]
@ ClasS GBSt AT Ay oo ottt ettt ettt e e e e page[106]
@ Class GESTTANd . ..o ovit ittt e page [107]
L O T €3 S v = page [107]
@ Class GETagValueMapountnttetet e e e page[109
e Class GtTextWidthCalculator .. .ouuuiuttet ettt eieeeeeeaanananns page [L10]
e Class GtTextWidthCalculatorCairovurrerer e e eaieneneanananns page [L10]
@ Class GETAMET . ..o\ttt e et ettt e e et e e e e page [T]]
@ Class GETTAnSTAbLe out ittt et e e e e et e e e e page[112]
® Class GETranslator. ...ttt ettt e ettt page|112
@ Class GETYPECRECKET . ..ottt ettt e e e e e page[114]
e Class GETypeCheckerOBOuuiutt et eieeeenns page[114]
@ Class GEURIQSET@aM. . .o\ttt ettt e e e e e page[114]
e Class GEVisSitorStream. ... ovuit ittt e e page[115]

Table of Modules

® Module ATTay2dim. ...ttt et et e e page[I15]
® Module ASSert. ..ottt e page
® MOdUIE BSEATCR ..ot ot ettt ettt e e e e e e page
e Module COUNTINGSOTE « o\ttt ittt e e page[116]
© MoOUIE COtT . .ttt e e e e page[117]
® MOAUIE ENQIaANESS ..\ttt ettt et et e et et e e e e page[117]
o Module FAleutilsuuutiiiti e page|117

32

e Module FunctionPointer.ouiuiinit i page 18]

© MOAUIE GT@D . .o vttt ettt ettt e e e page[I19]
© MOUIE THit .ottt ettt e e e e e e e page[I19|
© MOdUIE LOg . .ottt ettt e page[I19]
o Module MemoryALlocationuutte ettt page|120
® MoOdUIE MSOT T .. oottt e page (120
© MoOAUIE POSTX . ..ttt e e page [12]]
@ MoOdUle ParSeuTils . ouur ettt et e e e page [12]]
® MOAUIE QSOT T ..ottt ettt ettt e e e e e e page[122]
© MOAUIE STLCIMP. ..\ttt ettt ettt e e et e e e e page[122]
® ModUle SYMDOL. ..\ttt ettt e page[122]
@ Module Undefottt ittt e e page
® MOAUIE UNUSEA. . ..ottt ettt et e et et e e e e e e page[123]
© MoOdUlE VerSionttt e page[123]
® MoOdUle WarDing . ..ottt ettt ettt e e page
© MoOdUle XANST ...ttt e e e e page [124]

2.1 Sole functions

GtORFIterator* gt_orf_iterator_new(
)
Return a new GtORFIterator* which detects ORFs.
GtORFIteratorStatus gt_orf_iterator_next(
)

Sets the values of orf_rng.start, orf_rng.end and orf_frame to the current reading
position of ci if START/STOP AA is found. The frame in which the ORF is located is
written to the position pointed to by orf _frame. This function returns one of three sta-
tus codes: GT_ORF_ITERATOR_OK : an ORF was detected successfully(START/STOP
AA pair), GT_.ORF_ITERATOR _END : no ORF was detected because the end of the scan
region has been reached, GT_ORF_ITERATOR_ERROR : no ORF was detected because
an error occurred during sequence access. See err for details.

void gt_orf_iterator_delete()
Delete orf_iterator.

33

int gt _reverse_complement ()

reverse dna_seq of length seqlen in place

GtNodeStream* gt _feature_stream new()

create a FeatureStream which writes to GtFeatureIndex

2.2 Class GtAddIntronsStream

Implements the GtNodeStream interface. A GtAddIntronsStream inserts new feature nodes
with type intron between existing feature nodes with type exon. This is a special case of the
GtInterFeatureStream.

Methods

GtNodeStream* gt_add_introns_stream new()

Create a GtAddIntronsStream* which inserts feature nodes of type intron between
feature nodes of type exon it retrieves from in_stream and returns them.

2.3 Class GtAlphabet

The following type is for storing alphabets.

Methods

GtAlphabet* gt_alphabet new_dna()
Return a GtAlphabet object which represents a DNA alphabet.

GtAlphabet* gt_alphabet new_protein()
Return a GtAlphabet object which represents a protein alphabet.

GtAlphabet* gt_alphabet new_empty()
Return an empty GtAlphabet object.

GtAlphabet* gt_alphabet new from file()

Return a GtAlphabet object, as read from an .all file specified by filename (i.e. no
all suffix necessary).

GtAlphabet* gt_alphabet new from file no_suffix(
)
Return a GtAlphabet object, as read from a file specified by filename.

GtAlphabet* gt_alphabet new_from_string(
)
Return a GtAlphabet object, as read from a string of length 1en specified by alphadef.

34

GtAlphabet* gt_alphabet new from sequence (
)
Returns a new GtAlphabet object by scanning the sequence files in filenametab to
determine whether they are DNA or protein sequences, and the appropriate alphabet will
be used (seegt_alphabet_guess()). Returns NULL on error, see err for details.
GtAlphabet* gt_alphabet_guess()
Try to guess which type the given sequence with length has (DNA or protein) and
return an according GtAlphabet* object.
GtAlphabet* gt_alphabet clone()
Return a clone of alphabet.

GtAlphabet* gt_alphabet_ref ()

Increase the reference count for alphabet and return it.

void gt_alphabet_add mapping(
)

Add the mapping of all given characters to the given alphabet. The first character is
the result of subsequent gt_alphabet_decode () calls.

void gt_alphabet_add wildcard()
Add wildcard to the alphabet.

const GtUchar* gt_alphabet_symbolmap ()

Returns the array of symbols from alphabet such that the index of the character equals
its encoding.

unsigned int gt_alphabet_num of_chars()

Returns number of characters in alphabet (excluding wildcards).

unsigned int gt_alphabet_size()

Returns number of characters in alphabet (including wildcards).

const GtUchar* gt_alphabet_characters()

Returns an array of the characters in alphabet.

GtUchar gt_alphabet wildcard show()
Returns the character used in alphabet to represent wildcards in output.

unsigned int gt_alphabet_bits_per_symbol()
Returns the required number of bits required to represent a symbol in alphabet.

void gt_alphabet_output()
Writes a representation of alphabet to the file pointer fpout.

35

int gt_alphabet_to_file(
)
Writes a representation of alphabet to the .all output file as specified by indexname
(i.e. without the .al1l suffix).

void gt_alphabet to_str()
Writes a representation of alphabet to the GtStr as specified by dest.

GtUchar gt_alphabet _pretty_symbol(
)

Returns the printable character specified in alphabet for currentchar.

void gt_alphabet_echo _pretty_symbol(
)

Prints the printable character specified in alphabet for currentchar on fpout.

bool gt_alphabet_is_protein()
The following method checks if the given alphabet is the protein alphabet with the
aminoacids A,C,D,E,F G, H,, K, L, M, N, P, Q,R, S, T, V, W, Y written in lower or
upper case and returns true, if this is the case (false otherwise).

bool gt_alphabet_is_dna()
The following method checks if the given alphabet is the DNA alphabet with the bases
A, C, G, T written in lower or upper case and returns true, if this is the case (false
otherwise).

bool gt_alphabet valid_input()
Returns true if the character c is defined in alphabet.

GtUchar gt_alphabet_encode()

Encode character ¢ with given alphabet. Ensure that c is encodable with the given
alphabet!

char gt_alphabet _decode()

Decode character ¢ with given alphabet.

void gt_alphabet_encode_seq(
)
Encode sequence in of given length with alphabet and store the result in out. in has
to be encodable with the given alphabet!

void gt_alphabet_decode_seq_to_fp(
)
Suppose the string src of length 1en was transformed according to the alphabet. The
following method shows each character in src as the printable character specified in the
transformation. The output is written to the given file pointer fpout.

36

void gt_alphabet_decode_seq-to_cstr(
)
Analog to gt_alphabet_decode_seq_to_fp() but writing the output to dest.

GtStr* gt_alphabet_decode_seq to_str(
)

Analog to gt_alphabet_decode_seq_-to_fp() writing the output to a new GtStr.

void gt_alphabet delete()
Decrease the reference count for alphabet or delete it, if this was the last reference.

2.4 Class GtAnnoDBSchema

The “GtAnnoDBSchema” interface for a database-backed abstract GtFeatureIndex factory

Methods

GtFeatureIndex* gt_anno_db_schema get_feature_index(
)

Returns a GtFeatureIndex object representing GtRDB object db interpreted as having
schema schema. Returns NULL if an error occurred, err is set accordingly.

void gt_anno_db_schema delete()
Deletes schema and frees all associated memory.

2.5 Class GtArray

GtArray objects are generic arrays for elements of a certain size which grow on demand.

Methods

GtArray* gt array new()

Return a new GtArray object whose elements have the size size_of elem.

GtArray* gt_array._ref ()
Increase the reference count for array and return it. If array is NULL, NULL is returned
without any side effects.

GtArray* gt_array_clone()
Return a clone of array.

void* gt _array get()
Return pointer to element number index of array. index has to be smaller than
gt_array _size(array).

37

void* gt_array get first()

Return pointer to first element of array.

void* gt_array get last()
Return pointer to last element of array.

void* gt_array_pop()
Return pointer to last element of array and remove it from array.

void* gt_array get_space()
Return pointer to the internal space of array where the elements are stored.

#define gt _array add()

Add element elem to array. The size of elem must equal the given element size when
the array was created and is determined automatically with the sizeof operator.

void gt_array_add_elem()
Add element elem with size size_of _elem to array. size_of_elem must equal the
given element size when the array was created. Usually, this method is not used directly
and the macro gt_array_add () is used instead.

void gt_array_add array()
Add all elements of array src to the array dest. The element sizes of both arrays must
be equal.

void gt_array rem()

Remove element with number index from array in O(gt_array_size(array)) time.
index has to be smaller than gt_array_size(array).

void gt_array_rem_span(
)

Remove elements starting with number frompos up to (and including) topos from
array in O(gt_array_size(array)) time. frompos has to be smaller or equal than
topos and both have to be smaller than gt _array_size (array).

void gt_array_reverse()
Reverse the order of the elements in array.

void gt_array_set_size()

Set the size of array to size. size must be smaller or equal than
gt_array_size(array).

void gt_array reset()

Reset the array. That is, afterwards the array has size 0.

size_t gt_array elem size()

Return the size of the elements stored in array.

38

unsigned long gt_array_size()

Return the number of elements in array. If array equals NULL, O is returned.

void gt_array sort()

Sort array with the given compare function compar.

void gt_array_sort_stable()
Sort array in a stable way with the given compare function compar.
void gt_array_sort_with data(
)
Sort array with the given compare function compar. Passes a pointer with userdata

data to compar.

void gt_array_sort_stable_with_data(
)

Sort array in a stable way with the given compare function compar. Passes a pointer
with userdata data to compar.

int gt_array_cmp()
Compare the content of array_a with the content of array b. array_a and array_b
must have the same gt_array_size() and gt_array_elem_size().

void gt_array delete()
Decrease the reference count for array or delete it, if this was the last reference.

2.6 Class GtArrayOutStream

GtNodeStream* gt_array_out_stream new/(
)

Implements the GtNodeStream interface. GtArrayOutStream takes GtGenomeNodes
of tpe GtFeatureNode from in_stream and adds them to the array nodes. This stream
can be used to obtain nodes for processing outside the usual stream flow

2.7 Class GtBEDInStream

Implements the GtNodeStream interface. A GtBEDInStream allows one to parse a BED file
and return it as a stream of GtGenomeNode objects.

39

Methods

GtNodeStream* gt _bed_in stream new()
Return a GtBEDInStream object which subsequently reads the BED file with the given
filename. If filename equals NULL, the BED data is read from stdin.

void gt_bed_in_stream set_feature_type(
)

Create BED features parsed by bed_in_stream with given type (instead of the default
”BED_feature™).

void gt_bed_in_stream set_thick feature_type(
)

Create thick BED features parsed by bed_in_stream with given type (instead of the
default "BED _thick _feature”).

void gt _bed_in _stream set_block_type(
)

Create BED blocks parsed by bed_in_stream with given type (instead of the default
”"BED_block”).

2.8 Class GtBittab

Implements arbitrary-length bit arrays and various operations on them.

Methods

GtBittab* gt_bittab _new()
Return a new GtBittab of length num_of bits, initialised to 0.
void gt_bittab_set_bit()
Set bit i in bittab to 1.
void gt bittab_unset bit()
Set bit i in bittab to 0.
void gt _bittab_complement ()
Set bittab_a to be the complement of bittab_b.

void gt_bittab_equal()
Set bittab_a to be equal to bittab_b.

void gt_bittab_and(
)
Set bittab_a to be the bitwise AND of bittab_b and bittab_c.

40

void gt_bittab_or(
)
Set bittab_a to be the bitwise OR of bittab_b and bittab_c.

void gt_bittab_nand(
)

Set bittab_a to be bittab_-b NAND bittab_c.
void gt_bittab_and _equal(

Set bittab_a to be the bitwise AND of bittab_a and bittab_b.
void gt_bittab_or_equal(

Set bittab_a to be the bitwise OR of bittab_a and bittab_b.
void gt bittab_shift left_equal()

Shift bittab by one position to the left.
void gt_bittab_shift right_equal()

Shift bittab by one position to the right.

void gt_bittab_unset()
Set all bits in bittab to 0.

void gt_bittab_show()
Output a representation of bittab to fp.

void gt_bittab_get_all_bitnums(
Fill array with the indices of all set bits in bittab.

bool gt_bittab_bit_is_set(
Return true if bit i is set in bittab.

bool gt bittab_cmp(
Return true if bittab_a and bittab_b are identical.

unsigned long gt bittab_get first_bitnum()
Return the index of the first set bit in bittab.

unsigned long gt bittab_get_last_bitnum()
Return the index of the last set bit in bittab.

unsigned long gt bittab_get next_bitnum(
)

Return the index of the next set bit in bittab with an index greater than i.

unsigned long gt _bittab_count_set_bits()
Return the number of set bits in bittab.

unsigned long gt bittab_size()
Return the total number of bits of bittab.

41

void gt_bittab_delete()
Delete bittab.

2.9 Class GtBlock

The GtBlock class represents a portion of screen space which relates to a specific “top-level”
feature (and maybe its collapsed child features). It is the smallest layoutable unit in Annotation-
Sketch and has a caption (which may be displayed above the block rendering).

Methods

GtBlock* gt_block new()
Creates a new GtBlock object.

GtBlock* gt_block_ref()
Increases the reference count.

GtBlock* gt block new_from node()

Create a new GtBlock object, setting block parameters (such as strand, range) from a
given node template.

GtRange gt block get range()
Returns the base range of the GtBlock’s top level element.

GtRange* gt_block_get_range ptr()

Returns a pointer to the base range of the GtBlock’s top level element.

bool gt_block has_ only one fullsize element ()
Checks whether a GtBlock is occupied completely by a single element.

void gt block merge()
Merges the contents of two GtBlocks into the first one.

GtBlock* gt_block_clone()
Returns an independent copy of a GtBlock.

void gt_block set_caption visibility()
Set whether a block caption should be displayed or not.

bool gt block caption is visible()
Returns whether a block caption should be displayed or not.

void gt_block_set_caption()
Sets the GtBlock’s caption to caption.

GtStr* gt_block get_caption()
Returns the GtBlock’s caption.

42

void gt_block set_strand()
Sets the GtBlock’s strand to strand.

GtStrand gt_block _get_strand()
Returns the GtBlock’s strand.

GtFeatureNode* gt_block get_top_level feature()
Returns the GtBlock’s top level feature as a GtFeatureNode object.

unsigned long gt_block_get_size()
Returns the number of elements in the GtBlock.

const char* gt block get type()
Returns the feature type of the GtBlock.

void gt_block delete()
Deletes a GtBlock.

2.10 Class GtCDSStream

Implements the GtNodeStream interface. A GtCDSStream determines the coding sequence
(CDS) for sequences determined by feature nodes of type exon and adds them as feature nodes
of type CDS.

Methods

GtNodeStream* gt_cds_stream new(

)

Create a GtCDSStream* which determines the coding sequence (CDS) for sequences
determined by feature nodes of type exon it retrieves from in_stream, adds them as
feature nodes of type CDS and returns all nodes. region mapping is used to map the
sequence IDs of the feature nodes to the regions of the actual sequences. minorflen
is the minimum length an ORF must have in order to be added. The CDS features are
created with the given source. If start_codon equals true an ORF must begin with
a start codon, otherwise it can start at any position. If final _stop_codon equals true
the final ORF must end with a stop codon. If generic_start_codons equals true, the
start codons of the standard translation scheme are used as start codons (otherwise the
amino acid "M’ is regarded as a start codon).

