Artifact r-cran-genieclust_1.1.6-1_amd64

Metadata
deb_control_files:
- control
- md5sums
deb_fields:
  Architecture: amd64
  Depends: r-api-4.0, r-cran-rcpp (>= 1.0.4), libc6 (>= 2.38), libgcc-s1 (>= 3.0),
    libgomp1 (>= 4.9), libstdc++6 (>= 14)
  Description: |-
    GNU R Genie++ Hierarchical Clustering Algorithm with Noise Points Detection
     A retake on the Genie algorithm - a robust hierarchical clustering
     method (Gagolewski, Bartoszuk, Cena, 2016
     <DOI:10.1016/j.ins.2016.05.003>). Now faster and more memory efficient;
     determining the whole hierarchy for datasets of 10M points in low
     dimensional Euclidean spaces or 100K points in high-dimensional ones
     takes only 1-2 minutes. Allows clustering with respect to mutual
     reachability distances so that it can act as a noise point detector or a
     robustified version of 'HDBSCAN*' (that is able to detect a predefined
     number of clusters and hence it does not dependent on the somewhat
     fragile 'eps' parameter).
     .
     The package also features an implementation of economic inequity indices
     (the Gini, Bonferroni index) and external cluster validity measures
     (partition similarity scores; e.g., the adjusted Rand, Fowlkes-Mallows,
     adjusted mutual information, pair sets index).
     .
     See also the 'Python' version of 'genieclust' available on 'PyPI', which
     supports sparse data, more metrics, and even larger datasets.
  Homepage: https://cran.r-project.org/package=genieclust
  Installed-Size: '575'
  Maintainer: Debian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
  Package: r-cran-genieclust
  Priority: optional
  Section: gnu-r
  Version: 1.1.6-1
srcpkg_name: r-cran-genieclust
srcpkg_version: 1.1.6-1

File

r-cran-genieclust_1.1.6-1_amd64.deb
Binary file r-cran-genieclust_1.1.6-1_amd64.deb cannot be displayed. you can view it raw or download it instead.

Relations

Relation Direction Type Name
built-using Source package r-cran-genieclust_1.1.6-1

binary package System - - 1 month, 2 weeks ago 2 weeks, 4 days
BETA