Postrefinement: The model rs.

This is intended to be the simplest possible model for the reciprocal lattice point (RLP), describing the RLP
as a sphere of radius r,, which is globally constant over the whole dataset consisting of an ensemble of
crystal lattices (or frames).

1 The size of the RLP model

The constant value of r, is computed as follows. From model refinement and integration, each crystal has
associated with it a list of Miller indices h, and a reciprocal space orientation matrix A defined by Rossmann
et al. (1979),

* * *
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The reciprocal space coordinates of RLP 7 are computed with
q = Ah, (2)

leading to a reciprocal position Q, with a small distance offset r;, away from the Ewald sphere that repre-
sents the perfect diffracting condition. The fact that |r;, | is non-zreo is indicative that Bragg observations
from still shots represent partial reflections. Note that array index ¢ denoting a specific Miller index is
dropped on occasion for clarity. The geometry is explained in Fig. 1.
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Fig. 1. Ewald sphere construction.

The quantity |r;,| is given by

1
= [ld +sol| = lls1|l = [la +sol[ — 7, (3)

where s, and s, are respectively the beam vector and the diffracted ray vector, each of length 1/\. For
the model rs, the constant value of r_ is taken as the root mean-squared value of r;, over all Bragg spots
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integrated from a given crystal. It therefore depends on whatever algorithm has been used to predict spots,
regardless of whether there is measurable signal in the spots.

2 The geometry of the RLP model

The intention is to create a model of the RLP similar to a hard sphere, so that if any portion of the sphere
touches the Ewald sphere there is signal expected, otherwise none. However, this is a discontinuous model
(in terms of the spot partiality expressed as a function of r;, and therefore not easily amenable to parameter
fitting. Therefore we relax the requirement for a hard sphere and adopt a radial profile somewhat smoother.
For the Uervirojnangkoorn (2015) paper we used a profile based on a Lorentzian function. The derivation
is as follows.

A suggestion from James Holton defines the Bragg spot partiality as

_Area of intersection between the Ewald sphere and F,;,
~ Area of intersection between the Ewald sphere and F,o,’

(4)

p

The "areas of intersection" in question are really spherical caps that represent the Ewald sphere's in-
tersection with the reciprocal space ball of radius r,. However, we're not going to insist on such detail;
instead we will simply take a circular area of radius 7, such that we have the right triangle

7“127 =ri—r?, (5)

and then the approximate expression for partiality becomes (model A),
2 2
T r

p h .
= — =1——4%for|r,| <r,,0otherwise. 6
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Partiality as a function of r, is a simple inverted parabola with p, = 1 at r;, = 0 and roots at £, (Fig.

2). Outside of this domain the partiality is 0.
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Fig. 2. Three partiality models: a simple hard-sphere model (p 4, blue), a soft-sphere Lorentzian function
(pp, red), and an intermediate model based on a Gaussian function (p., green).



However, having a mathematically discontinuous expression (p 4) will leave us at a disadvantage for
postrefinement. The postrefinement strategy will be to express the lack of closure 7;, in terms of model
parameters such as the unit cell dimensions and crystal orientation. Then optimize a target function f
expressed in terms of the partiality p, attempting to find parameter values to minimize f. Itis crucial in this
procedure to have an expression for partiality that is smooth and differentiable.

We will therefore have to modify our simple model of the Bragg spot as a reciprocal space ball. One
functional form that might have the desired properties is the Lorentzian function

1
L= l#' (7)
a2+ (40)2
where I is the full-width at half maximum (FWHM).

Let's tinker with this expression so it conforms to expectation...first multiply by a scaling constant to get

L'(0)=1:

I’
L' =—1L, 8
5 (8)
and finally setting the FWHM to the FWHM value obtained from eqn (6),
2
r==2=rs (9)

V2’
so we get a new partiality expression (model B):

7"2

SN E— 10
2r2 + 12 (10)
Finally, for postrefinement we'll need the partial derivative of p; with respect to r;, (use the quotient
rule):

Pp

or, — (2r2 +12)2°

3 Model parameters and target function

The goal of this work is to refine the parameters of the partiality model so that the observed intensi-
ties, corrected to their full spot equivalents, offer the best agreement over repeated measurements of
the same asymmetric-unit Miller index. In practice, the parameters representing each crystal lattice are
refined against a set of reference intensities I.;. Program prime uses simple scaling to create an initial
reference, after which repeated cycles of postrefinement are performed, with the reference being created
from the corrected, merged intensities from the previous cycle. In cxi.merge the reference is an isomor-
phous atomic structure, from which intensities I, are calculated, and only one cycle is performed. The
polarization-corrected measurements are denoted I, .. The parameters refined for each crystal lattice are:

G the scale factor.

B: the Wilson B-factor.

6,: incremental crystal rotation angle on x-axis (_L to beam).

¢, incremental crystal rotation angle on y-axis (L to beam).