2.11 Class GtCSAStream

Implements the GtNodeStrean interface. A GtCSAStrean takes spliced alignments and trans-
forms them into consensus spliced alignments.

43

Methods

GtNodeStream* gt_csa_stream new(
)

Create a GtCSAStream* which takes spliced alignments from its in_stream (which
are at most join_length many bases apart), transforms them into consensus spliced
alignments, and returns them.

2.12 Class GtCanvas

The GtCanvas class is an abstraction of a stateful drawing surface. Constructors must be im-
plemented in subclasses as different arguments are required for drawing to specific graphics
back-ends.

Methods

unsigned long gt_canvas_get_height()
Returns the height of the given canvas.

void gt_canvas_delete()

Delete the given canvas.

2.13 Class GtCanvasCairoContext

Implements the GtCanvas interface using a Cairo context (cairo_t) as input. This Canvas uses
the GtGraphicsCairo class.

Drawing to a cairo_t allows the use of the AnnotationSketch engine in any Cairo-based graph-
ical application.

Methods

GtCanvas* gt_canvas_cairo_context_new(

)

Create a new GtCanvas object tied to the cairo_t context, width and height using
the given style. The optional image_info is filled when the created Canvas object is
used to render a GtDiagram object. offsetpos determines where to start drawing on
the surface.

2.14 Class GtCanvasCairoFile

Implements the GtCanvas interface. This Canvas uses the GtGraphicsCairo class.

44

Methods

GtCanvas* gt_canvas_cairo_file new(

)

Create a new GtCanvasCairoFile object with given output_type and width using
the configuration given in style. The optional image_info is filled when the created
object is used to render a GtDiagram object. Possible GtGraphicsQutType values are
GRAPHICS_PNG, GRAPHICS_PS, GRAPHICS_PDF and GRAPHICS_SVG. Dependent on the
local Cairo installation, not all of them may be available.

int gt_canvas_cairo_file to_file(
)

Write rendered canvas to the file with name filename. If this method returns a value
other than 0, check err for an error message.

int gt_canvas_cairo_file to_stream(
)

Append rendered canvas image data to given stream.

2.15 Class GtCodonlterator

the “codon iterator” interface

Methods

unsigned long gt_codon_iterator_current_position()
Return the current reading offset of ci, starting from the position in the sequence given
at iterator instantiation time.

unsigned long gt_codon_iterator_length()
Return the length of the substring to scan, given at instantiation time.

void gt_codon_iterator_rewind()

Rewind the iterator to point again to the position in the sequence given at iterator instan-
tiation time.

GtCodonIteratorStatus gt_codon_iterator next(
)
Sets the values of n1, n2 and n3 to the codon beginning at the current reading position
of ci and then advances the reading position by one. The current reading frame shift
(0, 1 or 2) is for the current codon is written to the position pointed to by frame. This
function returns one of three status codes: GT_.CODON_TERATOR_OK : a codon was
read successfully, GT_.CODON_ITERATOR_END : no codon was read because the end
of the scan region has been reached, GT_.CODON_ITERATOR_ERROR : no codon was
read because an error occurred during sequence access. See err for details.

45

void gt_codon_iterator_delete()

Delete ci.

2.16 Class GtColor

The GtColor class holds a RGB color definition.

Methods

GtColor* gt_color new(
)

Create a new GtColor object with the color given by the red, green, and blue argu-
ments. The value for each color channel must be between O and 1.

void gt_color_set(
)

Change the color of the color object to the color given by the red, green, and blue
arguments. The value for each color channel must be between 0 and 1.

bool gt_color_equals()
Returns true if the colors c1 and c2 are equal.

void gt_color_delete()
Delete the color object.

2.17 Class GtCommentNode

Implements the GtGenomeNode interface. Comment nodes correspond to comment lines in
GFF3 files (i.e., lines which start with a single “#”).

Methods

GtGenomeNode* gt_comment node_new()

Return a new GtCommentNode object representing a comment. Please note that the single
leading “#” which denotes comment lines in GFF3 files should not be part of comment.

const char* gt_comment node_get_comment ()

Return the comment stored in comment _node.

2.18 Class GtCstrTable

Implements a table of C strings.

46

Methods

GtCstrTable* gt_cstr_table new()
Return a new GtCstrTable object.

void gt_cstr_table_add()
Add cstr to table. table must not already contain cstr!

const char* gt_cstr_table_get()

If a C string equal to cstr is contained in table, it is returned. Otherwise NULL is
returned.

GtStrArray* gt_cstr_table get_all()

Return a GtStrArray* which contains all cstrs added to table in alphabetical order.
The caller is responsible to free it!

void gt _cstr_table remove ()
Remove cstr from table.
void gt_cstr_table_reset()

Reset table (that is, remove all contained C strings).

void gt_cstr_table delete()
Delete C string table.

2.19 Class GtCustomTrack

The GtCustomTrack interface allows the GtCanvas to call user-defined drawing functions on
a GtGraphics object. Please refer to the specific implementations’ documentation for more
information on a particular custom track.

Methods

GtCustomTrack* gt _custom track ref ()
Increase the reference count for ctrack.

void gt_custom_track delete()
Delete the given ctrack.

2.20 Class GtCustomTrackGcContent

Implements the GtCustomTrack interface. This custom track draws a plot of the GC content
of a given sequence in the displayed range. As a window size for GC content calculation,
windowsize is used.

47

Methods

GtCustomTrack* gt_custom_track gc_content new(

)
Creates a new GtCustomTrackGcContent for sequence seq with length seqlen of
height height with windowsize windowsize. A horizontal line is drawn for the per-
centage value avg, with avg between 0 and 1. If show_scale is set to true, then a vertical
scale rule is drawn at the left end of the curve.

2.21 Class GtCustomTrackScriptWrapper

Implements the GtCustomTrack interface. This custom track is only used to store pointers to
external callbacks, e.g. written in a scripting language. This class does not store any state,
relying on the developer of the external custom track class to do so.

Methods

GtCustomTrack* gt_custom_track_script_wrapper_new(

Creates a new GtCustomTrackScriptWrapper object.

2.22 Class GtDiagram

The GtDiagram class acts as a representation of a sequence annotation diagram independent of
any output format. Besides annotation features as annotation graphs, it can contain one or more
custom tracks. A individual graphical representation of the GtDiagram contents is created by
creating a GtLayout object using the GtDiagram and then calling gt_layout_sketch() with
an appropriate GtCanvas object.

Methods

GtDiagram* gt_diagram new(
)
Create a new GtDiagram object representing the feature nodes in feature_index in
region seqid overlapping with range. The GtStyle object style will be used to de-
termine collapsing options during the layout process.

GtDiagram* gt_diagram new_from_array(
)
Create a new GtDiagram object representing the feature nodes in features. The fea-
tures must overlap with range. The GtStyle object style will be used to determine
collapsing options during the layout process.

48

GtRange gt_diagram get_range()
Returns the sequence position range represented by the diagram.

void gt_diagram set_track_selector_func(
)

Assigns a GtTrackSelectorFunc to use to assign blocks to tracks. If none is set, or set to
NULL, then track types are used as track keys (default behavior).

void gt_diagram reset_track_selector_func()
Resets the track selection behavior of this GtDiagram back to the default.

void gt_diagram_add custom_track()
Registers a new custom track in the diagram.

void gt_diagram delete()
Delete the diagram and all its components.

2.23 Class GtDlist

A double-linked list which is sorted according to a GtCompare compare function (gqsort(3)-
like, only if one was supplied to the constructor).

Methods

GtDlist* gt dlist new()
Return a new GtDlist object sorted according to compar function. If compar equals
NULL, no sorting is enforced.

GtDlistelem* gt dlist first()
Return the first GtD1istelem object in dlist.

GtDlistelem* gt dlist last()
Return the last GtD1listelem object in dlist.

GtDlistelem* gt dlist_find()
Return the first GtD1listelem object in dlist which contains data identical to data.
Takes O(n) time.

unsigned long gt_dlist_size()
Return the number of GtD1istelem objects in dlist.

void gt_dlist_add()

Add a new GtDlistelem object containing data to dlist. Usually O(n), but O(1) if
data is added in sorted order.

void gt_dlist_remove ()
Remove dlistelem from dlist and free it.

49

int gt dlist_example()
Example for usage of the GtD1ist class.

void gt dlist delete()
Delete d1ist.

2.24 Class GtDlistelem

GtDlistelem* gt_dlistelem next()
Return the successor of dlistelem, or NULL if the element is the last one in the
GtDlist.

GtDlistelem* gt dlistelem previous()
Return the predecessor of dlistelem, or NULL if the element is the first one in the
GtDlist.

void* gt dlistelem get data()

Return the data pointer attached to dlistelem.

2.25 Class GtEOFNode

Implements the GtGenomeNode interface. EOF nodes mark the barrier between separate input
files in an GFF3 stream.

Methods

GtGenomeNode* gt_eof node new()

Create a new GtEOFNode* representing an EOF marker.

2.26 Class GtEncseq

The GtEncseq class represents a concatenated collection of sequences from one or more input
files in a bit-compressed encoding. It is stored in a number of mmap () able files, depending on
which features it is meant to support. The main compressed sequence information is stored in
an encoded sequence table, with the file suffix ’.esq’. This table is the minimum requirement
for the GtEncseq structure and must always be present. In addition, if support for multiple
sequences is desired, a sequence separator position table with the *.ssp’ suffix is required. If
support for sequence descriptions is required, two additional tables are needed: a description
table with the suffix ’.des’ and a description separator table with the file suffix ".sds’. Creation
and requirement of these tables can be switched on and off using API functions as outlined
below. The GtEncseq represents the stored sequences as one concatenated string. It allows
access to the sequences by providing start positions and lengths for each sequence, making it
possible to extract encoded substrings into a given buffer, as well as accessing single characters
both in a random and a sequential fashion.

50

Methods

const char* gt_encseq_indexname ()
Returns the indexname (as given at loading time) of encseq or ”generated” if the GtEnc-
seq was build in memory only.

unsigned long gt_encseq_total_length()
Returns the total number of characters in all sequences of encseq, including separators
and wildcards.

unsigned long gt_encseq num of_sequences()
Returns the total number of sequences contained in encseq.

GtUchar gt_encseq_get_encoded_char(
)

Returns the encoded representation of the character at position pos of encseq read in
the direction as indicated by readmode.

char gt_encseq-get_decoded_char (
)

Returns the decoded representation of the character at position pos of encseq read in
the direction as indicated by readmode.

bool gt_encseq_position_is_separator(

)
Returns true iff pos is a separator position of encseq read in the direction as indicated
by readmode.
GtEncseq* gt_encseq._ref ()

Increases the reference count of encseq.

GtEncseqReader* gt_encseq create reader_with readmode (
)
Returns a new GtEncseqgReader for encseq, starting from position startpos. Also
supports reading the sequence from the reverse and delivering (reverse) complement
characters on DNA alphabets using the readmode option. Please make sure that the
GT_READMODE_COMPL and GT_READMODE _REVCOMPL readmodes are only used on DNA
alphabets.

void gt_encseq_extract_encoded(
)
Returns the encoded representation of the substring from position frompos to position
topos of encseq. The result is written to the location pointed to by buf fer, which must
be large enough to hold the result.

51

void gt_encseq_extract_decoded(

)

Returns the decoded version of the substring from position frompos to position topos
of encseq. The result is written to the location pointed to by buffer, which must be
large enough to hold the result.

unsigned long gt_encseq_seqlength(
)
Returns the length of the seqnum-th sequence in the encseq. Requires multiple sequence
support enabled in encseq.

unsigned long gt_encseqmin seq_length()
Returns the length of the shortest sequence in the encseq.

unsigned long gt_encseq max_seq_length()
Returns the length of the longest sequence in the encseq.

bool gt_encseq-has multiseq_support()
Returns true if encseq has multiple sequence support.

bool gt_encseq-has_description_support()
Returns true if encseq has description support.

bool gt_encseq_has md5_support ()
Returns true if encseq has MDS5 support.

unsigned long gt_encseq._seqgstartpos(
)
Returns the start position of the seqnum-th sequence in the encseq. Requires multiple
sequence support enabled in encseq.

unsigned long gt_encseq_seqnum(
)

Returns the sequence number from the given position for a given GtEncseq encseq.

const char* gt_encseq.-description(
)

Returns a pointer to the description of the seqnum-th sequence in the encseq. The length
of the returned string is written to the location pointed at by desclen. The returned de-
scription pointer is not \ O-terminated! Requires description support enabled in encseq.

const GtStrArray* gt_encseq_filenames()

Returns a GtStrArray of the names of the original sequence files contained in encseq.

unsigned long gt_encseqnum of files()

Returns the number of files contained in encseq.

52

uint64_t gt_encseq-effective filelength(
)
Returns the effective length (sum of sequence lengths and separators between them) of
the filenum-th file contained in encseq.

unsigned long gt_encseq_-filestartpos(
)

Returns the start position of the sequences of the filenum-th file in the encseq. Re-
quires multiple file support enabled in encseq.

unsigned long gt_encseq_filenum(
)

Returns the file number from the given position for a given GtEncseq encseq.

GtAlphabet* gt_encseq-alphabet()
Returns the GtAlphabet associated with encseq.

int gt_encseqmirror()
Extends encseq by virtual reverse complement sequences. Returns O if mirroring has
been successfully enabled, otherwise -1. err is set accordingly.

void gt_encseq unmirror()

Removes virtual reverse complement sequences added by gt _encseq-mirror ().

bool gt_encseq-is_mirrored()

Returns true if encseq contains virtual reverse complement sequences as added by
gt_encseqmirror().

unsigned long gt_encseq_version()

Returns the version number of the file representation of encseq if it exists, or 0 if it was
not mapped from a file.

bool gt_encseq_is 64 bit()
Returns TRUE if encseq was created on a 64-bit system.

void gt_encseq_delete()

Deletes encseq and frees all associated space.

2.27 Class GtEncseqBuilder

The GtEncseqBuilder class creates GtEncseq objects by constructing uncompressed, encoded
string copies in memory.

53

Methods

GtEncseqBuilder* gt_encseq-builder_new()

void

void

void

void

void

void

void

void

void

void

void

Creates a new GtEncseqBuilder using the alphabet alpha as a basis for on-the-fly
encoding of sequences in memory.

gt_encseq_builder_enable description_support()
Enables support for retrieving descriptions from the encoded sequence to be built by eb.
Requires additional memory to hold the descriptions and a position index. Activated by
default.

gt_encseq_builder_disable description_support ()

Disables support for retrieving descriptions from the encoded sequence to be built by
eb. Disabling this support will result in an error when trying to call the method
gt_encseq_description() on the GtEncseq object created by eb.

gt_encseq_builder_enable multiseq_support ()
Enables support for random access to multiple sequences in the encoded sequence to be
built by eb. Requires additional memory for an index of starting positions. Activated by
default.

gt_encseq_builder_disable multiseq-_support()
Disables support for random access to multiple sequences in the encoded sequence to be
built by eb. Disabling this support will result in an error when trying to call the method
gt_encseq_seqlength() or gt_encseq_seqstartpos () on the GtEncseq object cre-
ated by eb.

gt_encseq_-builder_create_esq_tab()
Enables creation of the .esq table containing the encoded sequence itself. Naturally,
enabled by default.

gt_encseq_builder_do not_create_esq_tab()

Disables creation of the .esq table.

gt_encseq builder create des_tab()
Enables creation of the .des table containing sequence descriptions.

gt_encseq_builder_do not_create_des_tab()
Disables creation of the .des table.
gt_encseq builder create _ssp_tab()

Enables creation of the .ssp table containing indexes for multiple sequences.

gt_encseq_builder_do not_create_ssp_tab()

Disables creation of the .ssp table.

gt_encseq-builder_create_sds_tab()

Enables creation of the .sds table containing indexes for sequence descriptions.

