[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]

splineimageview.hxx
1/************************************************************************/
2/* */
3/* Copyright 1998-2004 by Ullrich Koethe */
4/* */
5/* This file is part of the VIGRA computer vision library. */
6/* The VIGRA Website is */
7/* http://hci.iwr.uni-heidelberg.de/vigra/ */
8/* Please direct questions, bug reports, and contributions to */
9/* ullrich.koethe@iwr.uni-heidelberg.de or */
10/* vigra@informatik.uni-hamburg.de */
11/* */
12/* Permission is hereby granted, free of charge, to any person */
13/* obtaining a copy of this software and associated documentation */
14/* files (the "Software"), to deal in the Software without */
15/* restriction, including without limitation the rights to use, */
16/* copy, modify, merge, publish, distribute, sublicense, and/or */
17/* sell copies of the Software, and to permit persons to whom the */
18/* Software is furnished to do so, subject to the following */
19/* conditions: */
20/* */
21/* The above copyright notice and this permission notice shall be */
22/* included in all copies or substantial portions of the */
23/* Software. */
24/* */
25/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
26/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
27/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
28/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
29/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
30/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
31/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
32/* OTHER DEALINGS IN THE SOFTWARE. */
33/* */
34/************************************************************************/
35
36#ifndef VIGRA_SPLINEIMAGEVIEW_HXX
37#define VIGRA_SPLINEIMAGEVIEW_HXX
38
39#include "mathutil.hxx"
40#include "recursiveconvolution.hxx"
41#include "splines.hxx"
42#include "array_vector.hxx"
43#include "basicimage.hxx"
44#include "copyimage.hxx"
45#include "tinyvector.hxx"
46#include "fixedpoint.hxx"
47#include "multi_array.hxx"
48
49namespace vigra {
50
51/********************************************************/
52/* */
53/* SplineImageView */
54/* */
55/********************************************************/
56/** \brief Create a continuous view onto a discrete image using splines.
57
58 This class is very useful if image values or derivatives at arbitrary
59 real-valued coordinates are needed. Access at such coordinates is implemented by
60 interpolating the given discrete image values with a spline of the
61 specified <tt>ORDER</TT>. Continuous derivatives are available up to
62 degree <tt>ORDER-1</TT>. If the requested coordinates are near the image border,
63 reflective boundary conditions are applied. In principle, this class can also be used
64 for image resizing, but here the functions from the <tt>resize...</tt> family are
65 more efficient, since they exploit the regularity of the sampling grid.
66
67 The <tt>SplineImageView</tt> template is explicitly specialized to make it as efficient as possible.
68 In particular, unnecessary copying of the image is avoided when the iterators passed
69 in the constructor originate from a \ref vigra::BasicImage. In addition, these specializations
70 provide function <tt>unchecked(...)</tt> that do not perform bounds checking. If the original image
71 is not a variant of \ref vigra::BasicImage, one can customize the internal representation by
72 using \ref vigra::SplineImageView0 or \ref vigra::SplineImageView1.
73
74 <b>Usage:</b>
75
76 <b>\#include</b> <vigra/splineimageview.hxx><br>
77 Namespace: vigra
78
79 \code
80 BImage img(w,h);
81 ... // fill img
82
83 // construct spline view for quadratic interpolation
84 SplineImageView<2, double> spi2(srcImageRange(img));
85
86 double x = ..., y = ...;
87 double v2 = spi2(x, y);
88
89 // construct spline view for linear interpolation
90 SplineImageView<1, UInt32> spi1(srcImageRange(img));
91
92 UInt32 v1 = spi1(x, y);
93
94 FixedPoint<16, 15> fx(...), fy(...);
95 UInt32 vf = spi1.unchecked(fx, fy); // caller is sure that (fx, fy) are valid coordinates
96 \endcode
97*/
98template <int ORDER, class VALUETYPE>
100{
101 typedef typename NumericTraits<VALUETYPE>::RealPromote InternalValue;
102
103 public:
104
105 /** The view's value type (return type of access and derivative functions).
106 */
108
109 /** The view's squared norm type (return type of g2() etc.).
110 */
111 typedef typename NormTraits<VALUETYPE>::SquaredNormType SquaredNormType;
112
113 /** The view's size type.
114 */
116
117 /** The view's difference type.
118 */
120
121 /** The order of the spline used.
122 */
123 enum StaticOrder { order = ORDER };
124
125 /** The type of the internal image holding the spline coefficients.
126 */
128
129 private:
131 typedef typename InternalTraverser::row_iterator InternalRowIterator;
132 typedef typename InternalTraverser::column_iterator InternalColumnIterator;
134
135 enum { ksize_ = ORDER + 1, kcenter_ = ORDER / 2 };
136
137 public:
138
139 /** Construct SplineImageView for a 2D MultiArrayView.
140
141 If <tt>skipPrefiltering = true</tt> (default: <tt>false</tt>), the recursive
142 prefilter of the cardinal spline function is not applied, resulting
143 in an approximating (smoothing) rather than interpolating spline. This is
144 especially useful if customized prefilters are to be applied.
145 */
146 template <class U, class S>
148 : w_(s.shape(0)), h_(s.shape(1)), w1_(w_-1), h1_(h_-1),
149 x0_(kcenter_), x1_(w_ - kcenter_ - 2), y0_(kcenter_), y1_(h_ - kcenter_ - 2),
150 image_(w_, h_),
151 x_(-1.0), y_(-1.0),
152 u_(-1.0), v_(-1.0)
153 {
154 copyImage(srcImageRange(s), destImage(image_));
156 init();
157 }
158
159 /** Construct SplineImageView for an image given by \ref ImageIterators and \ref DataAccessors.
160
161 If <tt>skipPrefiltering = true</tt> (default: <tt>false</tt>), the recursive
162 prefilter of the cardinal spline function is not applied, resulting
163 in an approximating (smoothing) rather than interpolating spline. This is
164 especially useful if customized prefilters are to be applied.
165 */
166 template <class SrcIterator, class SrcAccessor>
168 : w_(iend.x - is.x), h_(iend.y - is.y), w1_(w_-1), h1_(h_-1),
169 x0_(kcenter_), x1_(w_ - kcenter_ - 2), y0_(kcenter_), y1_(h_ - kcenter_ - 2),
170 image_(w_, h_),
171 x_(-1.0), y_(-1.0),
172 u_(-1.0), v_(-1.0)
173 {
174 copyImage(srcIterRange(is, iend, sa), destImage(image_));
176 init();
177 }
178
179 /** Construct SplineImageView for an image given by \ref ArgumentObjectFactories.
180
181 If <tt>skipPrefiltering = true</tt> (default: <tt>false</tt>), the recursive
182 prefilter of the cardinal spline function is not applied, resulting
183 in an approximating (smoothing) rather than interpolating spline. This is
184 especially useful if customized prefilters are to be applied.
185 */
186 template <class SrcIterator, class SrcAccessor>
188 : w_(s.second.x - s.first.x), h_(s.second.y - s.first.y), w1_(w_-1), h1_(h_-1),
189 x0_(kcenter_), x1_(w_ - kcenter_ - 2), y0_(kcenter_), y1_(h_ - kcenter_ - 2),
190 image_(w_, h_),
191 x_(-1.0), y_(-1.0),
192 u_(-1.0), v_(-1.0)
193 {
194 copyImage(srcIterRange(s.first, s.second, s.third), destImage(image_));
196 init();
197 }
198
199 /** Access interpolated function at real-valued coordinate <tt>(x, y)</tt>.
200 If <tt>(x, y)</tt> is near the image border or outside the image, the value
201 is calculated with reflective boundary conditions. An exception is thrown if the
202 coordinate is outside the first reflection.
203 */
204 value_type operator()(double x, double y) const;
205
206 /** Access derivative of order <tt>(dx, dy)</tt> at real-valued coordinate <tt>(x, y)</tt>.
207 If <tt>(x, y)</tt> is near the image border or outside the image, the value
208 is calculated with reflective boundary conditions. An exception is thrown if the
209 coordinate is outside the first reflection.
210 */
211 value_type operator()(double x, double y, unsigned int dx, unsigned int dy) const;
212
213 /** Access 1st derivative in x-direction at real-valued coordinate <tt>(x, y)</tt>.
214 Equivalent to <tt>splineView(x, y, 1, 0)</tt>.
215 */
216 value_type dx(double x, double y) const
217 { return operator()(x, y, 1, 0); }
218
219 /** Access 1st derivative in y-direction at real-valued coordinate <tt>(x, y)</tt>.
220 Equivalent to <tt>splineView(x, y, 0, 1)</tt>.
221 */
222 value_type dy(double x, double y) const
223 { return operator()(x, y, 0, 1); }
224
225 /** Access 2nd derivative in x-direction at real-valued coordinate <tt>(x, y)</tt>.
226 Equivalent to <tt>splineView(x, y, 2, 0)</tt>.
227 */
228 value_type dxx(double x, double y) const
229 { return operator()(x, y, 2, 0); }
230
231 /** Access mixed 2nd derivative at real-valued coordinate <tt>(x, y)</tt>.
232 Equivalent to <tt>splineView(x, y, 1, 1)</tt>.
233 */
234 value_type dxy(double x, double y) const
235 { return operator()(x, y, 1, 1); }
236
237 /** Access 2nd derivative in y-direction at real-valued coordinate <tt>(x, y)</tt>.
238 Equivalent to <tt>splineView(x, y, 0, 2)</tt>.
239 */
240 value_type dyy(double x, double y) const
241 { return operator()(x, y, 0, 2); }
242
243 /** Access 3rd derivative in x-direction at real-valued coordinate <tt>(x, y)</tt>.
244 Equivalent to <tt>splineView(x, y, 3, 0)</tt>.
245 */
246 value_type dx3(double x, double y) const
247 { return operator()(x, y, 3, 0); }
248
249 /** Access 3rd derivative in y-direction at real-valued coordinate <tt>(x, y)</tt>.
250 Equivalent to <tt>splineView(x, y, 0, 3)</tt>.
251 */
252 value_type dy3(double x, double y) const
253 { return operator()(x, y, 0, 3); }
254
255 /** Access mixed 3rd derivative dxxy at real-valued coordinate <tt>(x, y)</tt>.
