
1

Spectrum of languages

Ralf W. Grosse-Kunstleve

Computational Crystallography Initiative
Lawrence Berkeley National Laboratory

Siena Computational Crystallography School 2005 Spectrum of implementation languages

• Python 
– Interpreted, Object Oriented, Exception handling

• C++ 
– Compiled, Object Oriented, Exception handling

• C 
– Compiled, User defined data types, Dynamic memory management

• Fortran 
– Compiled, Some high-level data types (N-dim arrays, complex numbers)

• Assembler 
– Computer program is needed to translate to machine code

• Machine code
– Directly executed by the CPU

Matrix of language properties

C++PsycoCompiled to 
machine code
-> speed

JavaPythonInterpreted
-> convenience

Statically
typed
-> speed

Dynamically
typed
-> convenience

Programmer Efficiency & Performance

• Maintainability

• Reusability

• Modularity

Performance

P
ro

g
ra

m
m

er
 E

ff
ic

ie
n

cy Python

C++

C

Fortran
Assembler

Machine code

Choice of implementation languages

• Python 
+ Very high-level programming
+ Easy to use (dynamic typing)
+ Fast development cycle (no compilation required)
– Too slow for certain tasks

• C++ 
+ High-level or medium-level programming
– Many arcane details (strong static typing)
+ Largely automatic dynamic memory management (templates)
+ Much faster than Python
+ With enough attention, performance even rivals that of FORTRAN

Happy marriage: Python and C++

• Syntactic differences put aside, Python and C++ objects and 
functions are very similar.

• Flexibility (interpreted, dynamically typed) and
Efficiency (compiled, statically typed) are complementary.

• Boost.Python (C++ library) provides the link:
– Non-intrusive on the C++ design

– Pseudo-automatic wrapping using C++ template techniques

– No external tools needed

– Creates sub-classable Python types

– Python bindings are very maintainable

– Tutorial and reference documentation

class_<unit_cell>("unit_cell")

.def("volume", &unit_cell::volume)

.def("fractionalize", &unit_cell::fractionalize)

;



2

Vector operations

• Computer Science wisdom:
– Typically 90% of the time is spent in 10% of the code

• Similar to idea behind vector computers:
– Python = Scalar Unit
– C++ = Vector Unit

• Loading the vector unit: (8.7 seconds)

miller_indices = flex.miller_index()
for h in xrange(100):

for k in xrange(100):
for l in xrange(100):

miller_indices.append((h,k,l))

• Go! (0.65 seconds)
space_group = sgtbx.space_group_info("P 41 21 2").group()
epsilons = space_group.epsilon(miller_indices)

Computing 1 million epsilons takes only 0.65 seconds!

Compiled vs. Interpreted

• Compiler
– generates fast machine code

• Interpreter (Python, Perl, TCL/TK, Java)
– may generate byte-code but not machine code

Compiled vs. Interpreted

• Compiler
– generates fast machine code
– needs arcane compilation commands
– needs arcane link commands
– generates object files (where?)
– may generate a template repository (where?)
– generates libraries (where?)
– generates executables (where?)
– needs a build tool (make, SCons)
– all this is platform dependent

• Interpreter (Python, Perl, TCL/TK, Java)
– may generate byte-code but not machine code

Conclusion languages

• It is important to know the modern concepts
– Especially for ambitious projects

• Syntax is secondary
– Anything that does the job is acceptable

• Python, C++, csh, sh, bat, Perl, Java

• There is no one size fits all solution
– But Python & C++ covers the entire spectrum

• Carefully weigh programmer efficiency vs. runtime 
efficiency
– Prefer a scripting language unless runtime efficiency is 

essential

Acknowledgements

• Organizers of this meeting
• Paul Adams
• Pavel Afonine
• Peter Zwart
• Nick Sauter
• Nigel Moriarty
• Erik McKee
• Kevin Cowtan
• David Abrahams
• Open source community

http://www.phenix-online.org/ http://cctbx.sourceforge.net/


