
1

Modern approaches to programming

Ralf W. Grosse-Kunstleve

Computational Crystallography Initiative
Lawrence Berkeley National Laboratory

Siena Computational Crystallography School 2005 Disclosure

• Experience
– Basic
– 6502 machine language
– Pascal
– Fortran 77
– csh, sh
– C
– Perl
– Python
– C++

• Last five years
– Python & C++ -> cctbx, phenix

• Development focus
– phenix.refine, phenix.hyss

• No experience
– TCL/TK
– Java

Computational Crystallography Toolbox

• Open-source component of phenix
– Automation of macromolecular crystallography

• mmtbx – macromolecular toolbox
• cctbx – general crystallography
• scitbx – general scientific computing
• libtbx – self-contained cross-platform build system

• SCons – make replacement
• Python scripting layer (written in C)
• Boost C++ libraries

• Exactly two external dependencies:
– OS & C/C++ compiler

Object-oriented programming

The whole is more than the sum of its parts.

Syntax is secondary.

Purpose of modern concepts

• Consider
– You could write everything yourself
– You could write everything in machine language

• Design of Modern Languages
– Support large-scale projects <-> Support collaboration
– Maximize code reuse <-> Minimize redundancy
– Software miracle: improves the more it is shared

Main concepts behind modern languages

• Namespaces
• A special namespace: class
• Polymorphism
• Automatic memory management
• Exception handling
• Concurrent development

– Developer communication

• Secondary details
– friend, public, protected, private

2

Evolution of programming languages

Namespaces
• Emulation

MtzSomething (CCP4 CMTZ library)
http://www.ccp4.ac.uk/dist/html/C_library/cmtzlib_8h.html

QSomething (Qt GUI toolkit)
http://doc.trolltech.com/4.0/classes.html

PySomething (Python)
http://docs.python.org/api/genindex.html

glSomething (OpenGL library)
http://www.rush3d.com/reference/opengl-bluebook-1.0/

A00, A01, C02, C05, C06 (NAG library)
http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp

• Advantages
– Does not require support from the language

• Disadvantages
– Have to write XXXSomething all the time
– Nesting is impractical

Evolution of programming languages

Namespaces
• Formalization

similar to:
transition from flat file systems to files and directories

namespace MTZ {
Something

}

• Disadvantages
– Does require support from the language

• Advantages
– Inside a namespace it is sufficient to write Something

• as opposed to XXXSomething
– Nesting “just works”

• If you know how to work with a directories you know how to
work with namespaces

Evolution of programming languages

A special namespace: class

• Emulation
– COMMON block with associated functions

double precision a, b, c, alpha, beta, gamma
COMMON /unit_cell/ a, b, c, alpha, beta, gamma
subroutine ucinit(a, b, c, alpha, beta, gamma)
double precision function ucvol()
double precision function stol(h, k, l)

• Disadvantage
– The associations are implicit

• difficult for others to see the connections

Evolution of programming languages

A special namespace: class

• Formalization
class unit_cell:

def __init__(self, a, b, c, alpha, beta, gamma)
def vol(self)

def stol(self, h, k, l)

• What’s in the name?
– class, struct, type, user-defined type

• Advantage
– The associations are explicit

• easier for others to see the connections

Evolution of programming languages

A special namespace: class

• Formalization
class unit_cell:

def __init__(self, a, b, c, alpha, beta, gamma)
def vol(self)

def stol(self, h, k, l)

• What’s in the name?
– class, struct, type, user-defined type

• Advantage
– The associations are explicit

• easier for others to see the connections

Evolution of programming languages

A namespace with life-time: self, this

• COMMON block = only one instance
• class = blueprint for creating arbitrarily many instances

• Example
hex = unit_cell(10, 10, 15, 90, 90, 120)
rho = unit_cell(7.64, 7.64, 7.64, 81.79, 81.79, 81.79)

• hex is one instance, rho another of the same class
• Inside the class definition hex and rho are both called self

• What’s in the name?
– self, this, instance, object

• hex and rho live at the same time

• the memory for hex and rho is allocated when the object is
constructed

3

Life time: a true story

A true story about my cars, told in the Python language:

class car:

def __init__(self, name, color, year):
self.name = name

self.color = color
self.year = year

car1 = car(name="Toby", color="gold", year=1988)
car2 = car(name="Emma", color="blue", year=1986)

car3 = car(name="Jamson", color="gray", year=1990)
del car1 # donated to charity

del car2 # it was stolen!
car4 = car(name="Jessica", color="red", year=1995)

Alternative view of class

• Function returning only one value

real function stol(x)
...
s = stol(x)

• Function returning multiple values

class wilson_scaling:
def __init__(self, f_obs):

self.k = ...
self.b = ...

wilson = wilson_scaling(f_obs)
print wilson.k
print wilson.b

• Class is a generalization of a function

Evolution of programming languages

A special namespace: class
• Summary

– A class is a namespace
– A class is a blueprint for object

construction and deletion
– In the blueprint the object is called self or this
– Outside the object is just another variable

• When to use classes?
– Only for “big things”?
– Is it expensive?