256 Equivalent to <tt>splineView(x, y, 2, 1)</tt>.
257 */
258 value_type dxxy(double x, double y) const
259 { return operator()(x, y, 2, 1); }
260
261 /** Access mixed 3rd derivative dxyy at real-valued coordinate <tt>(x, y)</tt>.
262 Equivalent to <tt>splineView(x, y, 1, 2)</tt>.
263 */
264 value_type dxyy(double x, double y) const
265 { return operator()(x, y, 1, 2); }
266
267 /** Access interpolated function at real-valued coordinate <tt>d</tt>.
268 Equivalent to <tt>splineView(d[0], d[1])</tt>.
269 */
271 { return operator()(d[0], d[1]); }
272
273 /** Access derivative of order <tt>(dx, dy)</tt> at real-valued coordinate <tt>d</tt>.
274 Equivalent to <tt>splineView(d[0], d[1], dx, dy)</tt>.
275 */
276 value_type operator()(difference_type const & d, unsigned int dx, unsigned int dy) const
277 { return operator()(d[0], d[1], dx, dy); }
278
279 /** Access 1st derivative in x-direction at real-valued coordinate <tt>d</tt>.
280 Equivalent to <tt>splineView.dx(d[0], d[1])</tt>.
281 */
283 { return dx(d[0], d[1]); }
284
285 /** Access 1st derivative in y-direction at real-valued coordinate <tt>d</tt>.
286 Equivalent to <tt>splineView.dy(d[0], d[1])</tt>.
287 */
289 { return dy(d[0], d[1]); }
290
291 /** Access 2nd derivative in x-direction at real-valued coordinate <tt>d</tt>.
292 Equivalent to <tt>splineView.dxx(d[0], d[1])</tt>.
293 */
295 { return dxx(d[0], d[1]); }
296
297 /** Access mixed 2nd derivative at real-valued coordinate <tt>d</tt>.
298 Equivalent to <tt>splineView.dxy(d[0], d[1])</tt>.
299 */
301 { return dxy(d[0], d[1]); }
302
303 /** Access 2nd derivative in y-direction at real-valued coordinate <tt>d</tt>.
304 Equivalent to <tt>splineView.dyy(d[0], d[1])</tt>.
305 */
307 { return dyy(d[0], d[1]); }
308
309 /** Access 3rd derivative in x-direction at real-valued coordinate <tt>d</tt>.
310 Equivalent to <tt>splineView.dx3(d[0], d[1])</tt>.
311 */
313 { return dx3(d[0], d[1]); }
314
315 /** Access 3rd derivative in y-direction at real-valued coordinate <tt>d</tt>.
316 Equivalent to <tt>splineView.dy3(d[0], d[1])</tt>.
317 */
319 { return dy3(d[0], d[1]); }
320
321 /** Access mixed 3rd derivative dxxy at real-valued coordinate <tt>d</tt>.
322 Equivalent to <tt>splineView.dxxy(d[0], d[1])</tt>.
323 */
325 { return dxxy(d[0], d[1]); }
326
327 /** Access mixed 3rd derivative dxyy at real-valued coordinate <tt>d</tt>.
328 Equivalent to <tt>splineView.dxyy(d[0], d[1])</tt>.
329 */
331 { return dxyy(d[0], d[1]); }
332
333 /** Access gradient squared magnitude at real-valued coordinate <tt>(x, y)</tt>.
334 */
335 SquaredNormType g2(double x, double y) const;
336
337 /** Access 1st derivative in x-direction of gradient squared magnitude
338 at real-valued coordinate <tt>(x, y)</tt>.
339 */
340 SquaredNormType g2x(double x, double y) const;
341
342 /** Access 1st derivative in y-direction of gradient squared magnitude
343 at real-valued coordinate <tt>(x, y)</tt>.
344 */
345 SquaredNormType g2y(double x, double y) const;
346
347 /** Access 2nd derivative in x-direction of gradient squared magnitude
348 at real-valued coordinate <tt>(x, y)</tt>.
349 */
350 SquaredNormType g2xx(double x, double y) const;
351
352 /** Access mixed 2nd derivative of gradient squared magnitude
353 at real-valued coordinate <tt>(x, y)</tt>.
354 */
355 SquaredNormType g2xy(double x, double y) const;
356
357 /** Access 2nd derivative in y-direction of gradient squared magnitude
358 at real-valued coordinate <tt>(x, y)</tt>.
359 */
360 SquaredNormType g2yy(double x, double y) const;
361
362 /** Access gradient squared magnitude at real-valued coordinate <tt>d</tt>.
363 */
365 { return g2(d[0], d[1]); }
366
367 /** Access 1st derivative in x-direction of gradient squared magnitude
368 at real-valued coordinate <tt>d</tt>.
369 */
371 { return g2x(d[0], d[1]); }
372
373 /** Access 1st derivative in y-direction of gradient squared magnitude
374 at real-valued coordinate <tt>d</tt>.
375 */
377 { return g2y(d[0], d[1]); }
378
379 /** Access 2nd derivative in x-direction of gradient squared magnitude
380 at real-valued coordinate <tt>d</tt>.
381 */
383 { return g2xx(d[0], d[1]); }
384
385 /** Access mixed 2nd derivative of gradient squared magnitude
386 at real-valued coordinate <tt>d</tt>.
387 */
389 { return g2xy(d[0], d[1]); }
390
391 /** Access 2nd derivative in y-direction of gradient squared magnitude
392 at real-valued coordinate <tt>d</tt>.
393 */
395 { return g2yy(d[0], d[1]); }
396
397 /** The width of the image.
398 <tt>0 <= x <= width()-1</tt> is required for all access functions.
399 */
400 unsigned int width() const
401 { return w_; }
402
403 /** The height of the image.
404 <tt>0 <= y <= height()-1</tt> is required for all access functions.
405 */
406 unsigned int height() const
407 { return h_; }
408
409 /** The size of the image.
410 <tt>0 <= x <= size().x-1</tt> and <tt>0 <= y <= size().y-1</tt>
411 are required for all access functions.
412 */
414 { return size_type(w_, h_); }
415
416 /** The shape of the image.
417 Same as size(), except for the return type.
418 */
421
422 /** The internal image holding the spline coefficients.
423 */
424 InternalImage const & image() const
425 {
426 return image_;
427 }
428
429 /** Get the array of polynomial coefficients for the facet containing
430 the point <tt>(x, y)</tt>. The array <tt>res</tt> must have
431 dimension <tt>(ORDER+1)x(ORDER+1)</tt>. From these coefficients, the
432 value of the interpolated function can be calculated by the following
433 algorithm
434
435 \code
436 SplineImageView<ORDER, float> view(...);
437 double x = ..., y = ...;
438 double dx, dy;
439
440 // calculate the local facet coordinates of x and y
441 if(ORDER % 2)
442 {
443 // odd order => facet coordinates between 0 and 1
444 dx = x - floor(x);
445 dy = y - floor(y);
446 }
447 else
448 {
449 // even order => facet coordinates between -0.5 and 0.5
450 dx = x - floor(x + 0.5);
451 dy = y - floor(y + 0.5);
452 }
453
454 BasicImage<float> coefficients;
455 view.coefficientArray(x, y, coefficients);
456
457 float f_x_y = 0.0;
458 for(int ny = 0; ny < ORDER + 1; ++ny)
459 for(int nx = 0; nx < ORDER + 1; ++nx)
460 f_x_y += pow(dx, nx) * pow(dy, ny) * coefficients(nx, ny);
461
462 assert(abs(f_x_y - view(x, y)) < 1e-6);
463 \endcode
464 */
465 template <class Array>
466 void coefficientArray(double x, double y, Array & res) const;
467
468 /** Check if x is in the original image range.
469 Equivalent to <tt>0 <= x <= width()-1</tt>.
470 */
471 bool isInsideX(double x) const
472 {
473 return x >= 0.0 && x <= width()-1.0;
474 }
475
476 /** Check if y is in the original image range.
477 Equivalent to <tt>0 <= y <= height()-1</tt>.
478 */
479 bool isInsideY(double y) const
480 {
481 return y >= 0.0 && y <= height()-1.0;
482 }
483
484 /** Check if x and y are in the original image range.
485 Equivalent to <tt>0 <= x <= width()-1</tt> and <tt>0 <= y <= height()-1</tt>.
486 */
487 bool isInside(double x, double y) const
488 {
489 return isInsideX(x) && isInsideY(y);
490 }
491
492 /** Check if x and y are in the valid range. Points outside the original image range are computed
493 by reflective boundary conditions, but only within the first reflection.
494 Equivalent to <tt>-width() + ORDER/2 + 2 < x < 2*width() - ORDER/2 - 2</tt> and
495 <tt>-height() + ORDER/2 + 2 < y < 2*height() - ORDER/2 - 2</tt>.
496 */
497 bool isValid(double x, double y) const
498 {
499 return x < w1_ + x1_ && x > -x1_ && y < h1_ + y1_ && y > -y1_;
500 }
501
502 /** Check whether the points <tt>(x0, y0)</tt> and <tt>(x1, y1)</tt> are in
503 the same spline facet. For odd order splines, facets span the range
504 <tt>(floor(x), floor(x)+1) x (floor(y), floor(y)+1)</tt> (i.e. we have
505 integer facet borders), whereas even order splines have facet between
506 half integer values
507 <tt>(floor(x)-0.5, floor(x)+0.5) x (floor(y)-0.5, floor(y)+0.5)</tt>.