54

void gt_encseq_-builder_do not_create_sds_tab()
Disables creation of the .sds table.

void gt_encseq_builder_add cstr(
)

Adds a sequence given as a C string str of length strlen to the encoded sequence to
be built by eb. Additionally, a description can be given (desc). If description support is
enabled, this must not be NULL. A copy will be made during the addition process and the
sequence will be encoded using the alphabet set at the construction time of eb. Thus it
must only contain symbols compatible with the alphabet.

void gt_encseq_builder_add_str(
)

Adds a sequence given as a GtStr str to the encoded sequence to be built by eb. Addi-
tionally, a description can be given. If description support is enabled, desc must not be
NULL. A copy will be made during the addition process and the sequence will be encoded
using the alphabet set at the construction time of eb. Thus it must only contain symbols
compatible with the alphabet.

void gt_encseq_builder_add_encoded(
)
Adds a sequence given as a pre-encoded string str of length strlen to the encoded se-
quence to be built by eb. str must be encoded using the alphabet set at the construction
time of eb. Does not take ownership of str. Additionally, a description desc can be
given. If description support is enabled, this must not be NULL.

void gt_encseq-builder_add_encoded_own(
)
Adds a sequence given as a pre-encoded string str of length strlen to the encoded
sequence to be built by eb. str must be encoded using the alphabet set at the construc-
tion time of eb. Always creates a copy of str, so it can be used with memory that is
to be freed immediately after adding. Additionally, a description desc can be given. If
description support is enabled, this must not be NULL.

void gt_encseq-builder_set_logger()
Sets the logger to use by ee during encoding to 1. Default is NULL (no logging).

GtEncseqg* gt_encseq_builder_build()

Creates a new GtEncseq from the sequences added to eb. Returns a GtEncseq instance
on success, or NULL on error. If an error occurred, err is set accordingly. The state
of eb is reset to empty after successful creation of a new GtEncseq (like having called
gt_encseq_builder_reset()).

void gt_encseq-builder_reset()

Clears all added sequences and descriptions, resetting eb to a state similar to the state
immediately after its initial creation.

55

void gt_encseq-builder _delete()
Deletes eb.

2.28 Class GtEncseqEncoder

The GtEncsegEncoder class creates objects encapsulating a parameter set for conversion from
sequence files into encoded sequence files on secondary storage.

Methods

GtEncseqEncoder* gt_encseq_encoder _new()

Creates a new GtEncseqEncoder.

void gt_encseq_encoder_set_timer()

Sets t to be the timer for ee. Default is NULL (no progress reporting).

GtTimer* gt_encseq_encoder_get_timer ()

Returns the timer set for ee.

int gt_encseq_encoder_use representation(
)
Sets the representation of ee to sat which must be one of "direct’, ’bytecompress’, *bit’,
“uchar’, "ushort’ or "uint32’. Returns 0 on success, and a negative value on error (err is
set accordingly).
GtStr* gt_encseq_encoder_representation()

Returns the representation requested for ee.

int gt_encseq_encoder_use_symbolmap file(
)
Sets the symbol map file to use in ee to smap which must a valid alphabet description
file. Returns 0 on success, and a negative value on error (err is set accordingly). Default
is NULL (no alphabet transformation).
const char* gt_encseq_encoder_symbolmap file()

Returns the symbol map file requested for ee.

void gt_encseq_encoder_set_logger()
Sets the logger to use by ee during encoding to 1. Default is NULL (no logging).

void gt_encseq_encoder_enable description_support ()
Enables support for retrieving descriptions from the encoded sequence encoded by ee.
That is, the .des and .sds tables are created. This is a prerequisite for being able to ac-
tivate description support in gt_encseq-loader_require_description_support().
Activated by default.

56

void

void

void

void

void

void

void

void

void

bool

void

gt_encseq_encoder_disable_description_support ()

Disables support for retrieving descriptions from the encoded sequence encoded by
ee. That is, the .des and .sds tables are not created. Encoded sequences cre-
ated without this support will not be able to be loaded via a GtEncseqloader with
gt_encseq_loader _require_description_support () enabled.

gt_encseq_encoder_enable multiseq_support ()

Enables support for random access to multiple sequences in the encoded sequence en-
coded by ee. That is, the .ssp table is created. This is a prerequisite for being able
to activate description support in gt _encseq-loader_require multiseq_support().
Activated by default.

gt_encseq_encoder_disable multiseq_support()
Disables support for random access to multiple sequences in the encoded sequence
encoded by ee. That is, the .ssp table is not created. Encoded sequences cre-
ated without this support will not be able to be loaded via a GtEncseqLoader with
gt_encseq_loader_require multiseq_support () enabled.
gt_encseq_encoder_enable_lossless_support()

Enables support for lossless reproduction of the original sequence, regardless of alphabet
transformations that may apply. Deactivated by default.

gt_encseq_encoder_disable_lossless_support()

Enables support for lossless reproduction of the original sequence, regardless
of alphabet transformations that may apply. Encoded sequences created with-
out this support will not be able to be loaded via a GtEncseqlLoader with
gt_encseq_loader require lossless_support () enabled.

gt_encseq_encoder_enable md5_support()

Enables support for quick MDS5 indexing of the sequences in ee. Activated by default.

gt_encseq_encoder_disable md5_support ()

Enables support for quick MD5 indexing of the sequences in ee. Encoded sequences
created without this support will not be able to be loaded via a GtEncseqLoader with
gt_encseq_loader_require md5_support () enabled.

gt_encseq_encoder_create_des_tab()
Enables creation of the .des table containing sequence descriptions. Enabled by default.

gt_encseq_encoder_do not_create_des_tab()
Disables creation of the .des table.
gt_encseq_encoder_des_tab_requested()

Returns true if the creation of the .des table has been requested, false otherwise.

gt_encseq_encoder_create_ssp_tab()

Enables creation of the .ssp table containing indexes for multiple sequences. Enabled by
default.

57

void

bool

void

void

bool

void

void

bool

void

bool

void

bool

gt_encseq_encoder_do not_create_ssp_tab()

Disables creation of the .ssp table.

gt_encseq_encoder_ssp_tab_requested()
Returns true if the creation of the .ssp table has been requested, false otherwise.

gt_encseq_encoder_create_sds_tab()
Enables creation of the .sds table containing indexes for sequence descriptions. Enabled
by default.
gt_encseq_encoder_do_not_create_sds_tab()
Disables creation of the .sds table.
gt_encseq_encoder_sds_tab_requested()
Returns true if the creation of the .sds table has been requested, false otherwise.

gt_encseq_encoder_create md5_tab()
Enables creation of the .md5 table containing MDS5 sums. Enabled by default.

gt_encseq_encoder_do not_create md5_tab()
Disables creation of the .md5 table.
gt_encseq_encoder md5_tab_requested()

Returns true if the creation of the .md5 table has been requested, false otherwise.

gt_encseq_encoder_set_input_dna()

Sets the sequence input type for ee to DNA.

gt_encseq_encoder_is_input_dna()

Returns true if the input sequence has been defined as being DNA.

gt_encseq_encoder_set_input_protein()
Sets the sequence input type for ee to protein/amino acids.

gt_encseq_encoder_is_input_protein()

Returns true if the input sequence has been defined as being protein.

int gt_encseq_encoder_encode(

void

)

Encodes the sequence files given in seqfiles using the settings in ee and indexname
as the prefix for the index tables. Returns 0 on success, or a negative value on error (err
is set accordingly).

gt_encseq_encoder_delete()

Deletes ee.

58

2.29 Class GtEncseqloader

The GtEncseqLoader class creates GtEncseq objects by mapping index files from secondary
storage into memory.

Methods

GtEncseqloader* gt_encseq_loader _new()

Creates a new GtEncseqLoader.

void gt_encseq_loader_enable_autosupport()
Enables auto-discovery of supported features when loading an encoded sequence. That
is, if a file with indexname.suffix exists which is named like a table file, it is loaded
automatically. Usegt_encseq_-has multiseq_support () etc. to query for these capa-
bilities.

void gt_encseq_loader_disable_autosupport()

Disables auto-discovery of supported features.

void gt_encseq_loader_require_description_support ()
Enables support for retrieving descriptions from the encoded sequence to be loaded by
el. Thatis, the .des and .sds tables must be present. For example, these tables are created
by having enabled the gt _encseq_encoder_enable_description_support () option
when encoding. Activated by default.

void gt_encseq_loader_drop_description_support ()
Disables support for retrieving descriptions from the encoded sequence to be loaded by
el. That is, the .des and .sds tables need not be present. However, disabling this support
will result in an error when trying to call the method gt_encseq_description() on
the GtEncseq object created by el.

void gt_encseq_loader_require multiseq_support ()
Enables support for random access to multiple sequences in the encoded sequence to be
loaded by el. That is, the .ssp table must be present. For example, this table is created by
having enabled the gt_encseq_encoder_enable multiseq_support() option when
encoding. Activated by default.

void gt_encseq_loader_drop multiseq-_support()

Disables support for random access to multiple sequences in the encoded sequence to
be loaded by el. That is, the .ssp table needs not be present. However, disabling this
support will result in an error when trying to call the method gt_encseq_seqlength()
and gt_encseq_seqgstartpos () on the GtEncseq object created by el.

59

void

void

void

void

void

void

bool

void

void

bool

void

void

gt_encseq_loader_require_lossless_support ()

Enables support for lossless reproduction of the original sequence in the encoded se-
quence to be loaded by el. That is, the .ois table must be present. For example, this table
is created by having enabled the gt_encseq_encoder_enable_lossless_support ()
option when encoding. Deactivated by default.

gt_encseq_loader_drop_lossless_support ()

Disables support for lossless reproduction of the original sequence in the encoded se-
quence to be loaded by el. That is, the .ois table needs not be present. However,
disabling this support may result in a reduced alphabet representation when accessing
decoded characters.

gt_encseq_loader _require md5_support ()

Enables support for quick retrieval of the MDS5 sums for the sequences in the encoded
sequence to be loaded by el. That is, the .md5 table must be present. For example, this
table is created by having enabled the gt_encseq_encoder_enable md5_support ()
option when encoding. Activated by default.

gt_encseq_loader_drop-md5_support()
Disables support for quick retrieval of the MDS5 sums for the sequences in the encoded
sequence to be loaded by el. That is, the .md5 table needs not be present.

gt_encseq_loader_require_des_tab()

Requires presence of the .des table containing sequence descriptions. Enabled by default.

gt_encseq_loader_do not_require_des_tab()

Disables requirement of the .des table for loading a GtEncseq using el.

gt_encseq_loader_des_tab_required()

Returns true if a .des table must be present for loading to succeed.

gt_encseq_loader_require_ssp_tab()
Requires presence of the .ssp table containing indexes for multiple sequences. Enabled
by default.

gt_encseq_loader_do not_require_ssp_tab()

Disables requirement of the .ssp table for loading a GtEncseq using el.

gt_encseq_loader_ssp_tab_required()

Returns true if a .ssp table must be present for loading to succeed.

gt_encseq_loader_require_sds_tab()

Requires presence of the .sds table containing indexes for sequence descriptions. En-
abled by default.

gt_encseq_loader_do_not_require_sds_tab()

Disables requirement of the .sds table for loading a GtEncseq using el.

60

bool gt_encseq_loader_sds_tab_required()

Returns true if a .sds table must be present for loading to succeed.

void gt_encseq_loader_set_logger()
Sets the logger to use by ee during encoding to 1. Default is NULL (no logging).

void gt_encseq_loader mirror()
Enables loading of a sequence using el with mirroring enabled from the start. Identical
to invoking gt_encseq-mirror () directly after loading.

void gt_encseq_loader_do not mirror()
Disables loading of a sequence using el with mirroring enabled right from the start.

GtEncseq* gt_encseq_loader_load(
)
Attempts to map the index files as specified by indexname using the options set in el
using this interface. Returns a GtEncseq instance on success, or NULL on error. If an
error occurred, err is set accordingly.
void gt_encseq_loader_delete()
Deletes el.

2.30 Class GtEncseqReader

The GtEncseqReader class represents the current state of a sequential scan of a GtEncseq
region as an iterator.

Methods

void gt_encseq.reader_reinit_with readmode(
)
Reinitializes the given esr with the values as described in
gt_encseq_create reader with readmode().
GtUchar gt_encseq_reader next_encoded_char ()
Returns the next encoded character from current position of esr, advancing the iterator
by one position.
char gt_encseq._reader next _decoded_char()
Returns the next decoded character from current position of esr, advancing the iterator
by one position.
void gt_encseq.reader_delete()
Deletes esr, freeing all associated space.

61

2.31 Class GtError

This class is used for the handling of user errors in GenomeTools. Thereby, the actual GtError
object is used to store the error message while it is signaled by the return value of the called
function, if an error occured.

By convention in GenomeTools, the GtError object is always passed into a function as the
last parameter and -1 (or NULL for constructors) is used as return value to indicate that an error
occurred. Success is usually indicated by O as return value or via a non-NULL object pointer for
constructors.

It is possible to use NULL as an GtError object, if one is not interested in the actual error
message.

Functions which do not get an GtError object cannot fail due to a user error and it is not
necessary to check their return code for an error condition.

Methods

GtError* gt_error new()

Return a new GtError object

#define gt_error_check(err)
Insert an assertion to check that the error err is not set or is NULL. This macro should be
used at the beginning of every routine which has an GtError* argument to make sure
the error propagation has been coded correctly.

void gt_error_set()
Set the error message stored in err according to format (as in printf (3)).

void gt_error_vset()
Set the error message stored in err according to format (as in vprintf (3)).
void gt_error_set nonvariadic()
Set the error message stored in err to msg.
bool gt _error_is set()
Return true if the error err is set, false otherwise.

void gt_error_ unset()
Unset the error err.
const char* gt _error_get()

Return the error string stored in err (the error must be set).

void gt_error_delete()
Delete the error object err.

62

2.32 Class GtExtractFeatureStream

Implements the GtNodeStream interface. A GtExtractFeatureStream extracts the corre-
sponding sequences of features.

Methods

GtNodeStream* gt_extract_feature_stream new(

)

Create a GtExtractFeatureStream* which extracts the corresponding sequences of
feature nodes (of the given type) it retrieves from in_stream and writes them in FASTA
format (with the given width) to outfp. If join is true, features of the given type are
joined together before the sequence is extracted. If translate is true, the sequences
are translated into amino acid sequences before they are written to outfp. If seqid
is true the sequence IDs of the extracted features are added to the FASTA header. If
target is true the target IDs of the extracted features are added to the FASTA header.
Takes ownership of region mapping!

2.33 Class GtFeaturelndex

This interface represents a searchable container for GtFeatureNode objects, typically root
nodes of larger structures. How storage and searching takes place is left to the discretion of
the implementing class.

Output from a gt _feature_index_get_features_x() method should always be sorted by fea-
ture start position.

Methods

int gt_feature_index_add region node(

Add region_node to feature_index.

int gt_feature_index_add feature node(
)

Add feature node to feature_index, associating it with a sequence region denoted
by its identifier string.

int gt_feature_index remove_node (
)

Removes node genome node from feature_index.

63

int gt _feature_index_add gff3file(
)

Add all features contained in gf£3file to feature_index, if gf£3file is valid. Oth-
erwise, feature_index is not changed and err is set.

GtArray* gt_feature_index get_features_for_seqid(
)
Returns an array of GtFeatureNodes associated with a given sequence region identifier
seqid.

int gt _feature_index_get_features_for_range(
)
Look up genome features in feature_index for sequence region seqid in range and
store them in results.
char* gt feature_index get first_seqid(

)

Returns the first sequence region identifier added to feature_index.

GtStrArray* gt_feature_index get_seqids(
)
Returns a GtStrArray of all sequence region identifiers contained in feature_index
(in alphabetical order).

int gt_feature_index_get_range for_seqid(
)
Writes the range of all features contained in the feature_index for region identifier
seqid to the GtRange pointer range.

int gt _feature_index has_seqid(
)
Returns has_seqid to true if the sequence region identified by seqid has been registered
in the feature_index.

int gt_feature_index_save()
TODO: document me
void gt_feature_index_delete()

Deletes the feature_index and all its referenced features.

2.34 Class GtFeaturelndexMemory

The GtFeatureIndexMemory class implements a GtFeatureIndex in memory. Features are
organized by region node. Each region node collects its feature nodes in an interval tree structure,
which allows for efficient range queries.

64

Methods

GtFeatureIndex* gt_feature_ index memory new()

Creates a new GtFeatureIndexMemory object.

GtFeatureNode* gt_feature_index memory_get node_by_ptr(
)

Returns ptr if it is a valid node indexed in GtFeatureIndexMemory. Otherwise NULL
is returned and err is set accordingly.

2.35 Class GtFeatureNode

Implements the GtGenomeNode interface. A single feature node corresponds to a GFF3 feature
line (i.e., a line which does not start with #). Part-of relationships (which are realized in GFF3
with the Parent and ID attributes) are realized in the C API with the gt _feature node_add_child()
method.

Besides the “mere” feature nodes two “special” feature nodes exist: multi-features and pseudo-
features.

Multi-features represent features which span multiple lines (it is indicated in GFF3 files by the
fact, that each line has the same ID attribute).

To check if a feature is a multi-feature use the method gt_feature node_is multi (). Multi-
features are connected via a “representative”. That is, two features are part of the same multi-
feature if they have the same representative. The feature node representative can be be retrieved
via the gt _feature node_get multi representative () method.