• Advice
– If you think about a group of data as one entity

-> use a class to formalize the grouping
– If you have an algorithm with 2 or more result values

-> implement as class

Evolution of programming languages

Polymorphism
• The same source code works for different types

• Runtime polymorphism
– “Default” in dynamically typed languages (scripting

languages)

– Very complex in statically typed languages (C++)

• Compile-time polymorphism
– C++ templates

Evolution of programming languages

Compile-time polymorphism
• Emulation

– General idea
S subroutine seigensystem(matrix, values, vectors)
D subroutine deigensystem(matrix, values, vectors)
S real matrix(...)
D double precision matrix(...)
S real values(...)
D double precision values(...)
S real vectors(...)
D double precision vectors(...)

Use grep or some other command to generate the single and
double precision versions

– Real example

• http://www.netlib.org/lapack/individualroutines.html

Evolution of programming languages

Compile-time polymorphism
• Formalization

template <typename FloatType>
class eigensystem
{

eigensystem(FloatType* matrix)
{

// ...
}

};

eigensystem<float> es(matrix);

eigensystem<double> es(matrix);

• The C++ template machinery automatically
generates the type-specific code as needed

4

Automatic memory management

• Context
– Fortran: no dynamic memory management

• Common symptom

– Please increase MAXA and recompile

– C: manual dynamic memory management via malloc & free

• Common symptons

– Memory leaks

– Segmentation faults

– Buffer overruns (vector for virus attacks)

– Industry for debugging tools (e.g. purify)

Automatic memory management

• Emulation: Axel Brunger’s ingenious approach
– Insight: stack does automatic memory management!

subroutine action(args)
allocate resources
call action2(args, resources)
deallocate resources

subroutine action2(args, resources)
do work

– Disadvantage
• Cumbersome (boiler plate)

Automatic memory management

• Formalization

– Combination
• Formalization of object construction and deletion (class)

• Polymorphism

– Result = fully automatic memory management

– “Default” in scripting languages
• garbage collection, reference counting

– C++ Standard Template Library (STL) container types
• std::vector<T>

• std::set<T>

• std::list<T>

• Advice

– Use the STL container types

– Never use new and delete

• Except in combination with smart pointers
– std::auto_ptr<T>, boost::shared_ptr<T>

Evolution of programming languages

Exception handling
• Emulation

subroutine matrix_inversion(a, ierr)

...

matrix_inversion(a, ierr)

if (ierr .ne. 0) stop 'matrix not invertible‘

• Disadvantage
– ierr has to be propagated and checked throughout the

call hierarchy -> serious clutter

– to side-step the clutter: stop
• not suitable as library

Emulation of exception handling
program top
call high_level(args, ierr)
if (ierr .ne. 0) then
write(6, *) ’there was an error’, ierr

endif
end
subroutine high_level(args, ierr)
call medium_level(args, ierr)
if (ierr .ne. 0) return
do something useful
end
subroutine medium_level(args, ierr)
call low_level(args, ierr)
if (ierr .ne. 0) return
do something useful
end
subroutine low_level(args, ierr)
if (args are not good) then
ierr = 1
return

endif
do something useful
end

Evolution of programming languages

Exception handling

• Formalization
def top():
try:

high_level(args)
except RuntimeError, details:

print details
def high_level(args):
medium_level(args)
do something useful

def medium_level(args):
low_level(args)
do something useful

def low_level(args):
if (args are not good):

raise RuntimeError("useful error message")
do something useful

5

cvs commitcvs update

Collaboration via SourceForge

cvs import

cvs checkout

cvs updatecvs commit

Conclusion concepts

• Advantages
– Modern languages are the result of an evolution

• Superset of more traditional languages
• A real programmer can write Fortran in any language

– Designed to support large collaborative development
• However, once the concepts are familiar even small projects are easier

– Solve common problems of the past
• memory leaks
• error propagation from deep call hierarchies

– Designed to reduce redundancy (boiler plate)
– If the modern facilities are used carefully the boundary between

"code" and documentation begins to blur
• Especially if runtime introspection is used as a learning tool

– Readily available and mature
• C and C++ compilers are at least as accessible as Fortran compilers

– Rapidly growing body of object-oriented libraries

Conclusion concepts

• Disadvantages
– It can be difficult to predict runtime behavior

• Tempting to use high-level constructs as black boxes

– You have to absorb the concepts
• syntax is secondary!

– However: Python is a fantastic learning tool that embodies all
concepts outlined in this talk

• except for compile-time polymorphism

Acknowledgements

• Organizers of this meeting
• Paul Adams
• Pavel Afonine
• Peter Zwart
• Nick Sauter
• Nigel Moriarty
• Erik McKee
• Kevin Cowtan
• David Abrahams
• Open source community

http://www.phenix-online.org/ http://cctbx.sourceforge.net/