508 */
509 bool sameFacet(double x0, double y0, double x1, double y1) const
510 {
511 x0 = VIGRA_CSTD::floor((ORDER % 2) ? x0 : x0 + 0.5);
512 y0 = VIGRA_CSTD::floor((ORDER % 2) ? y0 : y0 + 0.5);
513 x1 = VIGRA_CSTD::floor((ORDER % 2) ? x1 : x1 + 0.5);
514 y1 = VIGRA_CSTD::floor((ORDER % 2) ? y1 : y1 + 0.5);
515 return x0 == x1 && y0 == y1;
516 }
517
518 protected:
519
520 void init();
521 void calculateIndices(double x, double y) const;
522 void coefficients(double t, double * const & c) const;
523 void derivCoefficients(double t, unsigned int d, double * const & c) const;
524 value_type convolve() const;
525
526 unsigned int w_, h_;
527 int w1_, h1_;
528 double x0_, x1_, y0_, y1_;
529 InternalImage image_;
530 Spline k_;
531 mutable double x_, y_, u_, v_, kx_[ksize_], ky_[ksize_];
532 mutable int ix_[ksize_], iy_[ksize_];
533};
534
535template <int ORDER, class VALUETYPE>
536void SplineImageView<ORDER, VALUETYPE>::init()
537{
538 ArrayVector<double> const & b = k_.prefilterCoefficients();
539
540 for(unsigned int i=0; i<b.size(); ++i)
541 {
542 recursiveFilterX(srcImageRange(image_), destImage(image_), b[i], BORDER_TREATMENT_REFLECT);
543 recursiveFilterY(srcImageRange(image_), destImage(image_), b[i], BORDER_TREATMENT_REFLECT);
544 }
545}
546
547namespace detail
548{
549
550template <int i>
551struct SplineImageViewUnrollLoop1
552{
553 template <class Array>
554 static void exec(int c0, Array c)
555 {
556 SplineImageViewUnrollLoop1<i-1>::exec(c0, c);
557 c[i] = c0 + i;
558 }
559};
560
561template <>
562struct SplineImageViewUnrollLoop1<0>
563{
564 template <class Array>
565 static void exec(int c0, Array c)
566 {
567 c[0] = c0;
568 }
569};
570
571template <int i, class ValueType>
572struct SplineImageViewUnrollLoop2
573{
574 template <class Array1, class RowIterator, class Array2>
575 static ValueType
576 exec(Array1 k, RowIterator r, Array2 x)
577 {
578 return ValueType(k[i] * r[x[i]]) + SplineImageViewUnrollLoop2<i-1, ValueType>::exec(k, r, x);
579 }
580};
581
582template <class ValueType>
583struct SplineImageViewUnrollLoop2<0, ValueType>
584{
585 template <class Array1, class RowIterator, class Array2>
586 static ValueType
587 exec(Array1 k, RowIterator r, Array2 x)
588 {
589 return ValueType(k[0] * r[x[0]]);
590 }
591};
592
593} // namespace detail
594
595template <int ORDER, class VALUETYPE>
596void
597SplineImageView<ORDER, VALUETYPE>::calculateIndices(double x, double y) const
598{
599 if(x == x_ && y == y_)
600 return; // still in cache
601
602 if(x > x0_ && x < x1_ && y > y0_ && y < y1_)
603 {
604 detail::SplineImageViewUnrollLoop1<ORDER>::exec(
605 (ORDER % 2) ? int(x - kcenter_) : int(x + 0.5 - kcenter_), ix_);
606 detail::SplineImageViewUnrollLoop1<ORDER>::exec(
607 (ORDER % 2) ? int(y - kcenter_) : int(y + 0.5 - kcenter_), iy_);
608
609 u_ = x - ix_[kcenter_];
610 v_ = y - iy_[kcenter_];
611 }
612 else
613 {
614 vigra_precondition(isValid(x,y),
615 "SplineImageView::calculateIndices(): coordinates out of range.");
616
617 int xCenter = (ORDER % 2) ?
618 (int)VIGRA_CSTD::floor(x) :
619 (int)VIGRA_CSTD::floor(x + 0.5);
620 int yCenter = (ORDER % 2) ?
621 (int)VIGRA_CSTD::floor(y) :
622 (int)VIGRA_CSTD::floor(y + 0.5);
623
624 if(x >= x1_)
625 {
626 for(int i = 0; i < ksize_; ++i)
627 ix_[i] = w1_ - vigra::abs(w1_ - xCenter - (i - kcenter_));
628 }
629 else
630 {
631 for(int i = 0; i < ksize_; ++i)
632 ix_[i] = vigra::abs(xCenter - (kcenter_ - i));
633 }
634 if(y >= y1_)
635 {
636 for(int i = 0; i < ksize_; ++i)
637 iy_[i] = h1_ - vigra::abs(h1_ - yCenter - (i - kcenter_));
638 }
639 else
640 {
641 for(int i = 0; i < ksize_; ++i)
642 iy_[i] = vigra::abs(yCenter - (kcenter_ - i));
643 }
644 u_ = x - xCenter;
645 v_ = y - yCenter;
646 }
647 x_ = x;
648 y_ = y;
649}
650
651template <int ORDER, class VALUETYPE>
652void SplineImageView<ORDER, VALUETYPE>::coefficients(double t, double * const & c) const
653{
654 t += kcenter_;
655 for(int i = 0; i<ksize_; ++i)
656 c[i] = k_(t-i);
657}
658
659template <int ORDER, class VALUETYPE>
660void SplineImageView<ORDER, VALUETYPE>::derivCoefficients(double t,
661 unsigned int d, double * const & c) const
662{
663 t += kcenter_;
664 for(int i = 0; i<ksize_; ++i)
665 c[i] = k_(t-i, d);
666}
667
668template <int ORDER, class VALUETYPE>
669VALUETYPE SplineImageView<ORDER, VALUETYPE>::convolve() const
670{
671 typedef typename NumericTraits<VALUETYPE>::RealPromote RealPromote;
672 RealPromote sum;
673 sum = RealPromote(
674 ky_[0]*detail::SplineImageViewUnrollLoop2<ORDER, RealPromote>::exec(kx_, image_.rowBegin(iy_[0]), ix_));
675
676 for(int j=1; j<ksize_; ++j)
677 {
678 sum += RealPromote(
679 ky_[j]*detail::SplineImageViewUnrollLoop2<ORDER, RealPromote>::exec(kx_, image_.rowBegin(iy_[j]), ix_));
680 }
681 return detail::RequiresExplicitCast<VALUETYPE>::cast(sum);
682}
683
684template <int ORDER, class VALUETYPE>
685template <class Array>
686void
687SplineImageView<ORDER, VALUETYPE>::coefficientArray(double x, double y, Array & res) const
688{
689 typedef typename Array::value_type ResType;
690 typename Spline::WeightMatrix const & weights = Spline::weights();
691 ResType tmp[ksize_][ksize_];
692
693 calculateIndices(x, y);
694 for(int j=0; j<ksize_; ++j)
695 {
696 for(int i=0; i<ksize_; ++i)
697 {
698 tmp[i][j] = ResType();
699 for(int k=0; k<ksize_; ++k)
700 {
701 tmp[i][j] += weights[i][k]*image_(ix_[k], iy_[j]);
702 }
703 }
704 }
705 for(int j=0; j<ksize_; ++j)
706 {
707 for(int i=0; i<ksize_; ++i)
708 {
709 res(i,j) = ResType();
710 for(int k=0; k<ksize_; ++k)
711 {
712 res(i,j) += weights[j][k]*tmp[i][k];
713 }
714 }
715 }
716}
717
718template <int ORDER, class VALUETYPE>
720{
721 calculateIndices(x, y);
722 coefficients(u_, kx_);
723 coefficients(v_, ky_);
724 return convolve();
725}
726
727template <int ORDER, class VALUETYPE>
729 unsigned int dx, unsigned int dy) const
730{
731 calculateIndices(x, y);
732 derivCoefficients(u_, dx, kx_);
733 derivCoefficients(v_, dy, ky_);
734 return convolve();
735}
736
737template <int ORDER, class VALUETYPE>
740{
741 return squaredNorm(dx(x,y)) + squaredNorm(dy(x,y));
742}
743
744template <int ORDER, class VALUETYPE>
747{
748 return SquaredNormType(2.0)*(dot(dx(x,y), dxx(x,y)) + dot(dy(x,y), dxy(x,y)));
749}
750
751template <int ORDER, class VALUETYPE>
754{
755 return SquaredNormType(2.0)*(dot(dx(x,y), dxy(x,y)) + dot(dy(x,y), dyy(x,y)));
756}
757
758template <int ORDER, class VALUETYPE>
761{
762 return SquaredNormType(2.0)*(squaredNorm(dxx(x,y)) + dot(dx(x,y), dx3(x,y)) +
763 squaredNorm(dxy(x,y)) + dot(dy(x,y), dxxy(x,y)));
764}
765
766template <int ORDER, class VALUETYPE>
769{
770 return SquaredNormType(2.0)*(squaredNorm(dxy(x,y)) + dot(dx(x,y), dxyy(x,y)) +
771 squaredNorm(dyy(x,y)) + dot(dy(x,y), dy3(x,y)));
772}
773
774template <int ORDER, class VALUETYPE>
777{
778 return SquaredNormType(2.0)*(dot(dx(x,y), dxxy(x,y)) + dot(dy(x,y), dxyy(x,y)) +
779 dot(dxy(x,y), dxx(x,y) + dyy(x,y)));
780}
781
782/********************************************************/
783/* */
784/* SplineImageView0 */
785/* */
786/********************************************************/
787template <class VALUETYPE, class INTERNAL_INDEXER>
788class SplineImageView0Base
789{
790 typedef typename INTERNAL_INDEXER::value_type InternalValue;
791 public:
792 typedef VALUETYPE value_type;
793 typedef typename NormTraits<VALUETYPE>::SquaredNormType SquaredNormType;
794 typedef Size2D size_type;
795 typedef TinyVector<double, 2> difference_type;
796 enum StaticOrder { order = 0 };
797
798 public:
799
800 SplineImageView0Base(unsigned int w, unsigned int h)
