
Postrefinement: The model rs.
This is intended to be the simplest possible model for the reciprocal laƫce point (RLP), describing the RLP
as a sphere of radius 𝑟𝑠, which is globally constant over the whole dataset consisƟng of an ensemble of
crystal laƫces (or frames).

1 The size of the RLP model
The constant value of 𝑟𝑠 is computed as follows. From model refinement and integraƟon, each crystal has
associatedwith it a list ofMiller indices𝐡𝐢 and a reciprocal space orientaƟonmatrix𝐀 defined by Rossmann
et al. (1979),
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The reciprocal space coordinates of RLP 𝑖 are computed with

𝐪 = 𝐀𝐡, (2)

leading to a reciprocal posiƟon Q, with a small distance offset 𝑟ℎ away from the Ewald sphere that repre-
sents the perfect diffracƟng condiƟon. The fact that |𝑟ℎ| is non-zreo is indicaƟve that Bragg observaƟons
from sƟll shots represent parƟal reflecƟons. Note that array index 𝑖 denoƟng a specific Miller index is
dropped on occasion for clarity. The geometry is explained in Fig. 1.
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Fig. 1. Ewald sphere construcƟon.

The quanƟty |𝑟ℎ| is given by

𝑟ℎ = ||𝐪 + 𝐬𝟎|| − ||𝐬𝟏|| = ||𝐪 + 𝐬𝟎|| − 1
𝜆 , (3)

where 𝑠0 and 𝑠1 are respecƟvely the beam vector and the diffracted ray vector, each of length 1/𝜆. For
the model rs, the constant value of 𝑟𝑠 is taken as the root mean-squared value of 𝑟ℎ over all Bragg spots
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integrated from a given crystal. It therefore depends onwhatever algorithm has been used to predict spots,
regardless of whether there is measurable signal in the spots.

2 The geometry of the RLP model
The intenƟon is to create a model of the RLP similar to a hard sphere, so that if any porƟon of the sphere
touches the Ewald sphere there is signal expected, otherwise none. However, this is a disconƟnuousmodel
(in terms of the spot parƟality expressed as a funcƟon of 𝑟ℎ and therefore not easily amenable to parameter
fiƫng. Thereforewe relax the requirement for a hard sphere and adopt a radial profile somewhat smoother.
For the Uervirojnangkoorn (2015) paper we used a profile based on a Lorentzian funcƟon. The derivaƟon
is as follows.

A suggesƟon from James Holton defines the Bragg spot parƟality as

𝑝 = Area of intersecƟon between the Ewald sphere and 𝐹ℎ𝑘𝑙
Area of intersecƟon between the Ewald sphere and 𝐹000

. (4)

The "areas of intersecƟon" in quesƟon are really spherical caps that represent the Ewald sphere's in-
tersecƟon with the reciprocal space ball of radius 𝑟𝑠. However, we're not going to insist on such detail;
instead we will simply take a circular area of radius 𝑟𝑝 such that we have the right triangle

𝑟2
𝑝 = 𝑟2

𝑠 − 𝑟2
ℎ, (5)

and then the approximate expression for parƟality becomes (model A),

𝑝𝐴 = 𝜋𝑟2
𝑝

𝜋𝑟2𝑠
= 1 − 𝑟2

ℎ
𝑟2𝑠

for |𝑟ℎ| < 𝑟𝑠, 0 otherwise. (6)

ParƟality as a funcƟon of 𝑟ℎ is a simple inverted parabola with 𝑝𝐴 = 1 at 𝑟ℎ = 0 and roots at ±𝑟𝑠 (Fig.
2). Outside of this domain the parƟality is 0.
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Fig. 2. Three parƟality models: a simple hard-sphere model (𝑝𝐴, blue), a soŌ-sphere Lorentzian funcƟon
(𝑝𝐵, red), and an intermediate model based on a Gaussian funcƟon (𝑝𝐺, green).
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However, having a mathemaƟcally disconƟnuous expression (𝑝𝐴) will leave us at a disadvantage for
postrefinement. The postrefinement strategy will be to express the lack of closure 𝑟ℎ in terms of model
parameters such as the unit cell dimensions and crystal orientaƟon. Then opƟmize a target funcƟon 𝑓
expressed in terms of the parƟality 𝑝, aƩempƟng to find parameter values to minimize 𝑓 . It is crucial in this
procedure to have an expression for parƟality that is smooth and differenƟable.