Pseudo-features became a technical necessity to be able to pass related top-level features as a
single entity through the streaming machinery. There are two cases in which a pseudo-feature
has to be introduced.

First, if a multi-feature has no parent. In this case all features which comprise the multi-feature
become the children of a pseudo-feature.

Second, if two or more top-level features have the same children (and are thereby connected).
In this case all these top-level features become the children of a pseudo-feature.

It should be clear from the explanation above that pseudo-features make only sense as top-level
features (a fact which is enforced in the code).

Pseudo-features are typically ignored during a traversal to give the illusion that they do not exist.

65

Methods

GtGenomeNode* gt_feature node_new(
)

Return an new GtFeatureNode object on sequence with ID seqid and type type which
lies from start to end on strand strand. The GtFeatureNodex* stores a new reference
to seqid, so make sure you do not modify the original seqid afterwards! start and
end always refer to the forward strand, therefore start has to be smaller or equal than
end.

GtGenomeNode* gt_feature node new_pseudo (
)
Return a new pseudo-GtFeatureNode object on sequence with ID seqid which lies
from start to end on strand strand. Pseudo-features do not have a type. The
<GtFeatureNode > stores a new reference to seqid, so make sure you do not mod-
ify the original seqid afterwards. start and end always refer to the forward strand,
therefore start has to be smaller or equal than end.

GtGenomeNode* gt_feature node new_pseudo_template (
)

Return a new pseudo-GtFeatureNode object which uses feature node as template.
That is, the sequence ID, range, strand, and source are taken from feature node.

GtGenomeNode* gt_feature node new_standard _gene()
Return the “standard gene” (mainly for testing purposes).

void gt_feature node_add child(
)

Add child feature node to parent feature node. parent takes ownership of child.

const char* gt _feature node_get_source()

99 99

Return the source of feature_node. If no source has been set, . is returned. Corre-
sponds to column 2 of GFF3 feature lines.

void gt_feature node_set_source(
)
Set the source of feature node. Stores a new reference to source. Corresponds to
column 2 of GFF3 feature lines.

bool gt_feature node has_source()
Return true if feature_node has a defined source (i.e., on different from .”). false
otherwise.

const char* gt feature node _get _type()

Return the type of feature node. Corresponds to column 3 of GFF3 feature lines.

66

void gt_feature node_set_type(
)
Set the type of feature_node to type.

bool gt_feature node_has_type(
)

Return true if feature_node has given type, false otherwise.

unsigned long gt _feature node number_of_children(
)

Return the number of children for given feature node.

unsigned long gt _feature node number_of _children_of_type(
)

Return the number of children of type node for given GtFeatureNode parent.

bool gt _feature node_score_is defined()

Return true if the score of feature_node is defined, false otherwise.

float gt_feature node_get_score()

Return the score of feature_node. The score has to be defined. Corresponds to column
6 of GFF3 feature lines.

void gt_feature node_set_score()
Set the score of feature_node to score.

void gt_feature node_unset_score()
Unset the score of feature_node.

GtStrand gt_feature node_get_strand()

Return the strand of feature_node. Corresponds to column 7 of GFF3 feature lines.

void gt_feature node_set_strand(
)
Set the strand of feature_node to strand.

GtPhase gt_feature node_get_phase()
Return the phase of feature_node. Corresponds to column 8 of GFF3 feature lines.

void gt_feature node_set_phase()

Set the phase of feature node to phase.

const char* gt_feature node_get_attribute(
)

Return the attribute of feature node with the given name. If no such attribute has been
added, NULL is returned. The attributes are stored in column 9 of GFF3 feature lines.

67

GtStrArray* gt_feature node get_attribute list(

void

void

void

bool

bool

void

void

void

)

Return a string array containing the used attribute names of feature node. The caller
is responsible to free the returned GtStrArrayx*.

gt_feature node_add_attribute(
)

Add attribute tag=value to feature node. tag and value must at least have length
1. feature_node must not contain an attribute with the given tag already. You should
not add Parent and ID attributes, use gt _feature node_add child() to denote part-of
relationships.

gt_feature node_set_attribute(
)

Set attribute tag to new value in feature_node, if it exists already. Otherwise the at-
tribute tag=value is added to feature_node. tag and value must at least have length
1. You should not set Parent and ID attributes, use gt_feature_node_add_child() to
denote part-of relationships.

gt_feature node_remove_attribute(
)

Remove attribute tag from feature node. feature node must contain an attribute
with the given tag already! You should not remove Parent and ID attributes.

gt_feature node_is multi()
Return true if feature_node is a multi-feature, false otherwise.

gt_feature node_is_pseudo()

Return true if feature node is a pseudo-feature, false otherwise.

gt_feature node make multi_representative(
)
Make feature node the representative of a multi-feature. Thereby feature node be-
comes a multi-feature.

gt_feature node_set multi representative (
)
Set the multi-feature representative of feature node to representative. Thereby
feature_node becomes a multi-feature.
gt_feature node_unset multi()

Unset the multi-feature status of feature node and remove its multi-feature represen-
tative.

GtFeatureNode* gt_feature node_get multi_representative(

)

Return the representative of the multi-feature feature_node.

68

bool gt_feature node_is_similar(
)

Returns true, if the given feature node_a has the same seqid, feature type, range,
strand, and phase as feature_node_b. Returns false otherwise.

void gt_feature node mark()

Marks the given feature_node.

void gt_feature node_unmark()

If the given feature_node is marked it will be unmarked.

bool gt_feature node_contains marked()

Returns true if the given feature node graph contains a marked node.

bool gt_feature node_is marked()

Returns true if the (top-level) feature _node is marked.

2.36 Class GtFeatureNodelterator

GtFeatureNodeIterator* gt_feature node_iterator_new(
)

Return a new GtFeatureNodeIterator* which performs a depth-first traversal of
feature_node (including feature node itself). It ignores pseudo-features.

GtFeatureNodeIterator* gt feature node_iterator new direct(
)

Return a new GtFeatureNodeIterator* which iterates over all direct children of
feature_node (without feature_node itself).

GtFeatureNode*x gt_feature node_iterator_next(
)

Return the next GtFeatureNode* in feature node_iterator or NULL if none exists.

void gt_feature node_iterator_delete(
)

Delete feature_node_iterator.

2.37 Class GtFile

This class defines (generic) files in GenomeTools. A generic file is is a file which either uncom-
pressed or compressed (with gzip or bzip2). A NULL-pointer as generic file implies stdout.

69

Methods

GtFilex gt_file new()
Return a new GtFile object for the given path and open the underlying file handle with
given mode. Returns NULL and sets err accordingly, if the file path could not be opened.
The compression mode is determined by the ending of path (gzip compression if it ends
with ’.gz’, bzip2 compression if it ends with *.bz2’, and uncompressed otherwise).

void gt file xprintf ()
printf (3) for generic file.

void gt_file xfputs()
Write \O-terminated C string cstr to file. Similar to fputs(3), but terminates on
eITor.

int gt file xfgetc()

Return next character from file or EOF, if end-of-file is reached.

int gt_file xread()

Read up to nbytes from generic £ile and store result in buf, returns bytes read.

void gt_file xwrite()

Write nbytes from buf to given generic file.

void gt_file xrewind()

Rewind the generic file.

void gt _file delete()
Close the underlying file handle and destroy the file object.

2.38 Class GtGFF3InStream

Implements the GtNodeStream interface. A GtGFF3InStream parses GFF3 files and returns
them as a stream of GtGenomeNode objects.

Methods

GtNodeStream* gt _gff3_in stream new_unsorted(
)

Return a GtGFF3InStream object which subsequently reads the num_of files many
GFF3 files denoted in filenames. The GFF3 files do not have to be sorted. If
num_of filesis 0 or a file name is ”-”, it is read from stdin. The memory footprint is
O(file size) in the worst-case.

GtNodeStream* gt _gff3_in stream new_sorted()

Create a GtGFF3InStream* which reads the sorted GFF3 file denoted by filename. If
filename is NULL, it is read from stdin. The memory footprint is O(1) on average.

70

void gt_gff3_in stream check id_attributes()

Make sure all ID attributes which are parsed by gf£3_in_stream are correct. Increases
the memory footprint to O(file size).

void gt_gff3_in stream enable_tidy mode()

Enable tidy mode for gf£3_in_stream. That is, the GFF3 parser tries to tidy up features
which would normally lead to an error.

void gt_gff3_in _stream show_progress_bar ()

Show progress bar on stdout to convey the progress of parsing the GFF3 files underly-
ing gf£3_in_stream.

2.39 Class GtGFF30utStream

Implements the GtNodeStream interface. A GtGFF30utStream produces GFF3 output. It
automatically inserts termination lines at the appropriate places.

Methods

GtNodeStream* gt _gff3_out_stream new(
)
Create a GtGFF30utStream* which uses in_stream as input. It shows the nodes passed
through it as GFF3 on outfp.

void gt_gff3_out_stream set_fasta width(
)

Set the width with which the FASTA sequences of GtSequenceNodes passed through
gff3_out_stream are shown to fasta_width. Per default, each FASTA entry is shown
on a single line.

void gt_gff3_out_stream retain id attributes(
)

If this method is called upon gff£3_out_stream, use the original ID attributes provided
in the input (instead of creating new ones, which is the default). Memory consumption
for gff3_out_stream is raised from O(1) to O(input_size), because bookkeeping of
used IDs becomes necessary to avoid ID collisions.

2.40 Class GtGFF3Parser

A GtGFF3Parser can be used to parse GFF3 files and convert them into GtGenomeNode objects.
If the GFF3 files do not contain the encouraged sequence-region meta directives, the GFF3
parser introduces the corresponding region nodes automatically. This is a low-level class and it
is usually not used directly. Normally, a GtGFF3InStrean is used to parse GFF3 files.

71

Methods

GtGFF3Parser* gt_gff3 parser_ new()

Return a new GtGFF3Parser object with optional type_checker. If a type_checker
was given, the GtGFF3Parser stores a new reference to it internally and uses the
type_checker to check types during parsing.

void gt_gff3_parser_check_id attributes()

Enable ID attribute checking in gff3_parser. Thereby, the memory consumption of the
gff3_parser becomes proportional to the input file size(s).

void gt_gff3_parser_check region_boundaries()

Enable sequence region boundary checking in gf£3_parser. That is, encountering fea-
tures outside the sequence region boundaries will result in an error.

void gt_gff3_parser_do_not_check_region boundaries(
)

Disable sequence region boundary checking in gff3_parser. That is, features outside
the sequence region boundaries will be permitted.

void gt_gff3_parser_set_offset()
Transform all features parsed by gf£3_parser by the given offset.

void gt_gff3_parser_set_type_checker(
)
Set type_checker used by gf£3_parser.

void gt _gff3 parser_enable tidy mode()

Enable the tidy mode in gff3_parser. In tidy mode the gf£3_parser parser tries to
tidy up features which would normally lead to a parse error.

int gt_gff3_parser_parse_genome_ nodes (

Use gff3_parser to parse genome nodes from file pointer fpin. status_code is set
to O if at least one genome node was created (and stored in genome_nodes) and to EOF
if no further genome nodes could be parsed from fpin. Every encountered (genome
feature) type is recorded in the C string table used_types. The parser uses the given
filenamestr to store the file name of £pin in the created genome nodes or to give the
correct filename in error messages, if necessary. 1ine number is increased accordingly
during parsing and has to be set to O before parsing a new fpin. If an error occurs during
parsing this method returns -1 and sets err accordingly.

void gt_gff3_parser_reset()
Reset the gff3_parser (necessary if the input file is switched).

72

void gt_gff3 parser_delete()
Delete the gf£3_parser.

2.41 Class GtGFF3Visitor

Implements the GtNodeVisitor interface with a visitor that produces GFF3 output. This is a
low-level class and it is usually not used directly. Normally, a GtGFF30utStrean is used to
produce GFF3 output.

Methods

GtNodeVisitor* gt_gff3_visitor_new()
Create a new GtNodeVisitor* which writes the output it produces to the given output
file pointer outfp. If outfp is NULL, the output is written to stdout.

void gt gff3 visitor_set_fasta width(
)

Set the width with which the FASTA sequences of GtSequenceNodes visited by
gff3_visitor are shown to fasta_width. Per default, each FASTA entry is shown
on a single line.

void gt_gff3_visitor_retain_id attributes()

Retain the original ID attributes (instead of creating new ones), if possible. Memory
consumption for gf£3_visitor is raised from O(1) to O(input_size), because book-
keeping of used IDs becomes necessary to avoid ID collisions.

2.42 Class GtGTFInStream

Implements the GtNodeStream interface. A GtGTFInStream parses a GTF2.2 file and returns
it as a stream of GtGenomeNode objects.

Methods

GtNodeStream* gt _gtf_in stream new()

Create a GtGTFInStream* which subsequently reads the GTF file with the given
filename. If filename equals NULL, the GTF data is read from stdin.

2.43 Class GtGTFOutStream

Implements the GtNodeStream interface. A GtGTFOutStream produces GTF2.2 output.

73

Methods

GtNodeStream* gt_gtf _out_stream new(
)
Create a GtNodeStream* which uses in_stream as input. It shows the nodes passed
through it as GTF2.2 on outfp.

2.44 Class GtGenomeNode

The GtGenomeNode interface. The different implementation of the GtGenomeNode interface
represent different parts of genome annotations (as they are usually found in GFF3 files).

Methods

GtGenomeNode* gt_genome node_ref ()
Increase the reference count for genome _node and return it. genome_node cannot be
NULL.

GtStr* gt_genome node_get_seqid()
Return the sequence ID of genome node. Corresponds to column 1 of GFF3 feature
lines.

GtRange gt _genome node get range ()

Return the genomic range of of genome_node. Corresponds to columns 4 and 5 of GFF3
feature lines.

unsigned long gt_genome node_get_start()

Return the start of genome _node. Corresponds to column 4 of GFF3 feature lines.

unsigned long gt_genome node_get_end()
Return the end of genome_node. Corresponds to column 5 of GFF3 feature lines.

unsigned long gt_genome node_get_length()
Return the length of genome_node. Computed from column 4 and 5 of GFF3 feature
lines.

const char* gt_genome node_get _filename ()

Return the filename the genome _node was read from. If the node did not originate from
a file, an appropriate string is returned.

unsigned int gt_genome node_get_line number()

Return the line of the source file the genome node was encountered on (if the node was
read from a file, otherwise O is returned).

void gt_genome node_set_range(
)

Set the genomic range of genome_node to given range.

74

void gt_genome node_add user_data(
)

Attach a pointer to data to the genome _node using a given string as key. free_func is
the optional destructor for data.

void* gt_genome node_get_user_data(
)

Return the pointer attached to the genome_node for a given key.

void gt_genome node_release_user_data(
)
Call the destructor function associated with the user data attached to genome _node under
the key on the attached data.

int gt_genome node_cmp (
)

Compare genome node_a with genome node b and return the result (similar to
strcmp (3)). This method is the criterion used to sort genome nodes.

void gt_genome nodes_sort()
Sort node array nodes

void gt_genome nodes_sort_stable()

Sort node array nodes in a stable way

int gt_genome node_accept(
)

Let genome_node accept the node_visitor. In the case of an error, -1 is returned and
err is set accordingly.

void gt_genome node_delete()
Decrease the reference count for genome _node or delete it, if this was the last reference.

2.45 Class GtGraphics

The GtGraphics interface acts as a low-level abstraction of a drawing surface. It is used as
a common drawing object in GtCanvas and GtCustomTrack implementations and supports a
variety of drawing operations for both text and basic primitive shapes.

75

Methods

void gt_graphics_draw_text()

Draws text in black to the right of (x,y). The coordinate y is used as a baseline.

void gt_graphics_draw_text_clip(
)

Draws text in black to the right of (x,y). The coordinate y is used as a baseline. If the
text exceeds the margins, it is clipped.

#define gt_graphics_draw_text_left()
Synonym to gt_graphics_draw_text ()

void gt_graphics_draw_text_centered(
)

Draws text in black centered at (x,y). The coordinate y is used as a baseline.

void gt_graphics_draw_text_right(
)

Draws text in black to the left of (x,y). The coordinate y is used as a baseline.

void gt_graphics_draw_colored_text(
)
Draws text in a given GtColor to the right of (x,y). The coordinate y is used as a
baseline.
double gt_graphics_get_text height()
Returns the height of a capital letter in pixels/points.

int gt_graphics_set_background color()

Sets the background color of the GtGraphics to a specific color. Note that this may only
be supported for bitmap output formats.

double gt _graphics get text width()
Returns the width of the given string in pixels/points.

void gt_graphics_set_font(
)

Sets basic font family, slant and weight options. Font families are implementation-
specific, e.g. in Cairo there is no operation to list available family names on the system,
but the standard CSS2 generic family names, (’serif”, ”sans-serif”, “cursive”, “fantasy”,
“monospace’), are likely to work as expected.

double gt_graphics_get_image width()
Returns the width of the image in pixels/points.

double gt_graphics_get_image height()
Returns the height of the image in pixels/points.