801 : w_(w), h_(h)
802 {}
803
804 SplineImageView0Base(int w, int h, INTERNAL_INDEXER i)
805 : w_(w), h_(h), internalIndexer_(i)
806 {}
807
808 template <unsigned IntBits1, unsigned FractionalBits1,
809 unsigned IntBits2, unsigned FractionalBits2>
810 value_type unchecked(FixedPoint<IntBits1, FractionalBits1> x,
811 FixedPoint<IntBits2, FractionalBits2> y) const
812 {
813 return internalIndexer_(round(x), round(y));
814 }
815
816 template <unsigned IntBits1, unsigned FractionalBits1,
817 unsigned IntBits2, unsigned FractionalBits2>
818 value_type unchecked(FixedPoint<IntBits1, FractionalBits1> x,
819 FixedPoint<IntBits2, FractionalBits2> y,
820 unsigned int dx, unsigned int dy) const
821 {
822 if((dx != 0) || (dy != 0))
823 return NumericTraits<VALUETYPE>::zero();
824 return unchecked(x, y);
825 }
826
827 value_type unchecked(double x, double y) const
828 {
829 return internalIndexer_((int)(x + 0.5), (int)(y + 0.5));
830 }
831
832 value_type unchecked(double x, double y, unsigned int dx, unsigned int dy) const
833 {
834 if((dx != 0) || (dy != 0))
835 return NumericTraits<VALUETYPE>::zero();
836 return unchecked(x, y);
837 }
838
839 value_type operator()(double x, double y) const
840 {
841 int ix, iy;
842 if(x < 0.0)
843 {
844 ix = (int)(-x + 0.5);
845 vigra_precondition(ix <= (int)w_ - 1,
846 "SplineImageView::operator(): coordinates out of range.");
847 }
848 else
849 {
850 ix = (int)(x + 0.5);
851 if(ix >= (int)w_)
852 {
853 ix = 2*w_-2-ix;
854 vigra_precondition(ix >= 0,
855 "SplineImageView::operator(): coordinates out of range.");
856 }
857 }
858 if(y < 0.0)
859 {
860 iy = (int)(-y + 0.5);
861 vigra_precondition(iy <= (int)h_ - 1,
862 "SplineImageView::operator(): coordinates out of range.");
863 }
864 else
865 {
866 iy = (int)(y + 0.5);
867 if(iy >= (int)h_)
868 {
869 iy = 2*h_-2-iy;
870 vigra_precondition(iy >= 0,
871 "SplineImageView::operator(): coordinates out of range.");
872 }
873 }
874 return internalIndexer_(ix, iy);
875 }
876
877 value_type operator()(double x, double y, unsigned int dx, unsigned int dy) const
878 {
879 if((dx != 0) || (dy != 0))
880 return NumericTraits<VALUETYPE>::zero();
881 return operator()(x, y);
882 }
883
884 value_type dx(double /*x*/, double /*y*/) const
885 { return NumericTraits<VALUETYPE>::zero(); }
886
887 value_type dy(double /*x*/, double /*y*/) const
888 { return NumericTraits<VALUETYPE>::zero(); }
889
890 value_type dxx(double /*x*/, double /*y*/) const
891 { return NumericTraits<VALUETYPE>::zero(); }
892
893 value_type dxy(double /*x*/, double /*y*/) const
894 { return NumericTraits<VALUETYPE>::zero(); }
895
896 value_type dyy(double /*x*/, double /*y*/) const
897 { return NumericTraits<VALUETYPE>::zero(); }
898
899 value_type dx3(double /*x*/, double /*y*/) const
900 { return NumericTraits<VALUETYPE>::zero(); }
901
902 value_type dy3(double /*x*/, double /*y*/) const
903 { return NumericTraits<VALUETYPE>::zero(); }
904
905 value_type dxxy(double /*x*/, double /*y*/) const
906 { return NumericTraits<VALUETYPE>::zero(); }
907
908 value_type dxyy(double /*x*/, double /*y*/) const
909 { return NumericTraits<VALUETYPE>::zero(); }
910
911 value_type operator()(difference_type const & d) const
912 { return operator()(d[0], d[1]); }
913
914 value_type operator()(difference_type const & d, unsigned int dx, unsigned int dy) const
915 { return operator()(d[0], d[1], dx, dy); }
916
917 value_type dx(difference_type const & /*d*/) const
918 { return NumericTraits<VALUETYPE>::zero(); }
919
920 value_type dy(difference_type const & /*d*/) const
921 { return NumericTraits<VALUETYPE>::zero(); }
922
923 value_type dxx(difference_type const & /*d*/) const
924 { return NumericTraits<VALUETYPE>::zero(); }
925
926 value_type dxy(difference_type const & /*d*/) const
927 { return NumericTraits<VALUETYPE>::zero(); }
928
929 value_type dyy(difference_type const & /*d*/) const
930 { return NumericTraits<VALUETYPE>::zero(); }
931
932 value_type dx3(difference_type const & /*d*/) const
933 { return NumericTraits<VALUETYPE>::zero(); }
934
935 value_type dy3(difference_type const & /*d*/) const
936 { return NumericTraits<VALUETYPE>::zero(); }
937
938 value_type dxxy(difference_type const & /*d*/) const
939 { return NumericTraits<VALUETYPE>::zero(); }
940
941 value_type dxyy(difference_type const & /*d*/) const
942 { return NumericTraits<VALUETYPE>::zero(); }
943
944 SquaredNormType g2(double /*x*/, double /*y*/) const
945 { return NumericTraits<SquaredNormType>::zero(); }
946
947 SquaredNormType g2x(double /*x*/, double /*y*/) const
948 { return NumericTraits<SquaredNormType>::zero(); }
949
950 SquaredNormType g2y(double /*x*/, double /*y*/) const
951 { return NumericTraits<SquaredNormType>::zero(); }
952
953 SquaredNormType g2xx(double /*x*/, double /*y*/) const
954 { return NumericTraits<SquaredNormType>::zero(); }
955
956 SquaredNormType g2xy(double /*x*/, double /*y*/) const
957 { return NumericTraits<SquaredNormType>::zero(); }
958
959 SquaredNormType g2yy(double /*x*/, double /*y*/) const
960 { return NumericTraits<SquaredNormType>::zero(); }
961
962 SquaredNormType g2(difference_type const & /*d*/) const
963 { return NumericTraits<SquaredNormType>::zero(); }
964
965 SquaredNormType g2x(difference_type const & /*d*/) const
966 { return NumericTraits<SquaredNormType>::zero(); }
967
968 SquaredNormType g2y(difference_type const & /*d*/) const
969 { return NumericTraits<SquaredNormType>::zero(); }
970
971 SquaredNormType g2xx(difference_type const & /*d*/) const
972 { return NumericTraits<SquaredNormType>::zero(); }
973
974 SquaredNormType g2xy(difference_type const & /*d*/) const
975 { return NumericTraits<SquaredNormType>::zero(); }
976
977 SquaredNormType g2yy(difference_type const & /*d*/) const
978 { return NumericTraits<SquaredNormType>::zero(); }
979
980 unsigned int width() const
981 { return w_; }
982
983 unsigned int height() const
984 { return h_; }
985
986 size_type size() const
987 { return size_type(w_, h_); }
988
989 TinyVector<unsigned int, 2> shape() const
990 { return TinyVector<unsigned int, 2>(w_, h_); }
991
992 template <class Array>
993 void coefficientArray(double x, double y, Array & res) const
994 {
995 res(0, 0) = operator()(x,y);
996 }
997
998 bool isInsideX(double x) const
999 {
1000 return x >= 0.0 && x <= width() - 1.0;
1001 }
1002
1003 bool isInsideY(double y) const
1004 {
1005 return y >= 0.0 && y <= height() - 1.0;
1006 }
1007
1008 bool isInside(double x, double y) const
1009 {
1010 return isInsideX(x) && isInsideY(y);
1011 }
1012
1013 bool isValid(double x, double y) const
1014 {
1015 return x < 2.0*w_-2.0 && x > 1.0-w_ && y < 2.0*h_-2.0 && y > 1.0-h_;
1016 }
1017
1018 bool sameFacet(double x0, double y0, double x1, double y1) const
1019 {
1020 x0 = VIGRA_CSTD::floor(x0 + 0.5);
1021 y0 = VIGRA_CSTD::floor(y0 + 0.5);
1022 x1 = VIGRA_CSTD::floor(x1 + 0.5);
1023 y1 = VIGRA_CSTD::floor(y1 + 0.5);
1024 return x0 == x1 && y0 == y1;
1025 }
1026
1027 protected:
1028 unsigned int w_, h_;
1029 INTERNAL_INDEXER internalIndexer_;
1030};
1031
1032/** \brief Create an image view for nearest-neighbor interpolation.
1033
1034 This class behaves like \ref vigra::SplineImageView&lt;0, ...&gt;, but one can pass
1035 an additional template argument that determined the internal representation of the image.
1036 If this is equal to the argument type passed in the constructor, the image is not copied.
1037 By default, this works for \ref vigra::BasicImage, \ref vigra::BasicImageView,
1038 \ref vigra::MultiArray&lt;2, ...&gt;, and \ref vigra::MultiArrayView&lt;2, ...&gt;.