We will therefore have to modify our simple model of the Bragg spot as a reciprocal space ball. One
funcƟonal form that might have the desired properƟes is the Lorentzian funcƟon

𝐿 = 1
𝜋

1
2Γ

𝑥2 + (1
2Γ)2 , (7)

where Γ is the full-width at half maximum (FWHM).
Let's Ɵnker with this expression so it conforms to expectaƟon...first mulƟply by a scaling constant to get

𝐿′(0) = 1:
𝐿′ = 𝜋Γ

2 𝐿, (8)

and finally seƫng the FWHM to the FWHM value obtained from eqn (6),

Γ = 2𝑟𝑠√
2
, (9)

so we get a new parƟality expression (model B):

𝑝𝐵 = 𝑟2
𝑠

2𝑟2
ℎ + 𝑟2𝑠

. (10)

Finally, for postrefinement we'll need the parƟal derivaƟve of 𝑝𝐵 with respect to 𝑟ℎ (use the quoƟent
rule):

𝜕𝑝𝐵
𝜕𝑟ℎ

= −4𝑟2
𝑠𝑟ℎ

(2𝑟2
ℎ + 𝑟2𝑠)2 . (11)

3 Model parameters and target funcƟon
The goal of this work is to refine the parameters of the parƟality model so that the observed intensi-
Ɵes, corrected to their full spot equivalents, offer the best agreement over repeated measurements of
the same asymmetric-unit Miller index. In pracƟce, the parameters represenƟng each crystal laƫce are
refined against a set of reference intensiƟes 𝐼ref . Program prime uses simple scaling to create an iniƟal
reference, aŌer which repeated cycles of postrefinement are performed, with the reference being created
from the corrected, merged intensiƟes from the previous cycle. In cxi.merge the reference is an isomor-
phous atomic structure, from which intensiƟes 𝐼ref are calculated, and only one cycle is performed. The
polarizaƟon-correctedmeasurements are denoted 𝐼obs. The parameters refined for each crystal laƫce are:

𝐺: the scale factor.
𝐵: the Wilson 𝐵-factor.
𝜃𝑥: incremental crystal rotaƟon angle on 𝑥-axis (⟂ to beam).
𝜃𝑦: incremental crystal rotaƟon angle on 𝑦-axis (⟂ to beam).
The least-squares target funcƟon used to achieve best agreement between model and observaƟon is

ℱ = ∑
𝑖

(𝐺 exp(−8𝐵 sin2 𝜃
𝜆2 )𝑝𝐵𝐼ref − 𝐼obs)2 (12)

where 𝜃 is the Bragg diffracƟon angle defined in Fig. 1, and 𝜆 the wavelength, both treated as constants,
and the sum is over all measurements integrated from a single crystal laƫce.
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4 Necessary derivaƟves for parameter refinement
Given the least-squares form, derivaƟves of the target funcƟonal with respect to parameter𝒫 are in general

𝜕ℱ
𝜕𝒫 = 2 ∑

𝑖
ℛ𝑖

𝜕ℛ𝑖
𝜕𝒫 , (13)

where the residual comparison on each observaƟon is

ℛ𝑖 = 𝐺 exp(−8𝐵 sin2 𝜃
𝜆2 )𝑝𝐵𝐼ref − 𝐼obs. (14)

The derivaƟves in the Jacobian matrix, required for parameter opƟmizaƟon, are more-or-less straighƞor-
ward:

𝜕ℛ𝑖
𝜕𝐺 = exp(−8𝐵 sin2 𝜃

𝜆2 )𝑝𝐵𝐼ref , (15)

𝜕ℛ𝑖
𝜕𝐵 = 𝐺 exp(−8𝐵 sin2 𝜃

𝜆2 )𝑝𝐵𝐼ref (−8 sin2 𝜃
𝜆2 ) . (16)

The derivaƟves with respect to 𝜃𝑥 and 𝜃𝑦 require more work. All of the dependence on crystal orienta-
Ɵon comes through the expression for parƟality:

𝜕ℛ𝑖
𝜕𝜃𝑥|𝑦

= 𝜕ℛ𝑖
𝜕𝑝𝐵

𝜕𝑝𝐵
𝜕𝜃𝑥|𝑦

, (17)

with

𝜕ℛ𝑖
𝜕𝑝𝐵

= 𝐺 exp(−8𝐵 sin2 𝜃
𝜆2 )𝐼ref . (18)

As for the variaƟon of the parƟality model 𝑝𝐵 defined in (10), the rs model assumes that the sphere
radius 𝑟𝑠 is fixed, thus the only remaining variable is the distance 𝑟ℎ between RLP and Ewald sphere:

𝜕𝑝𝐵
𝜕𝜃𝑥|𝑦

= 𝜕𝑝𝐵
𝜕𝑟ℎ

𝜕𝑟ℎ
𝜕𝜃𝑥|𝑦

. (19)

An expression for
𝜕𝑝𝐵
𝜕𝑟ℎ

has already been given in (11), so it now remains to invesƟgate the derivaƟve

𝜕𝑟ℎ
𝜕𝜃𝑥|𝑦

, based on the definiƟon of 𝑟ℎ given in (3).