76

void gt_graphics_set margins(
)
Set margins (space to the image boundaries that are clear of elements) in the graphics.
margin_x denotes the Margin to the left and right, in pixels. margin_y denotes the
Margin to the top and bottom, in pixels.

double gt_graphics_get _xmargins()
Returns the horizontal margins in pixels/points.

double gt _graphics get ymargins()
Returns the vertical margins in pixels/points.

void gt_graphics_draw horizontal_line(
)

Draws a horizontal line of length width beginning at the given coordinates to the right
in the color color with stroke width stroke _width.

void gt_graphics_draw_vertical line(
)

Draws a vertical line of length 1ength beginning at the given coordinates downwards in
the color color with stroke width stroke_width.

void gt_graphics_draw_line(
)

Draws a line beginning at (x,y) to (xto,yto) in the color color with stroke width
stroke_width.

void gt_graphics_draw_box(

)

Draws a arrow-like box glyph at (x,y) where these are the top left coordinates. The box
extends width pixels (incl. arrowhead) into the x direction and height pixels into the y
direction. It will be filled with £i11_color and stroked with width stroke_width and
color stroke_color. The width of the arrowhead is given by the arrow_width param-
eter. The arrow_status parameter determines whether an arrowhead will be drawn at
the left or right end, both ends, or none. If dashed is set to true, then the outline will be
dashed instead of solid.

void gt_graphics_draw_dashes(

)

Draws a transparent box with a dashed line at the center at (x,y) (where these are the top
left coordinates). The box extends width pixels (incl. arrowhead) into the x direction and
height pixels into the y direction. It will be stroked with width stroke_width and color
stroke_color. The width of the arrowhead is given by the arrow_width parameter.
The arrow_status parameter determines whether an arrowhead will be drawn at the
left or right end, both ends, or none.

77

void gt_graphics_draw_caret(

)

Draws a caret (‘“hat”) style glyph at (x,y) (where these are the top left coordinates). The
box extends width pixels (incl. arrowhead) into the x direction and height pixels into
the y direction. It will be stroked with width stroke width and color stroke_color.
The width of the arrowhead is given by the arrow_width parameter. The arrow_status
parameter determines whether an arrowhead will be drawn at the left or right end, both
ends, or none.

void gt_graphics_draw_rectangle(

)

Draws a rectangle at (x,y) where these are the top left coordinates. The rectangle extends
width pixels (incl. arrowhead) into the x direction and height pixels into the y direc-
tion. It will be filled with £i11_color if £illed is set to true and stroked with width
stroke_width and color stroke_color if stroked is set to true.

void gt_graphics_draw_arrowhead(
)
Draws an arrowhead at (x,y) where these are the top left coordinates. The direction is
determined by the arrow_status parameter.

void gt_graphics_draw_curve_data(

)

Draws a curve over the full visible image width (without margins) at (x,y) where these
are the top left coordinates. As input, the array of double values data with ndata data
points is used. The valrange gives the minimum and maximum value of the displayed
data. If a value outside the data range is encountered, the drawing will be stopped at this
data point.

int gt_graphics_save_to_file(
)
Write out the GtGraphics object to the given file with filename.

void gt_graphics_save_to_stream()

Write out the GtGraphics object to the given stream.

void gt_graphics_delete()
Deletes the the GtGraphics object.

2.46 Class GtHashmap

A hashmap allowing to index any kind of pointer (as a value). As keys, strings or any other
pointer can be used.

78

Methods

GtHashmap* gt_hashmap new(
)

Creates a new GtHashmap object of type keyhashtype. If keyfree and/or valuefree
are given, they will be used to free the hashmap members when the GtHashmap is
deleted. keyhashtype defines how to hash the keys given when using the GtHashmap.
GT_HASH_DIRECT uses the key pointer as a basis for the hash function. Equal pointers
will refer to the same value. If GT_HASH_STRING is used, the keys will be evaluated as
strings and keys will be considered equal if the strings are identical, regardless of their
address in memory

GtHashmap* gt_hashmap_ref ()
Increase the reference count of hm.

void* gt_hashmap get()
Return the value stored in hashmap for key or NULL if no such key exists.

void gt _hashmap_add()
Set the value stored in hashmap for key to value, overwriting the prior value for that
key if present.
void gt _hashmap remove ()
Remove the member with key key from hashmap.
int gt_hashmap_foreach ordered(
)

Iterate over hashmap in order given by compare function cmp. For each member, func
is called (see interface).

int gt_hashmap_foreach(
)
Iterate over hashmap in arbitrary order. For each member, func is called (see interface).
int gt _hashmap_foreach_in key_order(
)

Iterate over hashmap in either alphabetical order (if GtHashType was speci-
fied as GT_HASH_STRING) or numerical order (if GtHashType was specified as
GT_HASH DIRECT).

void gt_hashmap_reset()

Reset hashmap by unsetting values for all keys, calling the free function if necessary.

void gt _hashmap delete()
Delete hashmap, calling the free function if necessary.

79

2.47 Class GtIDToMDb5Stream

Implements the GtNodeStream interface. A GtIDToMD5Stream converts “regular” sequence
IDs to MDS5 fingerprints.

Methods

GtNodeStream* gt_id to md5_stream new(
)

Create a GtIDToMD5Stream object which converts “regular” sequence IDs from nodes
it retrieves from its in_stream to MDS5 fingerprints (with the help of the given
region mapping). If substitute_target_ids is true, the IDs of Target attributes
are also converted to MDS5 fingerprints. Takes ownership of region mapping!

2.48 Class Gtlmagelnfo

The GtImageInfo class is a container for 2D coordinate to GtFeatureNode mappings which
could, for example, be used to associate sections of a rendered image with GUI widgets or
HTML imagemap areas. This information is given in the form of GtRecMap objects. They are
created during the image rendering process and stored inside a GtImageInfo object for later
retrieval. Additionally, the rendered width of an image can be obtained via a GtImageInfo
method.

Methods
GtImageInfo* gt _image info new()
Creates a new GtImageInfo object.

unsigned int gt image info get height()
Returns the height of the rendered image (in pixels or points).

unsigned long gt_image_info num_of_rec_maps()

Returns the total number of mappings in image_info.

const GtRecMap* gt_image_info_get _rec_map(
)
Returns the i-th GtRecMap mapping in image_info.

void gt_image info _delete()
Deletes image_info and all the GtRecMap objects created by it.

2.49 Class GtinterFeatureStream

Implements the GtNodeStream interface. A GtInterFeatureStream inserts new feature nodes
between existing feature nodes of a certain type.

80

Methods

GtNodeStream* gt_inter_feature_stream new(
)

Create a GtInterFeatureStream* which inserts feature nodes of type inter_type be-
tween the feature nodes of type outside_type it retrieves from in_stream and returns
them.

2.50 Class GtintervalTree

This is an interval tree data structure, implemented according to Cormen et al., Introduction to
Algorithms, 2nd edition, MIT Press, Cambridge, MA, USA, 2001

Methods

GtIntervalTree* gt_interval_tree_new()
Creates a new GtIntervalTree. If a GtFree function is given as an argument, it is
applied on the data pointers in all inserted nodes when the GtIntervalTree is deleted.
unsigned long gt_interval_tree_size()

Returns the number of elements in the GtIntervalTree.

GtIntervalTreeNode* gt_interval_tree find first_overlapping(
)
Returns the first node in the GtIntervalTree which overlaps the given range (from
start to end).

void gt_interval tree_insert(

)

Inserts node node into tree.

void gt_interval tree_find all overlapping(
)

Collects data pointers of all GtIntervalTreeNodes in the tree which overlap with the
query range (from start to end) in a GtArray.

void gt_interval tree_iterate_overlapping(

)

Call func for all GtIntervalTreeNodes in the tree which overlap with the query range
(from start to end). Use data to pass in arbitrary user data.

int gt_interval_tree_traverse(
)
Traverses the GtIntervalTree in a depth-first fashion, applying func to each node
encountered. The data pointer can be used to reference arbitrary data needed in the
GtIntervalTreelteratorFunc.

81

void gt_interval_tree_remove ()

Removes the entry referenced by node from the GtIntervalTree. The data attached
to node is freed according to the free function defined in the tree. Note that the memory
pointed to by node can be re-used internally, referencing other data in the tree. Make
sure to handle this pointer as expired after calling gt_interval_tree_remove()!

void gt_interval tree_delete()

Deletes a GtIntervalTree. If a GtFree function was set in the tree constructor, data
pointers specified in the nodes are freed using the given GtFree function.

2.51 Class GtintervalTreeNode

GtIntervalTreeNode* gt_interval_tree node_new(
)
Creates a new GtIntervalTreeNode. Transfers ownership of data to interval tree if
inserted into a GtIntervalTree in which a GtIntervalTreeDataFreeFunc is set.
void* gt_interval_tree node_get_data()

Returns a pointer to the data associated with node node.

2.52 Class GtLayout

The GtLayout class represents contents (tracks) of a GtDiagram broken up into lines such that
a given horizontal space allotment given in pixels or points is used up most efficiently. This
is done using the GtLineBreaker and GtTextWidthCalculator classes. As defaults, Cairo-
based instances of these classes are used but can be specified separately.

A GtLayout can be queried for the height of the laid out representation and finally be rendered
to a GtCanvas.

Methods

GtLayout* gt_layout_new(
)

Creates a new GtLayout object for the contents of diagram. The layout is done for a
target image width of width and using the rules in GtStyle object style.

GtLayout* gt_layout new with twc(
)

Like gt_layout_new(), but allows use of a different GtTextWidthCalculator imple-
mentation.

82

void gt_layout_set_track_ordering func(
)

Sets the GtTrackOrderingFunc comparator function func which defines an order on
the tracks contained in 1layout. This determines the order in which the tracks are drawn
vertically. Additional data necessary in the comparator function can be given in data,
the caller is responsible to free it.

int gt_layout_get height(
)
Calculates the height of layout in pixels. The height value is written to the location
pointed to by result. If an error occurs during the calculation, this function returns -1
and err is set accordingly. Returns 0 on success.
int gt_layout_sketch()

Renders layout on the target_canvas.

void gt_layout_delete()

Destroys a layout.
2.53 Class GtLogger

GtLogger* gt_logger new()

Creates a new GtLogger, with logging enabled or not, and prefixing all log entries with
prefix (e.g. “debug”). The log output is terminated by a newline. All log output will
be written to target.

void gt_logger _enable()
Enable logging on logger.

void gt_logger disable()
Disable logging on logger.

bool gt _logger _enabled()
Return true if logging is enabled on logger, false otherwise.

FILEx gt logger target()
Return logging target of logger.

void gt _logger set _target()
Set logging target of logger to fp.

void gt logger_log force()
Log to target regardless of logging status.

void gt_logger log()
Log to target depending on logging status.

83

void gt_logger_log va force()

Log to target regardless of logging status, using a va_list argument.

void gt_logger log va()
Log to target depending on logging status, using a va_list argument.

void gt_logger_delete()
Delete logger.

2.54 Class GtMD5TolDStream

Implements the GtNodeStream interface. A GtMD5ToIDStream converts MDS5 fingerprints
used as sequence IDs to “regular” ones.

Methods

GtNodeStream* gt md5 to_id stream new(
)

Create a GtMD5toIDStream* which converts MDS5 sequence IDs from nodes it retrieves
from its in_stream to “regular” ones (with the help of the given region mapping).
Takes ownership of region mapping!

2.55 Class GtMatchBlast

GtMatch* gt match blast new(

)

Creates a new GtMatch object meant to store results in the BLAST format. That
is, it stores double values evalue for match E-values, bitscores and the alignment
length ali_1 in addition to the generic match contents seqidl, seqid2, start_seql,
start_seq2, end_seql, and end_seq?2.

void gt match blast_set_evalue()
Sets evalue to be the E-value in mb.

void gt match blast_set bitscore()
Sets bits to be the bit-score in mb.

void gt match blast_set_align length(
)
Sets length to be the alignment length in mb.

void gt match blast_set_similarity()

Sets similarity to be the match similarity in mb.

84

long double gt match blast_get_evalue()
Returns the E-value stored in mb.
float gt_match blast_get_bitscore()
Returns the bit-score value stored in mb.
unsigned long gt match blast_get_align length()
Returns the alignment length stored in mb.
double gt match_blast_get_similarity()
Returns the alignment similarity stored in mb.

2.56 Class GtMatchlterator

GtMatchIteratorStatus gt match_iterator_next(
)

Advances mp by one, returning the next match. Writes a pointer to the next match to the
position pointed to by match. Returns GT_MATCHER_STATUS_OK when the match
could be delivered and there are more matches to come, GT_MATCHER_STATUS_END
when no more matches are available, and GT_MATCHER_STATUS_ERROR if an error
occurred. err is set accordingly.

void gt match iterator_delete()

Deletes mp, freeing all associated space.

2.57 Class GtMatchLAST

GtMatch* gt match last new(

)

Creates a new GtMatch object meant to store results from the LAST software.

unsigned long gt match_last_get_seqnol()
Returns the sequence number of the match ms in the first GtEncseq.

unsigned long gt match_last_get_seqno2()
Returns the sequence number of the match ms in the second GtEncseq.

unsigned long gt_match_last_get_score()
Returns the LAST score of the match ms.

85

2.58 Class GtMatchOpen

GtMatch* gt match_open_new(

)

Creates a new GtMatch object meant to store results in the OpenMatch format. That is,
it stores long values weight in addition to the generic match contents seqidl, seqid2,
start_seql, start_seq2, end_seql, and end_seq2.

void gt match open _set weight()

Sets weight to be the weight value in mo.

long gt match open_get weight()

Returns the weight value stored in mo.

2.59 Class GtMatchSW

GtMatch* gt match_sw new(

)

Creates a new GtMatch object meant to store results from Smith-Waterman matching
(using the swalign module). That is, it stores the alignment length length, the edit
distance edist and the sequence numbers in the GtEncseqs in addition to the generic
match contents seqidl, seqid2, start_seql, start_seq2, end_seql and end_seq?2.

unsigned long gt match_sw_get_seqnol()
Returns the sequence number of the match ms in the first GtEncseq.

unsigned long gt match_sw_get_seqno2()
Returns the sequence number of the match ms in the second GtEncseq.

unsigned long gt match_sw get_alignment_length()
Returns the alignment length of the match ms.

unsigned long gt match sw get_edist()
Returns the edit distance of the match ms.

2.60 Class GtMergeFeatureStream

Implements the GtNodeStream interface. A GtMergeFeatureStream merges adjacent features
of the same type.

86

Methods

GtNodeStream* gt merge feature_stream new()

Create a GtMergeFeatureStream* which merges adjacent features of the same type it
retrieves from in_stream and returns them (and all other unmodified features).

2.61 Class GtMergeStream

Implements the GtNodeStream interface. A GtMergeStream allows one to merge a set of
sorted streams in a sorted fashion.

Methods

GtNodeStream* gt merge stream new()

Create a GtMergeStream* which merges the given (sorted) node_streams in a sorted
fashion.

2.62 Class GtMetaNode

Implements the GtGenomeNode interface. Meta nodes correspond to meta lines in GFF3 files
(i.e., lines which start with “##’”) which are not sequence-region lines.

Methods

GtGenomeNode* gt meta node new(
)

Return a new GtMetaNode object representing ameta_directive with the correspond-
ing meta_data. Please note that the leading “##” which denotes meta lines in GFF3 files
should not be part of the meta directive.

const char* gt meta node get_directive()

Return the meta directive stored in meta_node.

const char* gt meta node get data()
Return the meta data stored in meta_node.

2.63 Class GtNodeStream

The GtNodeStream interface. GtNodeStream objects process GtGenomeNode objects in a pull-
based architecture and can be chained together.