1039
1040*/
1041template <class VALUETYPE, class INTERNAL_TRAVERSER = typename BasicImage<VALUETYPE>::const_traverser>
1043: public SplineImageView0Base<VALUETYPE, INTERNAL_TRAVERSER>
1044{
1046 public:
1047 typedef typename Base::value_type value_type;
1048 typedef typename Base::SquaredNormType SquaredNormType;
1049 typedef typename Base::size_type size_type;
1050 typedef typename Base::difference_type difference_type;
1051 enum StaticOrder { order = Base::order };
1053
1054 protected:
1055 typedef typename IteratorTraits<INTERNAL_TRAVERSER>::mutable_iterator InternalTraverser;
1057 typedef typename IteratorTraits<INTERNAL_TRAVERSER>::const_iterator InternalConstTraverser;
1059
1060 public:
1061
1062 /* when traverser and accessor types passed to the constructor are the same as the corresponding
1063 internal types, we need not copy the image (speed up)
1064 */
1065 SplineImageView0(InternalTraverser is, InternalTraverser iend, InternalAccessor /*sa*/)
1066 : Base(iend.x - is.x, iend.y - is.y, is)
1067 {}
1068
1070 : Base(s.second.x - s.first.x, s.second.y - s.first.y, s.first)
1071 {}
1072
1073 SplineImageView0(InternalConstTraverser is, InternalConstTraverser iend, InternalConstAccessor /*sa*/)
1074 : Base(iend.x - is.x, iend.y - is.y, is)
1075 {}
1076
1078 : Base(s.second.x - s.first.x, s.second.y - s.first.y, s.first)
1079 {}
1080
1081 template<class T, class SU>
1083 : Base(i.shape(0), i.shape(1)),
1084 image_(i.shape(0), i.shape(1))
1085 {
1086 for(unsigned int y=0; y<this->height(); ++y)
1087 for(unsigned int x=0; x<this->width(); ++x)
1088 image_(x,y) = detail::RequiresExplicitCast<VALUETYPE>::cast(i(x,y));
1089 this->internalIndexer_ = image_.upperLeft();
1090 }
1091
1092 template <class SrcIterator, class SrcAccessor>
1094 : Base(iend.x - is.x, iend.y - is.y),
1095 image_(iend - is)
1096 {
1097 copyImage(srcIterRange(is, iend, sa), destImage(image_));
1098 this->internalIndexer_ = image_.upperLeft();
1099 }
1100
1101 template <class SrcIterator, class SrcAccessor>
1103 : Base(s.second.x - s.first.x, s.second.y - s.first.y),
1104 image_(s.second - s.first)
1105 {
1106 copyImage(s, destImage(image_));
1107 this->internalIndexer_ = image_.upperLeft();
1108 }
1109
1110 InternalImage const & image() const
1111 { return image_; }
1112
1113 protected:
1114 InternalImage image_;
1115};
1116
1117template <class VALUETYPE, class StridedOrUnstrided>
1119: public SplineImageView0Base<VALUETYPE, MultiArrayView<2, VALUETYPE, StridedOrUnstrided> >
1120{
1122 public:
1123 typedef typename Base::value_type value_type;
1124 typedef typename Base::SquaredNormType SquaredNormType;
1125 typedef typename Base::size_type size_type;
1126 typedef typename Base::difference_type difference_type;
1127 enum StaticOrder { order = Base::order };
1128 typedef BasicImage<VALUETYPE> InternalImage;
1129
1130 protected:
1131 typedef MultiArrayView<2, VALUETYPE, StridedOrUnstrided> InternalIndexer;
1132
1133 public:
1134
1135 /* when traverser and accessor types passed to the constructor are the same as the corresponding
1136 internal types, we need not copy the image (speed up)
1137 */
1138 SplineImageView0(InternalIndexer const & i)
1139 : Base(i.shape(0), i.shape(1), i)
1140 {}
1141
1142 template<class T, class SU>
1143 SplineImageView0(MultiArrayView<2, T, SU> const & i)
1144 : Base(i.shape(0), i.shape(1)),
1145 image_(i.shape(0), i.shape(1))
1146 {
1147 for(unsigned int y=0; y<this->height(); ++y)
1148 for(unsigned int x=0; x<this->width(); ++x)
1149 image_(x,y) = detail::RequiresExplicitCast<VALUETYPE>::cast(i(x,y));
1150 this->internalIndexer_ = InternalIndexer(typename InternalIndexer::difference_type(this->width(), this->height()),
1151 image_.data());
1152 }
1153
1154 template <class SrcIterator, class SrcAccessor>
1155 SplineImageView0(SrcIterator is, SrcIterator iend, SrcAccessor sa)
1156 : Base(iend.x - is.x, iend.y - is.y),
1157 image_(iend-is)
1158 {
1159 copyImage(srcIterRange(is, iend, sa), destImage(image_));
1160 this->internalIndexer_ = InternalIndexer(typename InternalIndexer::difference_type(this->width(), this->height()),
1161 image_.data());
1162 }
1163
1164 template <class SrcIterator, class SrcAccessor>
1165 SplineImageView0(triple<SrcIterator, SrcIterator, SrcAccessor> s)
1166 : Base(s.second.x - s.first.x, s.second.y - s.first.y),
1167 image_(s.second - s.first)
1168 {
1169 copyImage(s, destImage(image_));
1170 this->internalIndexer_ = InternalIndexer(typename InternalIndexer::difference_type(this->width(), this->height()),
1171 image_.data());
1172 }
1173
1174 InternalImage const & image() const
1175 { return image_; }
1176
1177 protected:
1178 InternalImage image_;
1179};
1180
1181template <class VALUETYPE>
1182class SplineImageView<0, VALUETYPE>
1183: public SplineImageView0<VALUETYPE>
1184{
1185 typedef SplineImageView0<VALUETYPE> Base;
1186 public:
1187 typedef typename Base::value_type value_type;
1188 typedef typename Base::SquaredNormType SquaredNormType;
1189 typedef typename Base::size_type size_type;
1190 typedef typename Base::difference_type difference_type;
1191 enum StaticOrder { order = Base::order };
1192 typedef typename Base::InternalImage InternalImage;
1193
1194 protected:
1195 typedef typename Base::InternalTraverser InternalTraverser;
1196 typedef typename Base::InternalAccessor InternalAccessor;
1197 typedef typename Base::InternalConstTraverser InternalConstTraverser;
1198 typedef typename Base::InternalConstAccessor InternalConstAccessor;
1199
1200public:
1201
1202 /* when traverser and accessor types passed to the constructor are the same as the corresponding
1203 internal types, we need not copy the image (speed up)
1204 */
1205 SplineImageView(InternalTraverser is, InternalTraverser iend, InternalAccessor sa, bool /* unused */ = false)
1206 : Base(is, iend, sa)
1207 {}
1208
1209 SplineImageView(triple<InternalTraverser, InternalTraverser, InternalAccessor> s, bool /* unused */ = false)
1210 : Base(s)
1211 {}
1212
1213 SplineImageView(InternalConstTraverser is, InternalConstTraverser iend, InternalConstAccessor sa, bool /* unused */ = false)
1214 : Base(is, iend, sa)
1215 {}
1216
1217 SplineImageView(triple<InternalConstTraverser, InternalConstTraverser, InternalConstAccessor> s, bool /* unused */ = false)
1218 : Base(s)
1219 {}
1220
1221 template <class SrcIterator, class SrcAccessor>
1222 SplineImageView(SrcIterator is, SrcIterator iend, SrcAccessor sa, bool /* unused */ = false)
1223 : Base(is, iend, sa)
1224 {
1225 copyImage(srcIterRange(is, iend, sa), destImage(this->image_));
1226 }
1227
1228 template <class SrcIterator, class SrcAccessor>
1229 SplineImageView(triple<SrcIterator, SrcIterator, SrcAccessor> s, bool /* unused */ = false)
1230 : Base(s)
1231 {
1232 copyImage(s, destImage(this->image_));
1233 }
1234};
1235
1236/********************************************************/
1237/* */
1238/* SplineImageView1 */
1239/* */
1240/********************************************************/
1241template <class VALUETYPE, class INTERNAL_INDEXER>
1242class SplineImageView1Base
1243{
1244 typedef typename INTERNAL_INDEXER::value_type InternalValue;
1245 public:
1246 typedef VALUETYPE value_type;
1247 typedef Size2D size_type;
1248 typedef typename NormTraits<VALUETYPE>::SquaredNormType SquaredNormType;
1249 typedef TinyVector<double, 2> difference_type;
1250 enum StaticOrder { order = 1 };
1251
1252 public:
1253
1254 SplineImageView1Base(unsigned int w, unsigned int h)
1255 : w_(w), h_(h)
1256 {}
1257
1258 SplineImageView1Base(int w, int h, INTERNAL_INDEXER i)
1259 : w_(w), h_(h), internalIndexer_(i)
1260 {}
1261
1262 template <unsigned IntBits1, unsigned FractionalBits1,
1263 unsigned IntBits2, unsigned FractionalBits2>
1264 value_type unchecked(FixedPoint<IntBits1, FractionalBits1> x,
1265 FixedPoint<IntBits2, FractionalBits2> y) const
1266 {
1267 int ix = floor(x);
1268 FixedPoint<0, FractionalBits1> tx = frac(x - FixedPoint<IntBits1, FractionalBits1>(ix));
1269 FixedPoint<0, FractionalBits1> dtx = dual_frac(tx);
1270 if(ix == (int)w_ - 1)
1271 {
1272 --ix;
1273 tx.value = FixedPoint<0, FractionalBits1>::ONE;
1274 dtx.value = 0;
1275 }
1276 int iy = floor(y);
1277 FixedPoint<0, FractionalBits2> ty = frac(y - FixedPoint<IntBits2, FractionalBits2>(iy));
1278 FixedPoint<0, FractionalBits2> dty = dual_frac(ty);
1279 if(iy == (int)h_ - 1)
1280 {
1281 --iy;
1282 ty.value = FixedPoint<0, FractionalBits2>::ONE;
1283 dty.value = 0;
1284 }
1285 return fixed_point_cast<value_type>(
1286 dty*(dtx*fixedPoint(internalIndexer_(ix,iy)) +
1287 tx*fixedPoint(internalIndexer_(ix+1,iy))) +
1288 ty *(dtx*fixedPoint(internalIndexer_(ix,iy+1)) +
1289 tx*fixedPoint(internalIndexer_(ix+1,iy+1))));
1290 }
1291
1292 template <unsigned IntBits1, unsigned FractionalBits1,
1293 unsigned IntBits2, unsigned FractionalBits2>