The least-squares target function used to achieve best agreement between model and observation is

2
I = Z(G exp<8B/\—ng9>pBIref - Iobs>2 (12)
(2

where 0 is the Bragg diffraction angle defined in Fig. 1, and A the wavelength, both treated as constants,
and the sum is over all measurements integrated from a single crystal lattice.



4 Necessary derivatives for parameter refinement

Given the least-squares form, derivatives of the target functional with respect to parameter /7 are in general

0F OR,;
— =2 R.—= 13
o7 Z o5 (13)
where the residual comparison on each observation is
—8Bsin’ 0
Ri = Gexp( )pBIref - ]obs' (14)

N2
The derivatives in the Jacobian matrix, required for parameter optimization, are more-or-less straightfor-
ward:

OR; —8Bsin? 0
(T (15
OR; —8Bsin? 0

(16)
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The derivatives with respect to 6, and Hy require more work. All of the dependence on crystal orienta-
tion comes through the expression for partiality:

OR, OR; Opg

- = , (17)
89$|y 8pB 80$|y
with
OR,; —8Bsin? 0
Op = Gexp(T)Iref. (18)

As for the variation of the partiality model p defined in (10), the rs model assumes that the sphere
radius 7 is fixed, thus the only remaining variable is the distance r;, between RLP and Ewald sphere:

Opp . dpp Ory,

= ) 19
8035‘?; ory, 8033‘?} (19)
0
An expression for % has already been given in (11), so it now remains to investigate the derivative
Tp
07”h . . .
20 based on the definition of r;, given in (3).
x|y
Introduce the vector S:
1
m=1ISll— 5 (1)
0S
0 S50
o (22)
0S 0
S (23)
89$|y 891,@
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Finally we investigate the derivative of the RLP position q with respect to the crystal rotations. The ef-
fective orientation matrix A may be expressed as the reference orientation matrix A _; determined during
crystal refinement and integration, composed with additional rotational operators R, and Ry determined
by the postrefined angles 6, and 6,:

A= [Ry<[Rx<Aref))' (24)
The derivatives of q work out as follows:

0q OR,,

%~ Ryag- . A, ¢h, (25)

oq 8|Ry

— = —=R_ A h. 26

00, 90, et (26)

The derivatives of the rotation operator are already encoded in the cctbx library (scitbx/matrix/ _init

Formulae for the rotation operator and its derivative with respect to angle 6 are given in the LaTeX docu-
mentation included in that directory.

5 The model rs_hybrid: Additional refinement of the parameter 7,

After refining the parameters G, B, 0, and Gy we now decide to add a second minimization round to refine

an additional parameter for each crystal lattice: r_, the RLP radius, as shown in Fig. 1.
We thus need the derivative of the residual &, with respect to this new parameter:

N 8pB 67‘8'

OR,;
or

(27)

S

7

where has already been given by Egn. (18).

B
The remaining factor is derived from the partiality expression associated with the Lorentzian RLP profile,
Egn. (10). Using the quotient rule, with N=numerator and D=denominator,

ON oD
“p-“InN ,
Opp _ or, or, _ Ar ry, (28)

or D? (27‘,% +1r2)2°
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6 A Gaussian-shaped radial profile for the RLP

One criticism of the RLP model B and its Lorentzian-shaped radial profile pz(r},) is that the profile tails off
very gradually. There is still a significant partiality fraction many radii away from the RLP center. Perhaps
this is unphysical; after all, we are trying to test the hypothesis that negative measurements are in fact false
predictions that are in fact too far from the Ewald sphere to contribute any diffracted signal. Therefore, let's
choose a model that would provide more sharp delineation between RLP and not-RLP. We'll then test if this
model fits the data better, presumably by looking at the target functional or the correlation coefficient. A
candidate function giving a sharper cutoff, while still being smoothly differentiable, is the Gaussian,

1 _ 2
N V2712 P~ (xZUéL) ) (29)

with mean p and standard deviation o.
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As before, we develop a modified function that has an amplitude of 1 at a reciprocal-distance offset r},
of 0:
_Th
202
To eliminate the variable o we set the FWHM of function (30),

2v/(2In2)02, (31)

to be equal to the FWHM expression worked out for models A and B in eqn (9). From this condition we
can work out the value of the variance

G’ = exp( ). (30)

2

= 32
41n2’ (32)

and now eliminate o to arrive at a new expression for the partiality (model G):

9 r

—(21n2)r2
po = exp(— 22 (33)

S
This function is plotted in Fig. 2 (green dots), illustrating that p, is a better approximation to the hard-
sphere RLP model (blue) thanis pg (red). Finally, for parameter refinement we need the partial derivatives
of p, with respect to its constituent variables,

opa (41n2)r),
6_7“,1 = _pGT' (34)
and 5 (41n2) )
D 41n2)r
87’G ~Pa r3 " (35)