Introduce the vector 𝐒:
𝐒 = 𝐪 + 𝐬𝟎, (20)

𝑟ℎ = ||𝐒|| − 1
𝜆 , (21)

𝜕𝑟ℎ
𝜕𝜃𝑥|𝑦

=
𝐒 ⋅ 𝜕𝐒

𝜕𝜃𝑥|𝑦
||𝐒|| , (22)

𝜕𝐒
𝜕𝜃𝑥|𝑦

= 𝜕𝐪
𝜕𝜃𝑥|𝑦

. (23)
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Finally we invesƟgate the derivaƟve of the RLP posiƟon 𝐪 with respect to the crystal rotaƟons. The ef-
fecƟve orientaƟonmatrix 𝐀 may be expressed as the reference orientaƟonmatrix𝐀ref determined during
crystal refinement and integraƟon, composed with addiƟonal rotaƟonal operators ℝ𝑥 and ℝ𝑦 determined
by the postrefined angles 𝜃𝑥 and 𝜃𝑦:

𝐀 = ℝ𝑦(ℝ𝑥(𝐀ref)). (24)

The derivaƟves of 𝐪 work out as follows:

𝜕𝐪
𝜕𝜃𝑥

= ℝ𝑦
𝜕ℝ𝑥
𝜕𝜃𝑥

𝐀ref𝐡, (25)

𝜕𝐪
𝜕𝜃𝑦

= 𝜕ℝ𝑦
𝜕𝜃𝑦

ℝ𝑥𝐀ref𝐡. (26)

ThederivaƟves of the rotaƟonoperator are already encoded in the cctbx library (scitbx/matrix/__init__.py).
Formulae for the rotaƟon operator and its derivaƟve with respect to angle 𝜃 are given in the LaTeX docu-
mentaƟon included in that directory.

5 The model rs_hybrid: AddiƟonal refinement of the parameter 𝑟𝑠
AŌer refining the parameters𝐺, 𝐵, 𝜃𝑥, and 𝜃𝑦 we now decide to add a secondminimizaƟon round to refine
an addiƟonal parameter for each crystal laƫce: 𝑟𝑠, the RLP radius, as shown in Fig. 1.

We thus need the derivaƟve of the residual ℛ𝑖 with respect to this new parameter:

𝜕ℛ𝑖
𝜕𝑟𝑠

= 𝜕ℛ𝑖
𝜕𝑝𝐵

𝜕𝑝𝐵
𝜕𝑟𝑠

, (27)

where
𝜕ℛ𝑖
𝜕𝑝𝐵

has already been given by Eqn. (18).

The remaining factor is derived from the parƟality expression associatedwith the Lorentzian RLP profile,
Eqn. (10). Using the quoƟent rule, with 𝑁=numerator and 𝐷=denominator,

𝜕𝑝𝐵
𝜕𝑟𝑠

=

𝜕𝑁
𝜕𝑟𝑠

𝐷 − 𝜕𝐷
𝜕𝑟𝑠

𝑁

𝐷2 = 4𝑟𝑠𝑟ℎ
2

(2𝑟2
ℎ + 𝑟2𝑠)2 . (28)

6 A Gaussian-shaped radial profile for the RLP
One criƟcism of the RLP model B and its Lorentzian-shaped radial profile 𝑝𝐵(𝑟ℎ) is that the profile tails off
very gradually. There is sƟll a significant parƟality fracƟon many radii away from the RLP center. Perhaps
this is unphysical; aŌer all, we are trying to test the hypothesis that negaƟvemeasurements are in fact false
predicƟons that are in fact too far from the Ewald sphere to contribute any diffracted signal. Therefore, let's
choose amodel that would providemore sharp delineaƟon between RLP and not-RLP.We'll then test if this
model fits the data beƩer, presumably by looking at the target funcƟonal or the correlaƟon coefficient. A
candidate funcƟon giving a sharper cutoff, while sƟll being smoothly differenƟable, is the Gaussian,

𝐺 = 1√
2𝜋𝜎2 exp(−(𝑥 − 𝜇)2

2𝜎2 ), (29)

with mean 𝜇 and standard deviaƟon 𝜎.
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As before, we develop a modified funcƟon that has an amplitude of 1 at a reciprocal-distance offset 𝑟ℎ
of 0:

𝐺′ = exp(− 𝑟2
ℎ

2𝜎2 ). (30)

To eliminate the variable 𝜎 we set the FWHM of funcƟon (30) ,

2√(2 ln 2)𝜎2, (31)

to be equal to the FWHM expression worked out for models A and B in eqn (9). From this condiƟon we
can work out the value of the variance

𝜎2 = 𝑟2
𝑠

4 ln 2 , (32)

and now eliminate 𝜎 to arrive at a new expression for the parƟality (model G):

𝑝𝐺 = exp(−(2 ln 2)𝑟2
ℎ

𝑟2𝑠
), (33)

This funcƟon is ploƩed in Fig. 2 (green dots), illustraƟng that 𝑝𝐺 is a beƩer approximaƟon to the hard-
sphere RLP model (blue) than is 𝑝𝐵 (red). Finally, for parameter refinement we need the parƟal derivaƟves
of 𝑝𝐺 with respect to its consƟtuent variables,

𝜕𝑝𝐺
𝜕𝑟ℎ

= −𝑝𝐺
(4 ln 2)𝑟ℎ

𝑟2𝑠
, (34)

and
𝜕𝑝𝐺
𝜕𝑟𝑠

= 𝑝𝐺
(4 ln 2)𝑟2

ℎ
𝑟3𝑠

. (35)
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