1294 value_type unchecked(FixedPoint<IntBits1, FractionalBits1> x,
1295 FixedPoint<IntBits2, FractionalBits2> y,
1296 unsigned int dx, unsigned int dy) const
1297 {
1298 int ix = floor(x);
1299 FixedPoint<0, FractionalBits1> tx = frac(x - FixedPoint<IntBits1, FractionalBits1>(ix));
1300 FixedPoint<0, FractionalBits1> dtx = dual_frac(tx);
1301 if(ix == (int)w_ - 1)
1302 {
1303 --ix;
1304 tx.value = FixedPoint<0, FractionalBits1>::ONE;
1305 dtx.value = 0;
1306 }
1307 int iy = floor(y);
1308 FixedPoint<0, FractionalBits2> ty = frac(y - FixedPoint<IntBits2, FractionalBits2>(iy));
1309 FixedPoint<0, FractionalBits2> dty = dual_frac(ty);
1310 if(iy == (int)h_ - 1)
1311 {
1312 --iy;
1313 ty.value = FixedPoint<0, FractionalBits2>::ONE;
1314 dty.value = 0;
1315 }
1316 switch(dx)
1317 {
1318 case 0:
1319 switch(dy)
1320 {
1321 case 0:
1322 return fixed_point_cast<value_type>(
1323 dty*(dtx*fixedPoint(internalIndexer_(ix,iy)) +
1324 tx*fixedPoint(internalIndexer_(ix+1,iy))) +
1325 ty *(dtx*fixedPoint(internalIndexer_(ix,iy+1)) +
1326 tx*fixedPoint(internalIndexer_(ix+1,iy+1))));
1327 case 1:
1328 return fixed_point_cast<value_type>(
1329 (dtx*fixedPoint(internalIndexer_(ix,iy+1)) + tx*fixedPoint(internalIndexer_(ix+1,iy+1))) -
1330 (dtx*fixedPoint(internalIndexer_(ix,iy)) + tx*fixedPoint(internalIndexer_(ix+1,iy))));
1331 default:
1332 return NumericTraits<VALUETYPE>::zero();
1333 }
1334 case 1:
1335 switch(dy)
1336 {
1337 case 0:
1338 return fixed_point_cast<value_type>(
1339 dty*(fixedPoint(internalIndexer_(ix+1,iy)) - fixedPoint(internalIndexer_(ix,iy))) +
1340 ty *(fixedPoint(internalIndexer_(ix+1,iy+1)) - fixedPoint(internalIndexer_(ix,iy+1))));
1341 case 1:
1342 return detail::RequiresExplicitCast<value_type>::cast(
1343 (internalIndexer_(ix+1,iy+1) - internalIndexer_(ix,iy+1)) -
1344 (internalIndexer_(ix+1,iy) - internalIndexer_(ix,iy)));
1345 default:
1346 return NumericTraits<VALUETYPE>::zero();
1347 }
1348 default:
1349 return NumericTraits<VALUETYPE>::zero();
1350 }
1351 }
1352
1353 value_type unchecked(double x, double y) const
1354 {
1355 int ix = (int)std::floor(x);
1356 if(ix == (int)w_ - 1)
1357 --ix;
1358 double tx = x - ix;
1359 int iy = (int)std::floor(y);
1360 if(iy == (int)h_ - 1)
1361 --iy;
1362 double ty = y - iy;
1363 return NumericTraits<value_type>::fromRealPromote(
1364 (1.0-ty)*((1.0-tx)*internalIndexer_(ix,iy) + tx*internalIndexer_(ix+1,iy)) +
1365 ty *((1.0-tx)*internalIndexer_(ix,iy+1) + tx*internalIndexer_(ix+1,iy+1)));
1366 }
1367
1368 value_type unchecked(double x, double y, unsigned int dx, unsigned int dy) const
1369 {
1370 int ix = (int)std::floor(x);
1371 if(ix == (int)w_ - 1)
1372 --ix;
1373 double tx = x - ix;
1374 int iy = (int)std::floor(y);
1375 if(iy == (int)h_ - 1)
1376 --iy;
1377 double ty = y - iy;
1378 switch(dx)
1379 {
1380 case 0:
1381 switch(dy)
1382 {
1383 case 0:
1384 return detail::RequiresExplicitCast<value_type>::cast(
1385 (1.0-ty)*((1.0-tx)*internalIndexer_(ix,iy) + tx*internalIndexer_(ix+1,iy)) +
1386 ty *((1.0-tx)*internalIndexer_(ix,iy+1) + tx*internalIndexer_(ix+1,iy+1)));
1387 case 1:
1388 return detail::RequiresExplicitCast<value_type>::cast(
1389 ((1.0-tx)*internalIndexer_(ix,iy+1) + tx*internalIndexer_(ix+1,iy+1)) -
1390 ((1.0-tx)*internalIndexer_(ix,iy) + tx*internalIndexer_(ix+1,iy)));
1391 default:
1392 return NumericTraits<VALUETYPE>::zero();
1393 }
1394 case 1:
1395 switch(dy)
1396 {
1397 case 0:
1398 return detail::RequiresExplicitCast<value_type>::cast(
1399 (1.0-ty)*(internalIndexer_(ix+1,iy) - internalIndexer_(ix,iy)) +
1400 ty *(internalIndexer_(ix+1,iy+1) - internalIndexer_(ix,iy+1)));
1401 case 1:
1402 return detail::RequiresExplicitCast<value_type>::cast(
1403 (internalIndexer_(ix+1,iy+1) - internalIndexer_(ix,iy+1)) -
1404 (internalIndexer_(ix+1,iy) - internalIndexer_(ix,iy)));
1405 default:
1406 return NumericTraits<VALUETYPE>::zero();
1407 }
1408 default:
1409 return NumericTraits<VALUETYPE>::zero();
1410 }
1411 }
1412
1413 value_type operator()(double x, double y) const
1414 {
1415 return operator()(x, y, 0, 0);
1416 }
1417
1418 value_type operator()(double x, double y, unsigned int dx, unsigned int dy) const
1419 {
1420 value_type mul = NumericTraits<value_type>::one();
1421 if(x < 0.0)
1422 {
1423 x = -x;
1424 vigra_precondition(x <= w_ - 1.0,
1425 "SplineImageView::operator(): coordinates out of range.");
1426 if(dx % 2)
1427 mul = -mul;
1428 }
1429 else if(x > w_ - 1.0)
1430 {
1431 x = 2.0*w_-2.0-x;
1432 vigra_precondition(x >= 0.0,
1433 "SplineImageView::operator(): coordinates out of range.");
1434 if(dx % 2)
1435 mul = -mul;
1436 }
1437 if(y < 0.0)
1438 {
1439 y = -y;
1440 vigra_precondition(y <= h_ - 1.0,
1441 "SplineImageView::operator(): coordinates out of range.");
1442 if(dy % 2)
1443 mul = -mul;
1444 }
1445 else if(y > h_ - 1.0)
1446 {
1447 y = 2.0*h_-2.0-y;
1448 vigra_precondition(y >= 0.0,
1449 "SplineImageView::operator(): coordinates out of range.");
1450 if(dy % 2)
1451 mul = -mul;
1452 }
1453 return mul*unchecked(x, y, dx, dy);
1454 }
1455
1456 value_type dx(double x, double y) const
1457 { return operator()(x, y, 1, 0); }
1458
1459 value_type dy(double x, double y) const
1460 { return operator()(x, y, 0, 1); }
1461
1462 value_type dxx(double /*x*/, double /*y*/) const
1463 { return NumericTraits<VALUETYPE>::zero(); }
1464
1465 value_type dxy(double x, double y) const
1466 { return operator()(x, y, 1, 1); }
1467
1468 value_type dyy(double /*x*/, double /*y*/) const
1469 { return NumericTraits<VALUETYPE>::zero(); }
1470
1471 value_type dx3(double /*x*/, double /*y*/) const
1472 { return NumericTraits<VALUETYPE>::zero(); }
1473
1474 value_type dy3(double /*x*/, double /*y*/) const
1475 { return NumericTraits<VALUETYPE>::zero(); }
1476
1477 value_type dxxy(double /*x*/, double /*y*/) const
1478 { return NumericTraits<VALUETYPE>::zero(); }
1479
1480 value_type dxyy(double /*x*/, double /*y*/) const
1481 { return NumericTraits<VALUETYPE>::zero(); }
1482
1483 value_type operator()(difference_type const & d) const
1484 { return operator()(d[0], d[1]); }
1485
1486 value_type operator()(difference_type const & d, unsigned int dx, unsigned int dy) const
1487 { return operator()(d[0], d[1], dx, dy); }
1488
1489 value_type dx(difference_type const & d) const
1490 { return operator()(d[0], d[1], 1, 0); }
1491
1492 value_type dy(difference_type const & d) const
1493 { return operator()(d[0], d[1], 0, 1); }
1494
1495 value_type dxx(difference_type const & /*d*/) const
1496 { return NumericTraits<VALUETYPE>::zero(); }
1497
1498 value_type dxy(difference_type const & d) const
1499 { return operator()(d[0], d[1], 1, 1); }
1500
1501 value_type dyy(difference_type const & /*d*/) const
1502 { return NumericTraits<VALUETYPE>::zero(); }
1503
1504 value_type dx3(difference_type const & /*d*/) const
1505 { return NumericTraits<VALUETYPE>::zero(); }
1506
1507 value_type dy3(difference_type const & /*d*/) const
1508 { return NumericTraits<VALUETYPE>::zero(); }
1509
1510 value_type dxxy(difference_type const & /*d*/) const
1511 { return NumericTraits<VALUETYPE>::zero(); }
1512
1513 value_type dxyy(difference_type const & /*d*/) const
1514 { return NumericTraits<VALUETYPE>::zero(); }
1515
1516 SquaredNormType g2(double x, double y) const
1517 { return squaredNorm(dx(x,y)) + squaredNorm(dy(x,y)); }
1518
1519 SquaredNormType g2x(double /*x*/, double /*y*/) const
1520 { return NumericTraits<SquaredNormType>::zero(); }
1521
1522 SquaredNormType g2y(double /*x*/, double /*y*/) const
1523 { return NumericTraits<SquaredNormType>::zero(); }
1524
1525 SquaredNormType g2xx(double /*x*/, double /*y*/) const
1526 { return NumericTraits<SquaredNormType>::zero(); }
1527
1528 SquaredNormType g2xy(double /*x*/, double /*y*/) const
1529 { return NumericTraits<SquaredNormType>::zero(); }
1530
1531 SquaredNormType g2yy(double /*x*/, double /*y*/) const
1532 { return NumericTraits<SquaredNormType>::zero(); }
1533
1534 SquaredNormType g2(difference_type const & d) const
1535 { return g2(d[0], d[1]); }
1536
1537 SquaredNormType g2x(difference_type const & /*d*/) const
1538 { return NumericTraits<SquaredNormType>::zero(); }
1539
1540 SquaredNormType g2y(difference_type const & /*d*/) const
1541 { return NumericTraits<SquaredNormType>::zero(); }
1542
1543 SquaredNormType g2xx(difference_type const & /*d*/) const
1544 { return NumericTraits<SquaredNormType>::zero(); }
1545
1546 SquaredNormType g2xy(difference_type const & /*d*/) const
1547 { return NumericTraits<SquaredNormType>::zero(); }
1548
1549 SquaredNormType g2yy(difference_type const & /*d*/) const
1550 { return NumericTraits<SquaredNormType>::zero(); }
1551
1552 unsigned int width() const
1553 { return w_; }
1554
1555 unsigned int height() const
1556 { return h_; }
1557
1558 size_type size() const