87

Methods

GtNodeStream* gt node_stream ref ()
Increase the reference count for node_stream and return it.

int gt node_stream next (
)

Try to get the the next GtGenomeNode from node_stream and store it in genome_node
(transfers ownership to genome node). If no error occurs, 0 is returned and
genome_node contains either the next GtGenomeNode or NULL, if the node_stream is
exhausted. If an error occurs, -1 is returned and err is set accordingly (the status of
genome_node is undefined, but no ownership transfer occured).

int gt node_stream pull()
Calls gt node_stream next() on node_stream repeatedly until the node_stream
is exhausted (0 is returned) or an error occurs (-1 is returned and err is
set). All retrieved GtGenomeNodes are deleted automatically with calls to
gt_genome node_delete(). This method is basically a convenience method
which simplifies calls to gt node_stream next() in a loop where the retrieved
GtGenomeNode objects are not processed any further.

bool gt node_stream_is_sorted()

Return true if node_stream is a sorted stream, false otherwise.

void gt node_stream delete()

Decrease the reference count for node_stream or delete it, if this was the last reference.

GtNodeStream* gt node_stream create(
)

Create a new object of the given node_stream_class. If ensure_sorting is true, it
is enforced that all genome node objects pulled from this class are sorted. That is, for
consecutive nodes a and b obtained from the given node_stream_class the return code
of gt_genome node_compare (a,b) has to be smaller or equal than 0. If this condition
is not met, an assertion fails.

void* gt node_stream cast(
)

Cast node_strean to the given node_stream_class. That is, if node_stream is not
from the given node_stream_class, an assertion will fail.

88

2.64 Class GtNodeStreamClass

const GtNodeStreamClass* gt node_stream_class new(
)

Create a new node stream class (that is, a class which implements the node stream in-
terface). size denotes the size of objects of the new node stream class. The optional
free method is called once, if an object of the new class is deleted. The mandatory next
method has to implement the gt_node_stream next () semantic for the new class.

2.65 Class GtNodeVisitor

The GtNodeVisitor interface, a visitor for GtGenomeNode objects.

Methods

int gt node_visitor_visit_comment_node(

Visit comment _node with node_visitor.

int gt node_visitor_visit_feature_node(

Visit feature_node with node_visitor.

int gt node_visitor_visit meta node(

)

Visit meta_node with node_visitor.

int gt node visitor_visit_region node(

Visit region_node with node_visitor.

int gt node_visitor_visit_sequence node(

Visit sequence _node with node_visitor.

void gt node visitor_delete()

Delete node_visitor.

2.66 Class GtOption

GtOption objects represent command line options (which are used in a GtOptionParser).
Option descriptions are automatically formatted to GT_OPTION_PARSER_TERMINAL_WIDTH, but
it is possible to embed newlines into the descriptions to manually affect the formatting.

89

Methods

GtOption* gt_option_new_bool(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

GtOption* gt _option new_double(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

GtOption* gt_option_new_double min(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt_option new double min max(

)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum_value and at most the maximum value.

GtOption* gt _option new probability(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at larger or equal than 0.0 and smaller or equal than 1.0.

GtOption* gt _option_ new_int(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

GtOption* gt_option new_ int min(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt_option new_int max(
)
Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at most have the maximum value.

90

GtOption* gt_option new_int min max(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum_value and at most the maximum value.

GtOption* gt_option_new uint(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

GtOption* gt _option new uint min(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt_option new uint max(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at most have the maximum_value.

GtOption* gt_option new uint min max(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum_value and at most the maximum value.

GtOption* gt_option_new_long(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

GtOption* gt_option new_ulong/(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

91

GtOption* gt _option new_ulong min(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum value.

GtOption* gt_option new_ ulong min max(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The argument
to this option must at least have the minimum_value and at most the maximum value.

GtOption* gt _option_new_range(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. If default_value
equals NULL, GT_UNDEF_LONG will be used as the default start and end point of value.

GtOption* gt_option new range min max(

)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value. The first argument
to this option (which will be used as the start) must at least have the minimum value and
the second argument (which will be used as the end) at most the maximum_value.

GtOption* gt_option new string(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing is stored in value.

GtOption* gt_option new_string array(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing are stored in value.

GtOption* gt_option new_choice(

)

Return a GtOption with the given option_string, description, and
default_value which allows only arguments given in the NULL-terminated domain
(default_value must be an entry of domain or NULL).

92

GtOption* gt_option new_filename(
)

Return a new GtOption with the given option_string, description, and
default_value. The result of the option parsing are stored in value.

GtOption* gt_option new_filename array(
)

Return a new GtOption with the given option_string, description, and
default_value. The results of the option parsing are stored in value.

GtOption* gt _option new_debug()
Return a new debug GtOption object: —~debug, “enable debugging output”, default is
false. The result of the option parsing is stored in value

GtOption* gt_option_new_verbose()
Return a new verbose GtOption object: -v, "be verbose”, default is false. The result
of the option parsing is stored in value

GtOption* gt_option new_width()

Return a new width GtOption object: —width, “set output width for FASTA sequence
printing (0 disables formatting)”, default is 0. The result of the option parsing is stored
in value

GtOption* gt_option_ref()

Increase the reference count for option and return it.

const char* gt_option_get name ()

Return the name of option

void gt_option_is mandatory()

Make option mandatory.

void gt_option_is mandatory_either (
)

Make it mandatory, that either option_a or option_b is used.

void gt_option_is mandatory_either_3(
)

Make it mandatory, that one of the options option_a, option_b, or option_c is used.

void gt_option_is_extended_option()
Set that option is only shown in the output of ~help+.

void gt_option_is_development_option()
Set that option is only shown in the output of ~helpdev.

void gt_option imply()
Make option_a imply option_b.

93

void gt_option_imply_ either_2(
)
Make option_a imply either option_b or option_c

void gt_option_exclude()

Set that the options option_a and option_b exclude each other.

void gt_option_hide_default()
Hide the default value of option in ~help output.

void gt_option_argument_is_optional()

Set that the argument to option is optional

bool gt_option_is_set()

Return true if option was set, false otherwise.

void gt_option_delete()

Delete option.

int gt_option_parse_spacespec(
)

Parse the argument to option -memlimit. Could be made into a special parser, but I do
not know how. SK. 2011-09-19

2.67 Class GtOptionParser

GtOptionParser objects can be used to parse command line options.

Methods

#define GT_OPTION_PARSER_TERMINAL WIDTH
The default terminal width used in the output of the GtOptionParser.

GtOptionParser* gt_option_parser new(
)
Return a new GtOptionParser object. The synopsis should summarize the command
line arguments and mandatory arguments in a single line. The one_liner should de-
scribe the program for which the GtOptionParser is used in a single line and must
have an upper case letter at the start and a ’.” at the end.

void gt_option_parser_add option(
)

Add option to option_parser. Takes ownership of option.

94

GtOption* gt_option_parser_get_option(

void

void

void

void

void

void

void

void

)

Return the GtOption object if an option named option_string is present in
option_parser, and NULL if no such option exists.

gt_option_parser_refer_to_manual()

Refer to manual at the end of ~help output of opion_parser.

gt_option_parser_set_comment_func(
)

Set comment_func in option_parser (data is passed along).

gt_option_parser_set_version_func(
)

Set the version function used by option_parser to version_func. This version func-
tion takes precedence to the one supplied to gt_option_parser_parse().

gt_option_parser_set mail _address(
)
Set the mail_address used in the final “Report bugs to” line of the ~help output. It
should be of the form <bill@microsoft.com> (email address enclosed in one pair of
angle brackets).

gt_option_parser_register_hook(
)
Register a hook_function with option_parser. All registered hook functions are
called at the end of gt_option_parser_parse(). This allows one to have a module
which registers a bunch of options in the option parser and automatically performs nec-
essary postprocessing after the option parsing has been done via the hook function.

gt_option_parser_set min_args(
)

The the minimum number of additional command line arguments option_parser must
parse in order to succeed.

gt_option_parser_set_max_args(
)

The the maximum number of additional command line arguments option_parser must
parse in order to succeed.

gt_option_parser_set_min max_args(
)

The the minimum and maximum number of additional command line arguments
option_parser must parse in order to succeed.

95

GtOPrval gt_option_parser_parse(

)
Use option_parser to parse options given in argument vector argv (with argc many
arguments). The number of parsed arguments is stored in parsed_args. version_func
is used for the output of option -version. In case of error, GT_OPTION_PARSER_ERROR
is returned and err is set accordingly.

void gt_option_parser_delete()
Delete option_parser.

2.68 Class GtPhase

This enum type defines the possible phases. The following phases are defined: GT_PHASE_ZERO,
GT_PHASE_ONE, GT_PHASE_TWO, and GT_PHASE_UNDEFINED.

Methods
#define GT_PHASE_CHARS
Use this string to map phase enum types to their corresponding character.

GtPhase gt phase get()

Map phase_char to the corresponding phase enum type. An assertion will fail if
phase_char is not a valid one.

2.69 Class GtQueue

GtQueue objects are generic queues which can be used to process objects of any type in an
First-In-First-Out (FIFO) fashion.

Methods

GtQueue* gt_queue new()
Return a new GtQueue object.

void gt_queue_add()
Add elem to queue (enqueue in computer science terminology).
void* gt_queue_get()

Remove the first element from non-empty queue and return it (dequeue in computer
science terminology).

void* gt_queue_head()

Return the first element in non-empty queue without removing it.

96

void gt_queue_remove ()

Remove elem from queue (elem has to be in queue). Thereby queue is traversed in
reverse order, leading to O(gt_queue_size (queue)) worst-case running time.

unsigned long gt_queue_size()

Return the number of elements in queue.

void gt_queue_delete()

Delete queue. Elements contained in queue are not freed!

2.70 Class GtRDBVisitor

The GtRDBVisitor interface, a visitor for GtRDB objects.

Methods

int gt_rdb_visitor_visit_sqlite(
)

Visit a SQLite database rdbs with rdbv. Returns 0 on success, a negative value other-
wise, and err is set accordingly.

int gt _rdb_visitor_visit mysql(
)

Visit a MySQL database rdbm with rdbv. Returns O on success, a negative value other-
wise, and err is set accordingly.

void gt rdb visitor_delete()
Delete rdbv.

2.71 Class GtRange

The GtRange class is used to represent genomic ranges in GenomeTools. Thereby, the start
must always be smaller or equal than the end.

97

Methods

int gt_range compare()

Compare range_a and range_b. Returns O if range_a equals range_b, -1 if range_a
starts before range_b or (for equal starts) range_a ends before range b, and 1 else.

int gt_range_compare with delta(
)

Compare range_a and range_b with given delta. Returns O if range_a equals
range_b modulo delta (i.e., the start and end points of range_a and range_ b are
at most delta bases apart), -1 if range_a starts before range_b or (for equal starts)
range_a ends before range_b, and 1 else.

bool gt _range overlap()
Returns true if range_a and range_b overlap, false otherwise.

bool gt_range_overlap_delta(

)
Returns true if range_a and range_b overlap at least delta many positions, false
otherwise.
bool gt_range_contains()

Returns true if range_b is contained in range_a, false otherwise.

bool gt _range within()
Returns true if point lies within range, false otherwise.

GtRange gt _range_join()
Join range_a and range_b and return the result.

GtRange gt_range offset()
Transform start and end of range by offset and return the result.

unsigned long gt _range_length()
Returns the length of the given range.

2.72 Class GtReadmode

This enum type defines the possible reamodes, namely GT_READMODE_FORWARD, GT_READMODE _REVERSE,
GT_READMODE_COMPL, and GT_READMODE_REVCOMPL.

98

Methods

const char* gt_readmode_show()
Returns the descriptive string for readmode.

int gt_readmode_ parse ()

Returns the GtReadmode for the description string, which must be one of

99 99

“fwd”,’rev”,’cpl” or “rcl”. If string does not equal any of them, -1 is returned and
err is set accordingly.

2.73 Class GtRecMap

A GtRecMap object contains a mapping from a 2D coordinate pair which identifies a rectangle
in a rendered image to the GtFeatureNode it represents. The rectangle is defined by the coor-
dinates of its upper left (“northwest”) and lower right (“southeast”) points.

GtRecMap objects are created by an GtImageInfo object which is filled during the generation
of an image by AnnotationSketch.

Methods
double gt_rec map_get northwest_x()
Retrieve x value of the the upper left point of the rectangle.

double gt_rec_map_get northwest_y()
Retrieve y value of the the upper left point of the rectangle.

double gt_rec map_get_southeast _x()

Retrieve x value of the the lower right point of the rectangle.

double gt_rec_map_get_southeast_y()
Retrieve y value of the the lower right point of the rectangle.

const GtFeatureNode* gt_rec map_get_genome_feature()
Retrieve GtFeatureNode associated with this rectangle.

bool gt_rec map has omitted children()

Returns true if the rectangle represents a block root whose elements have not been
drawn due to size restrictions.

2.74 Class GtRegionMapping

A GtRegionMapping objects maps sequence-regions to the corresponding entries of sequence
files.

99

Methods

GtRegionMapping* gt _region mapping new mapping(
)

Return a new GtRegionMapping object for the mapping file with the given
mapping filename. In the case of an error, NULL is returned and err is set accord-
ingly.

GtRegionMapping* gt _region mapping new_seqfiles(

)

Return a new GtRegionMapping object for the sequence files given in
sequence filenames. If matchdesc is true, the sequence descriptions from
the input files are matched for the desired sequence IDs (in GFF3).
If usedesc is true, the sequence descriptions are used to map the sequence IDs (in
GFF3) to actual sequence entries. If a description contains a sequence range (e.g.,
I11:1000001..2000000), the first part is used as sequence ID (CIII’) and the first range
position as offset (’1000001°).
matchdesc and usedesc cannot be true at the same time.

GtRegionMapping* gt_region mapping new_rawseq(

)

Return a new GtRegionMapping object which maps to the given sequence rawseq with
the corresponding length and offset.

GtRegionMapping* gt _region mapping ref ()

Increase the reference count for region _mapping and return it.

int gt _region mapping get _raw_sequence/(

)

Use region_mapping to map the given sequence ID seqid and its corresponding range
to an actual sequence. The sequence is returned in rawseq, its length and offset in
length and offset. In the case of an error, -1 is returned and err is set accordingly.

int gt_region mapping get description(
)

Use region_mapping to get the description of the MDS5 sequence ID seqid. The de-
scription is appended to desc. In the case of an error, -1 is returned and err is set
accordingly.

const char* gt_region mapping get md5 fingerprint(

)

Use region_mapping to return the MDS5 fingerprint of the sequence with the sequence
ID seqid and its corresponding range. The offset of the sequence is stored in offset.
In the case of an error, NULL is returned and err is set accordingly.

100

void gt_region mapping delete()

Delete region_mapping.

2.75 Class GtRegionNode

Implements the GtGenomeNode interface. Region nodes correspond to the ##sequence-region
lines in GFF3 files.

Methods

GtGenomeNode* gt _region node new(
)
Create a new GtRegionNodex* representing sequence with ID seqid from base position
start to base position end (1-based). start has to be smaller or equal than end. The
GtRegionNodex stores a new reference to seqid, so make sure you do not modify the
original seqid afterwards!

2.76 Class GtSelectStream

Implements the GtNodeStream interface. A GtSelectStrean selects certain nodes it retrieves
from its node source and passes them along.

101

Methods

GtNodeStream* gt_select_stream new(

)

Create a GtSelectStream object which selects genome nodes it retrieves from its
in_stream and passes them along if they meet the criteria defined by the other argu-
ments. All comment nodes are selected. If seqid is defined, a genome node must have
it to be selected. If source is defined, a genome node must have it to be selected. If
contain_range is defined, a genome node must be contained in it to be selected. If
overlap_range is defined, a genome node must overlap it to be selected. If strand
is defined, a (top-level) genome node must have it to be selected. If targetstrand
is defined, a feature with a target attribute must have exactly one of it and its strand
must equal targetstrand. If had_cds is true, all top-level features are selected
which have a child with type CDS. If max_gene_length is defined, only genes up
to the this length are selected. If max_gene num is defined, only so many genes are
selected. If min_gene_score is defined, only genes with at least this score are se-
lected. If max_gene_score is defined, only genes with at most this score are selected.
If min_average_splice_site_prob is defined, feature nodes which have splice sites
must have at least this average splice site score to be selected. If feature num is de-
fined, just the feature numth feature node occurring in the in_stream is selected. If
select_files is defined and has at least one entry, the entries are evaluated as Lua
scripts containing functions taking GtGenomeNodes that are evaluated to boolean values
to determine selection. select_logic can be "OR” or ”AND”, defining how the results
from the select scripts are combined. Returns a pointer to a new GtSelectStream or
NULL on error (err is set accordingly).

void gt_select_stream set_drophandler (
)

Sets £p as a handler function to be called for every GtGenomeNode not selected by sstr.
The void pointer data can be used for arbitrary user data.

2.77 Class GtSequenceNode

Implements the GtGenomeNode interface. Sequence nodes correspond to singular embedded
FASTA sequences in GFF3 files.