1559 { return size_type(w_, h_); }
1560
1561 TinyVector<unsigned int, 2> shape() const
1562 { return TinyVector<unsigned int, 2>(w_, h_); }
1563
1564 template <class Array>
1565 void coefficientArray(double x, double y, Array & res) const;
1566
1567 void calculateIndices(double x, double y, int & ix, int & iy, int & ix1, int & iy1) const;
1568
1569 bool isInsideX(double x) const
1570 {
1571 return x >= 0.0 && x <= width() - 1.0;
1572 }
1573
1574 bool isInsideY(double y) const
1575 {
1576 return y >= 0.0 && y <= height() - 1.0;
1577 }
1578
1579 bool isInside(double x, double y) const
1580 {
1581 return isInsideX(x) && isInsideY(y);
1582 }
1583
1584 bool isValid(double x, double y) const
1585 {
1586 return x < 2.0*w_-2.0 && x > 1.0-w_ && y < 2.0*h_-2.0 && y > 1.0-h_;
1587 }
1588
1589 bool sameFacet(double x0, double y0, double x1, double y1) const
1590 {
1591 x0 = VIGRA_CSTD::floor(x0);
1592 y0 = VIGRA_CSTD::floor(y0);
1593 x1 = VIGRA_CSTD::floor(x1);
1594 y1 = VIGRA_CSTD::floor(y1);
1595 return x0 == x1 && y0 == y1;
1596 }
1597
1598 protected:
1599 unsigned int w_, h_;
1600 INTERNAL_INDEXER internalIndexer_;
1601};
1602
1603template <class VALUETYPE, class INTERNAL_INDEXER>
1604template <class Array>
1605void SplineImageView1Base<VALUETYPE, INTERNAL_INDEXER>::coefficientArray(double x, double y, Array & res) const
1606{
1607 int ix, iy, ix1, iy1;
1608 calculateIndices(x, y, ix, iy, ix1, iy1);
1609 res(0,0) = internalIndexer_(ix,iy);
1610 res(1,0) = internalIndexer_(ix1,iy) - internalIndexer_(ix,iy);
1611 res(0,1) = internalIndexer_(ix,iy1) - internalIndexer_(ix,iy);
1612 res(1,1) = internalIndexer_(ix,iy) - internalIndexer_(ix1,iy) -
1613 internalIndexer_(ix,iy1) + internalIndexer_(ix1,iy1);
1614}
1615
1616template <class VALUETYPE, class INTERNAL_INDEXER>
1617void SplineImageView1Base<VALUETYPE, INTERNAL_INDEXER>::calculateIndices(double x, double y, int & ix, int & iy, int & ix1, int & iy1) const
1618{
1619 if(x < 0.0)
1620 {
1621 x = -x;
1622 vigra_precondition(x <= w_ - 1.0,
1623 "SplineImageView::calculateIndices(): coordinates out of range.");
1624 ix = (int)VIGRA_CSTD::ceil(x);
1625 ix1 = ix - 1;
1626 }
1627 else if(x >= w_ - 1.0)
1628 {
1629 x = 2.0*w_-2.0-x;
1630 vigra_precondition(x > 0.0,
1631 "SplineImageView::calculateIndices(): coordinates out of range.");
1632 ix = (int)VIGRA_CSTD::ceil(x);
1633 ix1 = ix - 1;
1634 }
1635 else
1636 {
1637 ix = (int)VIGRA_CSTD::floor(x);
1638 ix1 = ix + 1;
1639 }
1640 if(y < 0.0)
1641 {
1642 y = -y;
1643 vigra_precondition(y <= h_ - 1.0,
1644 "SplineImageView::calculateIndices(): coordinates out of range.");
1645 iy = (int)VIGRA_CSTD::ceil(y);
1646 iy1 = iy - 1;
1647 }
1648 else if(y >= h_ - 1.0)
1649 {
1650 y = 2.0*h_-2.0-y;
1651 vigra_precondition(y > 0.0,
1652 "SplineImageView::calculateIndices(): coordinates out of range.");
1653 iy = (int)VIGRA_CSTD::ceil(y);
1654 iy1 = iy - 1;
1655 }
1656 else
1657 {
1658 iy = (int)VIGRA_CSTD::floor(y);
1659 iy1 = iy + 1;
1660 }
1661}
1662
1663/** \brief Create an image view for bi-linear interpolation.
1664
1665 This class behaves like \ref vigra::SplineImageView&lt;1, ...&gt;, but one can pass
1666 an additional template argument that determined the internal representation of the image.
1667 If this is equal to the argument type passed in the constructor, the image is not copied.
1668 By default, this works for \ref vigra::BasicImage, \ref vigra::BasicImageView,
1669 \ref vigra::MultiArray&lt;2, ...&gt;, and \ref vigra::MultiArrayView&lt;2, ...&gt;.
1670
1671 In addition to the function provided by \ref vigra::SplineImageView, there are functions
1672 <tt>unchecked(x,y)</tt> and <tt>unchecked(x,y, xorder, yorder)</tt> which improve speed by
1673 not applying bounds checking and reflective border treatment (<tt>isInside(x, y)</tt> must
1674 be <tt>true</tt>), but otherwise behave identically to their checked counterparts.
1675 In addition, <tt>x</tt> and <tt>y</tt> can have type \ref vigra::FixedPoint instead of
1676 <tt>double</tt>.
1677*/
1678template <class VALUETYPE, class INTERNAL_TRAVERSER = typename BasicImage<VALUETYPE>::const_traverser>
1680: public SplineImageView1Base<VALUETYPE, INTERNAL_TRAVERSER>
1681{
1683 public:
1684 typedef typename Base::value_type value_type;
1685 typedef typename Base::SquaredNormType SquaredNormType;
1686 typedef typename Base::size_type size_type;
1687 typedef typename Base::difference_type difference_type;
1688 enum StaticOrder { order = Base::order };
1690
1691 protected:
1692 typedef typename IteratorTraits<INTERNAL_TRAVERSER>::mutable_iterator InternalTraverser;
1694 typedef typename IteratorTraits<INTERNAL_TRAVERSER>::const_iterator InternalConstTraverser;
1696
1697 public:
1698
1699 /* when traverser and accessor types passed to the constructor are the same as the corresponding
1700 internal types, we need not copy the image (speed up)
1701 */
1702 SplineImageView1(InternalTraverser is, InternalTraverser iend, InternalAccessor /*sa*/)
1703 : Base(iend.x - is.x, iend.y - is.y, is)
1704 {}
1705
1707 : Base(s.second.x - s.first.x, s.second.y - s.first.y, s.first)
1708 {}
1709
1710 SplineImageView1(InternalConstTraverser is, InternalConstTraverser iend, InternalConstAccessor /*sa*/)
1711 : Base(iend.x - is.x, iend.y - is.y, is)
1712 {}
1713
1715 : Base(s.second.x - s.first.x, s.second.y - s.first.y, s.first)
1716 {}
1717
1718 template<class T, class SU>
1720 : Base(i.shape(0), i.shape(1)),
1721 image_(i.shape(0), i.shape(1))
1722 {
1723 for(unsigned int y=0; y<this->height(); ++y)
1724 for(unsigned int x=0; x<this->width(); ++x)
1725 image_(x,y) = detail::RequiresExplicitCast<VALUETYPE>::cast(i(x,y));
1726 this->internalIndexer_ = image_.upperLeft();
1727 }
1728
1729 template <class SrcIterator, class SrcAccessor>
1731 : Base(iend.x - is.x, iend.y - is.y),
1732 image_(iend - is)
1733 {
1734 copyImage(srcIterRange(is, iend, sa), destImage(image_));
1735 this->internalIndexer_ = image_.upperLeft();
1736 }
1737
1738 template <class SrcIterator, class SrcAccessor>
1740 : Base(s.second.x - s.first.x, s.second.y - s.first.y),
1741 image_(s.second - s.first)
1742 {
1743 copyImage(s, destImage(image_));
1744 this->internalIndexer_ = image_.upperLeft();
1745 }
1746
1747 InternalImage const & image() const
1748 { return image_; }
1749
1750 protected:
1751 InternalImage image_;
1752};
1753
1754template <class VALUETYPE, class StridedOrUnstrided>
1756: public SplineImageView1Base<VALUETYPE, MultiArrayView<2, VALUETYPE, StridedOrUnstrided> >
1757{
1759 public:
1760 typedef typename Base::value_type value_type;
1761 typedef typename Base::SquaredNormType SquaredNormType;
1762 typedef typename Base::size_type size_type;
1763 typedef typename Base::difference_type difference_type;
1764 enum StaticOrder { order = Base::order };
1765 typedef BasicImage<VALUETYPE> InternalImage;
1766
1767 protected:
1768 typedef MultiArrayView<2, VALUETYPE, StridedOrUnstrided> InternalIndexer;
1769
1770 public:
1771
1772 /* when traverser and accessor types passed to the constructor are the same as the corresponding
1773 internal types, we need not copy the image (speed up)
1774 */
1775 SplineImageView1(InternalIndexer const & i)
1776 : Base(i.shape(0), i.shape(1), i)
1777 {}
1778
1779 template<class T, class SU>
1780 SplineImageView1(MultiArrayView<2, T, SU> const & i)
1781 : Base(i.shape(0), i.shape(1)),
1782 image_(i.shape(0), i.shape(1))
1783 {
1784 copyImage(srcImageRange(i), destImage(image_));
1785 // for(unsigned int y=0; y<this->height(); ++y)
1786 // for(unsigned int x=0; x<this->width(); ++x)
1787 // image_(x,y) = detail::RequiresExplicitCast<VALUETYPE>::cast(i(x,y));
1788 this->internalIndexer_ = InternalIndexer(typename InternalIndexer::difference_type(this->width(), this->height()),
1789 image_.data());
1790 }
1791
1792 template <class SrcIterator, class SrcAccessor>
1793 SplineImageView1(SrcIterator is, SrcIterator iend, SrcAccessor sa)
1794 : Base(iend.x - is.x, iend.y - is.y),
1795 image_(iend-is)
1796 {
1797 copyImage(srcIterRange(is, iend, sa), destImage(image_));
1798 this->internalIndexer_ = InternalIndexer(typename InternalIndexer::difference_type(this->width(), this->height()),
1799 image_.data());
1800 }
1801
1802 template <class SrcIterator, class SrcAccessor>
1803 SplineImageView1(triple<SrcIterator, SrcIterator, SrcAccessor> s)
1804 : Base(s.second.x - s.first.x, s.second.y - s.first.y),
1805 image_(s.second - s.first)
1806 {
1807 copyImage(s, destImage(image_));
1808 this->internalIndexer_ = InternalIndexer(typename InternalIndexer::difference_type(this->width(), this->height()),
1809 image_.data());
1810 }
1811
1812 InternalImage const & image() const
1813 { return image_; }
1814
1815 protected:
1816 InternalImage image_;
1817};
1818
1819template <class VALUETYPE>
1820class SplineImageView<1, VALUETYPE>