102

Methods

GtGenomeNode* gt_sequence node_new(
)

Create a new GtSequenceNodex representing a FASTA entry with the given
description and sequence. Takes ownership of sequence.

const char* gt_sequence node_get_description(
)

Return the description of sequence_node.

const char* gt_sequence node_get_sequence(
)

Return the sequence of sequence_node.

unsigned long gt_sequence node_get_sequence_length (
)

Return the sequence length of sequence node.

2.78 Class GtSortStream

Implements the GtNodeStream interface. A GtSortStreamn sorts the GtGenomeNode objects it
retrieves from its node source.

Methods

GtNodeStream* gt_sort_stream new()

Create a GtSortStream* which sorts the genome nodes it retrieves from in_stream
and returns them unmodified, but in sorted order.

2.79 Class GtSplitter

The GtSplitter class defines objects which can split given strings into tokens delimited by a
given character, allowing for convenient access to each token.

Methods

GtSplitter* gt_splitter new()
Create a new GtSplitter object.

void gt_splitter_split(
)

Use splitter to split string of given length into tokens delimited by delimiter.
Note that string is modified in the splitting process!

103

charx* gt_splitter_get_tokens()

Return all tokens split by splitter in an array.

char* gt_splitter_get_token/(
)

Return token with number token num from splitter.

void gt_splitter_reset()
Reset the splitter.

unsigned long gt_splitter_size()

Return the number of tokens in splitter.

void gt_splitter_delete()
Delete the splitter.

2.80 Class GtStatStream

Implements the GtNodeStream interface. A GtStatStream gathers statistics about the GtGenomeNode
objects it retrieves from its node source and passes them along unmodified.

Methods

GtNodeStream* gt _stat_stream new(

)

Create a GtStatStream object which gathers statistics about the GtGenomeNode objects
it retrieves from its in_stream and returns them unmodified. Besides the basic statistics,
statistics about the following distributions can be gathered, if the corresponding argu-
ment equals true: gene_length distribution, gene_score_distribution,
exon_length distribution, exon_number_distribution,
intron_length _distribution, cds_length_distribution.

If used_sources equals true, it is recorded which source tags have been encountered.

void gt_stat_stream_show_stats()

Write the statistics gathered by stat_stream to outfp.

2.81 Class GtStr

Objects of the GtStr class are strings which grow on demand.

104

Methods

GtStr* gt_str new()

Return an empty GtStr object.

GtStr* gt_str new_cstr(

)

Return a new GtStr object whose content is set to cstr.

GtStr* gt_str_clone(

Return a clone of str.

GtStr* gt_str_ref()

)

Increase the reference count for str and return it. If str is NULL, NULL is returned

without any side effects.

char* gt_str_get()

void

void

void

void

void

void

void

void

void

void

Return the content of str. Never returns NULL, and the content is always \O-terminated

gt_str_set(
Set the content of str to cstr.

gt_str_append str(
Append the string src to dest.

gt_str_append_cstr(

)

Append the \O-terminated cstr to str.

gt_str_append _cstr nt(
)

Append the (not necessarily \0-terminated) cstr with given length to str.

gt_str_append_char(

Append character c to str.

gt_str_append _double(

)

Append double d to str with given precision.

gt_str_append_ulong(
Append ulong to str.

gt_str_append_int (
Append intval to str.

gt_str_append_uint(
Append uint to str.

gt_str_set_length(

Set length of str to length.
gt_str_length(str).

length must be

105

)

smaller or equal than

void gt_str reset()
Reset str to length 0.

int gt_str_cmp()
Compare strl and str2 and return the result (similar to strcmp (3)).

unsigned long gt_str_length()
Return the length of str. If str is NULL, O is returned.

void gt_str_delete()

Decrease the reference count for str or delete it, if this was the last reference.

2.82 Class GtStrArray

GtStrArrayx* objects are arrays of string which grow on demand.

Methods

GtStrArray* gt_str_array new()
Return a new GtStrArray object.

GtStrArray* gt str_array ref()
Increases the reference to a GtStrArray.

void gt_str_array_add_cstr()

Add cstr to str_array. Thereby, an internal copy of cstr is created.

void gt_str_array_add_cstr nt(
)

Add the non \0-terminated cstr with given length to str_array. Thereby, an internal
copy of cstr is created.

void gt_str_array_add()
Add str to str_array. Thereby, an internal copy of str is created.

const char* gt_str_array_get(
)

Return pointer to internal string with number strnum of str_array. strnum must be
smaller than gt_str_array_size(str_array).

void gt_str_array_set_cstr(
)

Set the string with number strnum in str_array to cstr.

void gt_str_array_set(
)

Set the string with number strnum in str_array to str.

106

void gt_str_array_set_size()

Set the size of str_array to size. size must be smaller or equal than
gt_str_array_size(str_array).

void gt_str_array reset()

Set the size of str_array to 0.

unsigned long gt_str_array_size()

Return the number of strings stored in str_array.

void gt_str_array delete()

Delete str_array.

2.83 Class GtStrand

This enum type defines the possible strands. The following strands are defined: GT_STRAND_FORWARD,
GT_STRAND_REVERSE, GT_STRAND_BOTH, and GT_STRAND_UNKNOWN.

Methods

#define GT_STRAND_CHARS

Use this string to map strand enum types to their corresponding character.

GtStrand gt _strand get()

Map strand char to the corresponding strand enum type. Returns
GT_NUM_OF_STRAND_TYPES if strand_char is not a valid one.

2.84 Class GtStyle

Objects of the GtStyle class hold AnnotationSketch style information like colors, margins,
collapsing options, and others. The class provides methods to set values of various types. Each
value is organized into a section and is identified by a key. That is, a section, key pair must
uniquely identify a value.

Methods
GtStyle* gt_style new()
Creates a new GtStyle object.

GtStyle*x gt_style_ref()

Increments the reference count of the given GtStyle.

void gt_style_unsafe mode()

Enables unsafe mode (“i0” and “os” libraries loaded).

107

void gt_style_safe mode()

Enables safe mode (“i0” and “os” libraries not accessible).

bool gt_style_is unsafe()
Returns true if sty is in unsafe mode.

GtStylex gt_style_clone()
Creates a independent (“deep”) copy of the given GtStyle object.

int gt_style_ load file()
Loads and executes Lua style file with given filename. This file must define a global
table called style.

int gt_style_load_str()

Loads and executes Lua style code from the given GtStr instr. This code must define
a global table called style.

int gt_style_to_str()

Generates Lua code which represents the given GtStyle object and writes it into the
GtStr object outstr.

void gt_style reload()
Reloads the Lua style file.

void gt_style_set_color(
)

Sets a color value in the GtStyle for section section and key to a certain color.

GtStyleQueryStatus gt_style_get_color(

)

Retrieves a color value from style for key key in section section. The color is writ-
ten to the location pointed to by result. Optionally, a feature node pointer £n can be
specified for handling in node-specific callbacks. Because color definitions can be func-
tions, gt_style_get_color() can fail at runtime. In this case, this function returns
GT_STYLE_QUERY_ERROR and err is set accordingly. If the color was not specified
in style, a grey default color is written to result and GT_STYLE_QUERY _NOT_SET
is returned so the caller can provide a custom default. In case of successful retrieval of
an existing color, GT_STYLE_QUERY _OK is returned.

void gt_style_set_str(
)

Set string with key key in section to value.

void gt_style_set num(
)

Set numeric value of key key in section to number.

108

void gt_style_set_bool(
)

Set boolean value of key key in section to val.

void gt_style_unset()
Unset value of key key in section.

void gt_style_delete()
Deletes this style.

2.85 Class GtTagValueMap

A very simple tag/value map absolutely optimized for space (i.e., memory consumption) on the
cost of time. Basically, each read/write access costs O(n) time, whereas n denotes the accumu-
lated length of all tags and values contained in the map. Tags and values cannot have length 0.
The implementation as a char* shines through (also to save one additional memory allocation),
therefore the usage is a little bit different compared to other GenomeTools classes. See the
implementation of gt_tag value map_example () for an ussage example.

Methods

GtTagValueMap gt_tag-value map_new()
Return a new GtTagValueMap object which stores the given tag/value pair.

void gt_tag value map_add(
)

Add tag/value pair to tag_value map. tag-value map must not contain the given
tag already!

void gt_tag value map set(
)

Set the given tag in tag_value map to value.

const char* gt_tag value map_get(
)

Return value corresponding to tag from tag value map. If tag value map does not
contain such a value, NULL is returned.

void gt_tag value map_remove(
)

Removes the given tag from tag value map. tag value map must contain the given
tag already!

109

void gt_tag value map_foreach(

)
Apply iterator_func to each tag/value pair contained in tag value map and pass
data along.
int gt_tag value_map_example()
Implements an example useage of a tag/value map.
void gt_tag value map _delete()

Delete tag_value_map.

2.86 Class GtTextWidthCalculator

The GtTextWidthCalculator interface answers queries w.r.t. text width in a specific drawing
backend. This interface is needed to do proper line breaking in a GtLayout even if there is no
GtCanvas or GtGraphics created yet.

Methods

GtTextWidthCalculator* gt_text_width_calculator_ref ()
Increases the reference count of the GtTextWidthCalculator.

double gt_text_width_calculator_get_text width(
)
Requests the width of text from the GtTextWidthCalculator. If the returned value
is negative, an error occurred. Otherwise, a positive double value is returned.

void gt_text_width_calculator_delete()
Deletes a GtTextWidthCalculator instance.

2.87 Class GtTextWidthCalculatorCairo

Implements the GtTextWidthCalculator interface with Cairo as the drawing backend. If text

width is to be calculated with regard to a specific transformation etc. which is in effect in a

cairo_t and which should be used later via a GtCanvasCairoContext, create a GtTextWidthCalculatorCairo
object and pass it to the GtLayout via gt _layout_new_with_twc ().

Methods

GtTextWidthCalculator* gt_text_width_calculator_cairo_new(
)
Creates a new GtTextWidthCalculatorCairo object for the given context using the
text size options given in the GtStyle. If the GtStyle is NULL, the current font settings
in the cairo_t will be used for all text width calculations.

110

2.88 Class GtTimer

The GtTimer class encapsulates a timer which can be used for run-time measurements.

Methods

GtTimer* gt timer new()

Return a new GtTimer object.

GtTimer* gt_timer new with progress_description()

void

void

void

void

void

void

void

void

void

Return a new GtTimer object with the first description.

gt_timer_start()
Start the time measurement on t.

gt_timer_stop()
Stop the time measurement on t.

gt_timer_show()

Output the current state of t in the format ”’pointer £p (see gt _timer_show_formatted).
The timer is then stopped.

gt_timer_show formatted()

Output the current state of t in a user-defined format given by fmt. fmt must be a format
string for four elapsed seconds, elapsed microseconds, used usertime in seconds, system
time in seconds. The output is written to fp.

gt_timer_show_progress ()

Output the current state of t on fp since the last call of gt_timer_show_progress()
or the last start of t, along with the current description. The timer is not stopped, but
updated with desc to be the next description.

gt_timer_show_progress_final()

Output the overall time measured with t from start to now on fp.

gt_timer_show_cpu_time by progress()

Show also user and sys time in output of gt_timer_show_progress[_final]

gt_timer omit_last_stage()
Hide output of last stage time in gt_timer_show_progress_final

gt_timer_delete()
Delete t.

111

2.89 Class GtTransTable

GtStrArray* gt_trans_table_get_scheme descriptions()

Returns a GtStrArray of translation scheme descriptions, each of the format
“gt_translator_set_translation_scheme () and the string is the scheme name.

GtTransTablex gt_trans_table new()
Returns a translation table as given by scheme which refers to the numbers as reported
by gt_translator_get_translation_table descriptions() or the list given at
the NCBI web site http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. Returns
NULL if an error occurred, see err for details.

GtTransTablex gt_trans_table new_standard()
Returns the standard translation table.

const char* gt_trans_ table description()

Returns the description of tt.

int gt_trans_table_translate_codon(
)
Writes the translation for the codon c1,c2,c3 to the position pointed to by amino. The
current translation scheme set in translator is used. Returns a negative value if an
error occurred, see err for details. Otherwise, O is returned.
void gt_trans_table_delete()
Deletes tt.

2.90 Class GtTranslator

The GtTranslator can be used to produce 3-frame translations of DNA sequences via an iter-
ator interface.

Methods

GtTranslator* gt_translator new with_table(
)

Creates a new GtTranslator, starting its translation at the current position of ci. The
current reading frame is also taken from the state of ci. The translation table tt is used.

GtTranslator* gt_translator new()

Creates a new GtTranslator, starting its translation at the current position of ci. The
current reading frame is also taken from the state of ci. The standard translation table is
used.

void gt_translator_set_codon_iterator(
)

Reinitializes translator with the position and frame status as given in ci.

112

void gt_translator_set_translation_table(
)

Selects the translation scheme in translator to the one identified by translation table
tt.

GtTranslatorStatus gt_translator_ next(
)

Returns the translation of the next codon. The currently translated character is
put in translated while the current reading frame is put in frame. Returns
GT_TRANSLATOR_ERROR if an error occurred, see err for details. If the end of the
sequence region to translate has been reached, GT_TRANSLATOR_END is returned.
Otherwise, GT_TRANSLATOR _OK (equal to 0) is returned.

GtTranslatorStatus gt_translator_find_startcodon(
)

Moves the translator to the beginning of the first codon in dnaseq (of length dnalen)
which is a start codon according to the selected translation scheme in translator. The
offset is written to the location pointed to by pos. Returns GT_TRANSLATOR_ERROR
if an error occurred, see err for details. If the end of the sequence region to scan has been
reached without finding a start codon, GT_TRANSLATOR _END is returned. Otherwise,
GT_TRANSLATOR _OK (equal to 0) is returned.

GtTranslatorStatus gt_translator_find stopcodon(
)

Moves the translator to the beginning of the first codon in dnaseq (of length dnalen)
which is a stop codon according to the selected translation scheme in translator. The
offset is written to the location pointed to by pos. Returns GT_-TRANSLATOR_ERROR
if an error occurred, see err for details. If the end of the sequence region to scan has been
reached without finding a stop codon, GT_TRANSLATOR_END is returned. Otherwise,
GT_TRANSLATOR_OK (equal to 0) is returned.

GtTranslatorStatus gt_translator_find_codon(
)

Moves the translator to the beginning of the first codon in dnaseq (of length dnalen)
which belongs to the set of codons specified in codons. The offset is written to
the location pointed to by pos. Returns GT_.TRANSLATOR_ERROR if an error oc-
curred, see err for details. If the end of the sequence region to scan has been reached
without finding one of the codons, GT_TRANSLATOR_END is returned. Otherwise,
GT_TRANSLATOR _OK (equal to 0) is returned.

void gt_translator_delete()
Delete translator.

113

2.91 Class GtTypeChecker

The GtTypeChecker interface, allows one to check the validity of (genome feature) types.

Methods

GtTypeChecker* gt_type_checker_ref ()
Increase the reference count for type_checker and return it.

bool gt_type_checker_is_valid(
)

Return true if type is a valid type for the given type_checker, false otherwise.

void gt_type_checker_delete()
Decrease the reference count for type_checker or delete it, if this was the last reference.

2.92 Class GtTypeCheckerOBO

Implements the GtTypeChecker interface with types from an OBO file.

Methods

GtTypeChecker* gt_type_checker_obo new(
)
Create a new GtTypeChecker* for OBO file with given obo_file_path. If the OBO
file cannot be parsed correctly, NULL is returned and err is set correspondingly.

2.93 Class GtUnigStream

Implements the GtNodeStream interface. A GtUniqStrean filters out repeated features it re-
trieves from its node source.

Methods

GtNodeStream* gt _uniq_stream new()

Create a GtUnigStream object which filters out repeated feature node graphs it retrieves
from the sorted in_stream and return all other nodes. Two feature node graphs are con-
sidered to be repeated if they have the same depth-first traversal and each corresponding
feature node pair is similar according to the gt _feature node_is_similar () method.
For such a repeated feature node graph the one with the higher score (of the top-level
feature) is kept. If only one of the feature node graphs has a defined score, this one is
kept.

114

2.94 Class GtVisitorStream

Implements the GtNodeStream interface.

Methods

GtNodeStream* gt _visitor_stream new(
)

Create a new GtVisitorStreamx*, takes ownership of node visitor. This stream
applies node_visitor to each node which passes through it. Can be used to implement
all streams with such a functionality.

2.95 Module Array2dim

#define gt _array2dim malloc()

Allocates a new 2-dimensional array with dimensions ROWS x COLUMNS and assigns a
pointer to the newly allocated space to ARRAY2DIM. The size of each element is deter-
mined automatically from the type of the ARRAY2DIM pointer.

#define gt_array2dim calloc()

Allocates a new 2-dimensional array with dimensions ROWS x COLUMNS and assigns a
pointer to the newly allocated space to ARRAY2DIM. The allocated space is initialized to
be filled with zeroes. The size of each element is determined automatically from the type
of the ARRAY2DIM pointer.

int gt_array2dim_example ()
An example for usage of the Array2dim module.

#define gt_array2dim delete()
Frees the space allocated for the 2-dimensional array pointed to by ARRAY2DIM.

2.96 Module Assert

#define gt_assert()
The gt_assert () macro tests the given expression and if it is false, the calling pro-
cess is terminated. A diagnostic message is written to stderr and the exit (3) func-
tion is called (with error code 2 as argument), effectively terminating the program. If
expression is true, the gt_assert () macro does nothing.

115

2.97 Module Bsearch

void* gt _bsearch data(
)
Similar interface to bsearch(3), except that the GtCompareWithData function gets an
additional data pointer.

void gt_bsearch_all(
)
Similar interface togt_bsearch _data(), except that all members which compare as
equal are stored in the members array. The order in which the elements are added is
undefined.

void gt_bsearch_all mark(

)

Similar interface togt _bsearch_all (). Additionally, if a bittab is given (which must be
of size nmemb), the bits corresponding to the found elements are marked (i.e., set).

2.98 Module Countingsort

void gt_countingsort(

)

Sort the array of elements pointed to by in containing size many elements of size
elem size and store the result in the array out of the same size. max_elemvalue
denotes the maximum value an element can have. get_elemvalue should return an
integer value for the given element elem.

Implements the counting sort algorithm. For a description see for example page 175 to
page 177 of the book:

T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. MIT Press:
Cambridge, MA, 1990.

unsigned long gt_countingsort_get max(

)

If max_elemvalue is not known, it can be determined with this function.

116

2.99 Module Cstr

char* gt_cstr_dup()
Creates a duplicate of string cstr using the GenomeTools memory allocator.

char** gt _cstr_split()
Splits the \O-terminated cstr at all positions where sep occurs and returns a C string
array in which each element is a separate string between the occurrences of sep. The
string array is terminated by NULL. The caller is responsible to free the result.

char* gt_cstr_dup nt()
Creates a duplicate of string cstr using the GenomeTools memory allocator. The string
needs not be \O-terminated, instead its Length must be given.

void gt _cstr_rep()
Replace each occurence of f in cstr to t.

void gt_cstr_show()
Outputs the first length characters of the string cstr to file pointer outfp.

unsigned long gt_cstr_length up_to_char()

Returns the length of the prefix of cstr ending just before c, if cstr does not contain c,
strlen(cstr) is returned.

charx gt_cstr_rtrim()
Removes all occurrences of remove from the right end of cstr.

2.100 Module Endianess

bool gt_is_little_endian()
Returns true if host CPU is little-endian, false otherwise.

2.101 Module Fileutils

bool gt file exists()
Returns true if the file with the given path exists, false otherwise.

bool gt file is newer()

Returns true if the file with path a has a later modification time than the file with path b,
false otherwise.

unsigned long gt_file number_of _lines()

Returns the number of lines in a file.

117

const char* gt file suffix()

2999

Returns the suffix of path, if there is any. Returns ”” otherwise. The suffix is the part
after and including the last °." but after the last ’/°. Except if path ends with ”.gz” or
”.bz2”, then the suffix is the part after and including the second last ’.’.

void gt_file dirname ()
Set path to the dirname of file, if it has one, to ”” otherwise.
int gt_file find in path()

Find file in PAT H,ifithasnodirname;setpathtodirnameotherwise.Setspathtotheemptystringiffilecoulc

int gt file find in env(
)

Find file in the ’:’-separated directory list specified in environment variable

env, ifithasnodirname; setpathtodirnameotherwise.Setspathtotheemptystringiffilecouldnotbe foundine
off t gt file estimate_size()

Return the (estimated) size of file. If file is uncompressed, the exact size is returned.

If file is compressed, an estimation which assumes that ile contains a DNA sequence

is returned.
off t gt files_estimate_total_size()

Return the (estimated) total size of all files given in filenames. Uses
gt_file_estimate_size().

int gt files_guess_if protein_sequences(
)

Guesse if the sequences contained in the files given in filenames are protein sequences.
Returns 1 if the guess is that the files contain protein sequences. Returns O if the guess
is that the files contain DNA sequences. Returns -1 if an error occurs while reading the
files (err is set accordingly).

2.102 Module FunctionPointer

int (*GtCompare) (const void *a, const void *b)

Functions of this type return less than O if a is smaller than b, 0 if a is equal to b, and
greater 0 if a is larger than b. Thereby, the operators smaller, equal, and larger are
implementation dependent. Do not count on these functions to return -1, 0, or 1!

int (*GtCompareWithData) (const void#*, const void*, void *data)

Similar to GtCompare, but with an additional data pointer.

void (*GtFree) (voidx*)

The generic free function pointer type.

118

2.103 Module Grep

int gt_grep()
Set match to true if pattern matches line, to false otherwise.

2.104 Module Init

void gt_lib_init()
Initialize this GenomeTools library instance. This has to be called before the library is
used!

void gt_lib_reg atexit_func()

Registers exit function which calls gt _1ib_clean() at exit.

int gt_lib_clean()

Returns 0 if no memory map, file pointer, or memory has been leaked and a value !=0
otherwise.

2.105 Module Log

void gt_log enable()
Enable logging.

bool gt_log enabled()
Returns true if logging is enabled, false otherwise

void gt _log log()
Prints the log message obtained from format and following parameters according if log-
ging is enabled. The logging output is prefixed with the string ”debug: ” and finished by
a newline.

void gt _log vlog()
Prints the log message obtained from format and following parameter accord-
ing to if logging is enabled analog togt_-log_-log(). But in contrast to
gt_log_-log()gt_log_vlog() does not accept individual arguments but a single va_list
argument instead.

FILE* gt log fp()
Return logging file pointer.

void gt_log_set_fp()
Set logging file pointer to fp.

119

2.106 Module MemoryAllocation

#define gt malloc()

Allocate uninitialized space for an object whose size is specified by size and return it.
Besides the fact that it never returns NULL analog to malloc(3).

#define gt _calloc()
Allocate contiguous space for an array of nmemb objects, each of whose size is size.
The space is initialized to zero. Besides the fact that it never returns NULL analog to
calloc(3).

#define gt _realloc()
Change the size of the object pointed to by ptr to size bytes and return a pointer
to the (possibly moved) object. Besides the fact that it never returns NULL analog to
realloc(3).

#define gt free(ptr)
Free the space pointed to by ptr. If ptr equals NULL, no action occurs. Analog to
free(3).

void gt _free func()
Analog to gt_free (), but usable as a function pointer.

2.107 Module Msort

void gt msort()

Sorts an array of nmemb elements, each of size size, according to compare function
compar. Uses the merge sort algorithm, the interface equals gsort (3).

void gt msort_r(
)

Identical to gt _msort () except that the compare function is of GtCompareWithData
type accepting comparinfo as arbitrary data.

120

2.108 Module POSIX

char* gt _basename ()

This module implements the functiongt_basename() according to the specifi-
cations in http://www.unix-systems.org/onlinepubs/7908799/xsh/basename.html and
http://www.opengroup.org/onlinepubs/009695399/

gt_basename () is equivalent to the function basename(3) which is available on most
unix systems, but in different libraries and with slightly different functionality.
gt_basename () takes the pathname pointed to by path and returns a pointer to the final
component of the pathname, deleting any trailing ’/’ characters.

If path consists entirely of the °/* character, thengt_basename () returns a pointer to the
string /7.

If path is a null pointer or points to an empty string,gt_basename () returns a pointer
to the string ..

See the implementation ofgt_basename unit_test () for additional examples.
The caller is responsible for freeing the received pointer!

2.109 Module Parseutils

int

int

int

int

int

int

gt_parse_int()

Parse integer from nptr and store result in out. Returns 0 upon success and -1 upon
failure.

gt_parse_uint()

Parse unsigned integer from nptr and store result in out. Returns 0 upon success and -1
upon failure.

gt _parse_long/()

Parse long from nptr and store result in out. Returns O upon success and -1 upon failure.

gt_parse_ulong()

Parse unsigned long from nptr and store result in out. Returns O upon success and -1
upon failure.

gt_parse_double()

Parse double from nptr and store result in out. Returns O upon success and -1 upon
failure.

gt_parse_range(

)

Parse a range given by start and end, writing the result into rng. Enforces that start
is smaller or equal than end. Give filename and line number for error reporting.
Returns 0 upon success and -1 upon failure.

121

int gt_parse_range tidy(
)

Like gt_parse_range, but issues a warning if start is larger then end and swaps both
values. It also issues a warning, if start and/or end is not-positive and sets the corre-
sponding value to 1.

void gt_fasta show_entry(
)

Print a fasta entry with optional description and mandatory sequence to outfp. If
width is != 0 the sequence is formatted accordingly.

2.110 Module Qsort

void gt_gsort_r(
)

Like qgsort(3), but allows an additional data pointer passed to the
GtCompareWithData comparison function cmp.

2.111 Module Strcmp

int gt _strcmp()

Returns 0 if s1 == s2, otherwise the equivalent of strcmp(s1,s2). Useful as a perfor-
mance improvement in some cases (for example, to compare symbols).

2.112 Module Symbol

const char* gt_symbol()

Return a symbol (a canonical representation) for cstr. An advantage of symbols is that
they can be compared for equality by a simple pointer comparison, rather than using
strcmp () (as it is done in gt_strcmp ()). Furthermore, a symbol is stored only once in
memory for equal cstrs, but keep in mind that this memory can never be freed safely
during the lifetime of the calling program. Therefore, it should only be used for a small
set of cstrs.

2.113 Module Undef

#define GT_UNDEF_BOOL

The undefined bool value.
#define GT_UNDEF_CHAR

The undefined char value.

122

#define GT_UNDEF_DOUBLE
The undefined double value.
#define GT_UNDEF_FLOAT
The undefined float value.
#define GT_UNDEF_INT
The undefined int value.
#define GT_UNDEF_LONG
The undefined long value.
#define GT_UNDEF_UCHAR
The undefined <unsigned char> value.
#define GT_UNDEF _UINT
The undefined <unsigned int> value.
#define GT_UNDEF_ULONG
The undefined <unsigned long> value.

2.114 Module Unused

#define GT_UNUSED

Unused function arguments should be annotated with this macro to get rid of compiler
warnings.

2.115 Module Version

const char* gt_version_check(
)
Check that the GenomeTools library in use is compatible with the given version. Gen-
erally you would pass in the constants GT_MAJOR_VERSION, GT_MINOR_VERSION, and
GT_MICRO_VERSION as the three arguments to this function.
Returns NULL if the GenomeTools library is compatible with the given version, or a string
describing the version mismatch, if the library is not compatible.

2.116 Module Warning

void (*GtWarningHandler) (void *data, const char *format, va_list ap)
Handler type used to process warnings.

void gt_warning()

Print a warning according to format and . . ., if a handler is set.

123

void gt _warning disable()

Disable that warnings are shown. That is, subsequent gt _warning() calls have no effect.

void gt_warning set_handler()

Set warn_handler to handle all warnings issued with gt_warning(). The data is
passed to warning _handler on each invocation.

void gt_warning default_handler(
)

The default warning handler which prints on stderr. “warning: ” is prepended and a
newline is appended to the message defined by format and ap. Does not use data.

GtWarningHandler gt warning get_handler ()
Return currently used GtWarningHandler.

void* gt warning get data()
Return currently used data which is passed to the currently used GtWarningHandler.

2.117 Module XANSI

void gt _xatexit()
Similar to atexit (3), terminates on error.

void gt_xfclose()
Similar to fclose (3), terminates on error.

void gt xfflush()
Similar to ff1ush(3), terminates on error.

int gt xfgetc()
Similar to fgetc (3), terminates on error.

char* gt xfgets()
Similar to fgets(3), terminates on error.

void gt xfgetpos()
Similar to fgetpos (3), terminates on error.

FILE* gt xfopen()
Similar to fopen(3), terminates on error.

void gt xfputc()
Similar to fputc(3), terminates on error.

void gt_xfputs()
Similar to fputs (3), terminates on error.

124

size t gt xfread(

Similar to fread (3), terminates on error.

#define gt _xfread one()
shortcut to gt_xfread

void gt xfseek(
Similar to fseek (3), terminates on error.

void gt_xfsetpos()
Similar to fsetpos(3), terminates on error.

void gt xfwrite(

Similar to fwrite (3), terminates on error.

#define gt xfwrite_one()

shortcut to gt_xfwrite

void gt _xputchar(int)
Similar to putchar (3), terminates on error.

void gt xputs()
Similar to puts(3), terminates on error.

void gt _xremove ()

Similar to remove (3), terminates on error.

void gt _xungetc()
Similar to ungetc(3), terminates on error.

void gt xvfprintf (
Similar to vEprintf (3), terminates on error.

int gt xvsnprintf (
Similar to vsnprintf (3), terminates on error.

125

	AnnotationSketch
	Overview
	Phase 1: Feature selection
	Phase 2: Layout
	Phase 3: Rendering
	Collapsing
	Styles

	The gt sketch tool
	Dynamic track assignment
	Default: Top level type decides track membership
	Track selector functions

	Custom tracks
	Anatomy of a custom track class
	Writing an example custom track

	Examples
	Using AnnotationSketch to draw annotations from a file
	Using AnnotationSketch to draw user-generated annotations

	API Reference
	Sole functions
	Class GtAddIntronsStream
	Class GtAlphabet
	Class GtAnnoDBSchema
	Class GtArray
	Class GtArrayOutStream
	Class GtBEDInStream
	Class GtBittab
	Class GtBlock
	Class GtCDSStream
	Class GtCSAStream
	Class GtCanvas
	Class GtCanvasCairoContext
	Class GtCanvasCairoFile
	Class GtCodonIterator
	Class GtColor
	Class GtCommentNode
	Class GtCstrTable
	Class GtCustomTrack
	Class GtCustomTrackGcContent
	Class GtCustomTrackScriptWrapper
	Class GtDiagram
	Class GtDlist
	Class GtDlistelem
	Class GtEOFNode
	Class GtEncseq
	Class GtEncseqBuilder
	Class GtEncseqEncoder
	Class GtEncseqLoader
	Class GtEncseqReader
	Class GtError
	Class GtExtractFeatureStream
	Class GtFeatureIndex
	Class GtFeatureIndexMemory
	Class GtFeatureNode
	Class GtFeatureNodeIterator
	Class GtFile
	Class GtGFF3InStream
	Class GtGFF3OutStream
	Class GtGFF3Parser
	Class GtGFF3Visitor
	Class GtGTFInStream
	Class GtGTFOutStream
	Class GtGenomeNode
	Class GtGraphics
	Class GtHashmap
	Class GtIDToMD5Stream
	Class GtImageInfo
	Class GtInterFeatureStream
	Class GtIntervalTree
	Class GtIntervalTreeNode
	Class GtLayout
	Class GtLogger
	Class GtMD5ToIDStream
	Class GtMatchBlast
	Class GtMatchIterator
	Class GtMatchLAST
	Class GtMatchOpen
	Class GtMatchSW
	Class GtMergeFeatureStream
	Class GtMergeStream
	Class GtMetaNode
	Class GtNodeStream
	Class GtNodeStreamClass
	Class GtNodeVisitor
	Class GtOption
	Class GtOptionParser
	Class GtPhase
	Class GtQueue
	Class GtRDBVisitor
	Class GtRange
	Class GtReadmode
	Class GtRecMap
	Class GtRegionMapping
	Class GtRegionNode
	Class GtSelectStream
	Class GtSequenceNode
	Class GtSortStream
	Class GtSplitter
	Class GtStatStream
	Class GtStr
	Class GtStrArray
	Class GtStrand
	Class GtStyle
	Class GtTagValueMap
	Class GtTextWidthCalculator
	Class GtTextWidthCalculatorCairo
	Class GtTimer
	Class GtTransTable
	Class GtTranslator
	Class GtTypeChecker
	Class GtTypeCheckerOBO
	Class GtUniqStream
	Class GtVisitorStream
	Module Array2dim
	Module Assert
	Module Bsearch
	Module Countingsort
	Module Cstr
	Module Endianess
	Module Fileutils
	Module FunctionPointer
	Module Grep
	Module Init
	Module Log
	Module MemoryAllocation
	Module Msort
	Module POSIX
	Module Parseutils
	Module Qsort
	Module Strcmp
	Module Symbol
	Module Undef
	Module Unused
	Module Version
	Module Warning
	Module XANSI