1821: public SplineImageView1<VALUETYPE>
1822{
1823 typedef SplineImageView1<VALUETYPE> Base;
1824 public:
1825 typedef typename Base::value_type value_type;
1826 typedef typename Base::SquaredNormType SquaredNormType;
1827 typedef typename Base::size_type size_type;
1828 typedef typename Base::difference_type difference_type;
1829 enum StaticOrder { order = Base::order };
1830 typedef typename Base::InternalImage InternalImage;
1831
1832 protected:
1833 typedef typename Base::InternalTraverser InternalTraverser;
1834 typedef typename Base::InternalAccessor InternalAccessor;
1835 typedef typename Base::InternalConstTraverser InternalConstTraverser;
1836 typedef typename Base::InternalConstAccessor InternalConstAccessor;
1837
1838public:
1839
1840 /* when traverser and accessor types passed to the constructor are the same as the corresponding
1841 internal types, we need not copy the image (speed up)
1842 */
1843 SplineImageView(InternalTraverser is, InternalTraverser iend, InternalAccessor sa, bool /* unused */ = false)
1844 : Base(is, iend, sa)
1845 {}
1846
1847 SplineImageView(triple<InternalTraverser, InternalTraverser, InternalAccessor> s, bool /* unused */ = false)
1848 : Base(s)
1849 {}
1850
1851 SplineImageView(InternalConstTraverser is, InternalConstTraverser iend, InternalConstAccessor sa, bool /* unused */ = false)
1852 : Base(is, iend, sa)
1853 {}
1854
1855 SplineImageView(triple<InternalConstTraverser, InternalConstTraverser, InternalConstAccessor> s, bool /* unused */ = false)
1856 : Base(s)
1857 {}
1858
1859 template <class SrcIterator, class SrcAccessor>
1860 SplineImageView(SrcIterator is, SrcIterator iend, SrcAccessor sa, bool /* unused */ = false)
1861 : Base(is, iend, sa)
1862 {
1863 copyImage(srcIterRange(is, iend, sa), destImage(this->image_));
1864 }
1865
1866 template <class SrcIterator, class SrcAccessor>
1867 SplineImageView(triple<SrcIterator, SrcIterator, SrcAccessor> s, bool /* unused */ = false)
1868 : Base(s)
1869 {
1870 copyImage(s, destImage(this->image_));
1871 }
1872
1873 template<class T, class SU>
1874 SplineImageView(MultiArrayView<2, T, SU> const & i, bool /* unused */ = false)
1875 : Base(i)
1876 {}
1877};
1878
1879} // namespace vigra
1880
1881
1882#endif /* VIGRA_SPLINEIMAGEVIEW_HXX */
const_pointer data() const
Definition basicimage.hxx:1059
traverser upperLeft()
Definition basicimage.hxx:925
Base class for, and view to, vigra::MultiArray.
Definition multi_array.hxx:705
Class for a single RGB value.
Definition rgbvalue.hxx:128
RGBValue()
Definition rgbvalue.hxx:209
Base::value_type value_type
Definition rgbvalue.hxx:141
Base::SquaredNormType SquaredNormType
Definition rgbvalue.hxx:150
Two dimensional size object.
Definition diff2d.hxx:483
Create an image view for nearest-neighbor interpolation.
Definition splineimageview.hxx:1044
Create an image view for bi-linear interpolation.
Definition splineimageview.hxx:1681
Create a continuous view onto a discrete image using splines.
Definition splineimageview.hxx:100
value_type dy3(double x, double y) const
Definition splineimageview.hxx:252
value_type dx(double x, double y) const
Definition splineimageview.hxx:216
value_type dyy(difference_type const &d) const
Definition splineimageview.hxx:306
SquaredNormType g2(double x, double y) const
Definition splineimageview.hxx:739
value_type operator()(difference_type const &d, unsigned int dx, unsigned int dy) const
Definition splineimageview.hxx:276
bool isInside(double x, double y) const
Definition splineimageview.hxx:487
bool isInsideY(double y) const
Definition splineimageview.hxx:479
SquaredNormType g2y(double x, double y) const
Definition splineimageview.hxx:753
SplineImageView(triple< SrcIterator, SrcIterator, SrcAccessor > s, bool skipPrefiltering=false)
Definition splineimageview.hxx:187
value_type dy3(difference_type const &d) const
Definition splineimageview.hxx:318
SquaredNormType g2xx(double x, double y) const
Definition splineimageview.hxx:760
SquaredNormType g2xx(difference_type const &d) const
Definition splineimageview.hxx:382
SquaredNormType g2xy(double x, double y) const
Definition splineimageview.hxx:776
value_type dxx(double x, double y) const
Definition splineimageview.hxx:228
value_type operator()(double x, double y) const
Definition splineimageview.hxx:719
value_type operator()(difference_type const &d) const
Definition splineimageview.hxx:270
bool isInsideX(double x) const
Definition splineimageview.hxx:471
BasicImage< InternalValue > InternalImage
Definition splineimageview.hxx:127
value_type dxy(double x, double y) const
Definition splineimageview.hxx:234
SquaredNormType g2y(difference_type const &d) const
Definition splineimageview.hxx:376
size_type size() const
Definition splineimageview.hxx:413
value_type dx3(double x, double y) const
Definition splineimageview.hxx:246
NormTraits< VALUETYPE >::SquaredNormType SquaredNormType
Definition splineimageview.hxx:111
TinyVector< unsigned int, 2 > shape() const
Definition splineimageview.hxx:419
SquaredNormType g2yy(double x, double y) const
Definition splineimageview.hxx:768
Size2D size_type
Definition splineimageview.hxx:115
bool isValid(double x, double y) const
Definition splineimageview.hxx:497
value_type dy(double x, double y) const
Definition splineimageview.hxx:222
unsigned int width() const
Definition splineimageview.hxx:400
SquaredNormType g2(difference_type const &d) const
Definition splineimageview.hxx:364
value_type dxxy(difference_type const &d) const
Definition splineimageview.hxx:324
InternalImage const & image() const
Definition splineimageview.hxx:424
SquaredNormType g2xy(difference_type const &d) const
Definition splineimageview.hxx:388
bool sameFacet(double x0, double y0, double x1, double y1) const
Definition splineimageview.hxx:509
value_type dyy(double x, double y) const
Definition splineimageview.hxx:240
SquaredNormType g2x(difference_type const &d) const
Definition splineimageview.hxx:370
StaticOrder
Definition splineimageview.hxx:123
value_type dxx(difference_type const &d) const
Definition splineimageview.hxx:294
value_type dxyy(difference_type const &d) const
Definition splineimageview.hxx:330
value_type dxyy(double x, double y) const
Definition splineimageview.hxx:264
VALUETYPE value_type
Definition splineimageview.hxx:107
SquaredNormType g2yy(difference_type const &d) const
Definition splineimageview.hxx:394
unsigned int height() const
Definition splineimageview.hxx:406
void coefficientArray(double x, double y, Array &res) const
Definition splineimageview.hxx:687
value_type dx(difference_type const &d) const
Definition splineimageview.hxx:282
TinyVector< double, 2 > difference_type
Definition splineimageview.hxx:119
value_type dxy(difference_type const &d) const
Definition splineimageview.hxx:300
value_type dy(difference_type const &d) const
Definition splineimageview.hxx:288
SplineImageView(MultiArrayView< 2, U, S > const &s, bool skipPrefiltering=false)
Definition splineimageview.hxx:147
value_type dx3(difference_type const &d) const
Definition splineimageview.hxx:312
SplineImageView(SrcIterator is, SrcIterator iend, SrcAccessor sa, bool skipPrefiltering=false)
Definition splineimageview.hxx:167
value_type dxxy(double x, double y) const
Definition splineimageview.hxx:258
SquaredNormType g2x(double x, double y) const
Definition splineimageview.hxx:746
int floor(FixedPoint< IntBits, FracBits > v)
rounding down.
Definition fixedpoint.hxx:667
FixedPoint< 0, FracBits > dual_frac(FixedPoint< IntBits, FracBits > v)
dual fractional part: 1 - frac(v).
Definition fixedpoint.hxx:658
int round(FixedPoint< IntBits, FracBits > v)
rounding to the nearest integer.
Definition fixedpoint.hxx:683
void mul(FixedPoint< IntBits1, FracBits1 > l, FixedPoint< IntBits2, FracBits2 > r, FixedPoint< IntBits3, FracBits3 > &result)
multiplication with enforced result type.
Definition fixedpoint.hxx:605
void recursiveFilterY(...)
Performs 1 dimensional recursive filtering (1st and 2nd order) in y direction.
NumericTraits< V >::Promote sum(TinyVectorBase< V, SIZE, D1, D2 > const &l)
sum of the vector's elements
Definition tinyvector.hxx:2073
void recursiveFilterX(...)
Performs 1 dimensional recursive filtering (1st and 2nd order) in x direction.
FFTWComplex< R >::SquaredNormType squaredNorm(const FFTWComplex< R > &a)
squared norm (= squared magnitude)
Definition fftw3.hxx:1044
FixedPoint< 0, FracBits > frac(FixedPoint< IntBits, FracBits > v)
fractional part.
Definition fixedpoint.hxx:650
void copyImage(...)
Copy source image into destination image.
Export associated information for each image iterator.
Definition iteratortraits.hxx:110

© Ullrich Köthe (ullrich.koethe@iwr.uni-heidelberg.de)
Heidelberg Collaboratory for Image Processing, University of Heidelberg, Germany

html generated using doxygen and Python
vigra 1.12.1