My Project
Loading...
Searching...
No Matches
kstd1.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8// TODO: why the following is here instead of mod2.h???
9
10
11// define if buckets should be used
12#define MORA_USE_BUCKETS
13
14#define PRE_INTEGER_CHECK 0
15
16#include "kernel/mod2.h"
17
18#include "misc/options.h"
19#include "misc/intvec.h"
20
21#include "polys/weight.h"
22#include "kernel/polys.h"
23
28#include "kernel/ideals.h"
29
30//#include "ipprint.h"
31
32#ifdef HAVE_PLURAL
33#include "polys/nc/nc.h"
34#include "polys/nc/sca.h"
35#include "kernel/GBEngine/nc.h"
36#endif
37
39
40#ifdef HAVE_SHIFTBBA
41#include "polys/shiftop.h"
42#endif
43
44/* the list of all options which give a warning by test */
46 |Sy_bit(OPT_REDSB) /* 1 */
47 |Sy_bit(OPT_NOT_SUGAR) /* 3 */
48 |Sy_bit(OPT_INTERRUPT) /* 4 */
49 |Sy_bit(OPT_SUGARCRIT) /* 5 */
52 |Sy_bit(OPT_FASTHC) /* 10 */
53 |Sy_bit(OPT_INTSTRATEGY) /* 26 */
54 |Sy_bit(OPT_INFREDTAIL) /* 28 */
55 |Sy_bit(OPT_NOTREGULARITY) /* 30 */
56 |Sy_bit(OPT_WEIGHTM); /* 31 */
57
58/* the list of all options which may be used by option and test */
59/* definition of ALL options: libpolys/misc/options.h */
61 |Sy_bit(1)
62 |Sy_bit(2) // obachman 10/00: replaced by notBucket
63 |Sy_bit(3)
64 |Sy_bit(4)
65 |Sy_bit(5)
66 |Sy_bit(6)
67// |Sy_bit(7) obachman 11/00 tossed: 12/00 used for redThrough
68 |Sy_bit(7) // OPT_REDTHROUGH
69 |Sy_bit(8) // obachman 11/00 tossed -> motsak 2011 experimental: OPT_NO_SYZ_MINIM
70 |Sy_bit(9)
71 |Sy_bit(10)
72 |Sy_bit(11)
73 |Sy_bit(12)
74 |Sy_bit(13)
75 |Sy_bit(14)
76 |Sy_bit(15)
77 |Sy_bit(16)
78 |Sy_bit(17)
79 |Sy_bit(18)
80 |Sy_bit(19)
81// |Sy_bit(20) obachman 11/00 tossed: 12/00 used for redOldStd
83 |Sy_bit(21)
84 |Sy_bit(22)
85 /*|Sy_bit(23)*/
86 /*|Sy_bit(24)*/
89 |Sy_bit(27)
90 |Sy_bit(28)
91 |Sy_bit(29)
92 |Sy_bit(30)
93 |Sy_bit(31);
94
95//static BOOLEAN posInLOldFlag;
96 /*FALSE, if posInL == posInL10*/
97// returns TRUE if mora should use buckets, false otherwise
98static BOOLEAN kMoraUseBucket(kStrategy strat);
99
101{
102// if (strat->ak == 0 && !rIsSyzIndexRing(currRing))
103 strat->length_pLength = TRUE;
104// else
105// strat->length_pLength = FALSE;
106
107 if ((ldeg == pLDeg0c /*&& !rIsSyzIndexRing(currRing)*/) ||
108 (ldeg == pLDeg0 && strat->ak == 0))
109 {
110 strat->LDegLast = TRUE;
111 }
112 else
113 {
114 strat->LDegLast = FALSE;
115 }
116}
117
118
120{
121 int ret;
122#if KDEBUG > 0
123 kTest_L(h);
124 kTest_T(with);
125#endif
126 // Hmmm ... why do we do this -- polys from T should already be normalized
128 with->pNorm();
129#ifdef KDEBUG
130 if (TEST_OPT_DEBUG)
131 {
132 PrintS("reduce ");h->wrp();PrintS(" with ");with->wrp();PrintLn();
133 }
134#endif
135 if (intoT)
136 {
137 // need to do it exactly like this: otherwise
138 // we might get errors
139 LObject L= *h;
140 L.Copy();
141 h->GetP();
142 h->length=h->pLength=pLength(h->p);
143 ret = ksReducePoly(&L, with, strat->kNoetherTail(), NULL, NULL, strat);
144 if (ret)
145 {
146 if (ret < 0) return ret;
147 if (h->tailRing != strat->tailRing)
148 h->ShallowCopyDelete(strat->tailRing,
150 strat->tailRing));
151 }
153 enterT_strong(*h,strat);
154 else
155 enterT(*h,strat);
156 *h = L;
157 }
158 else
159 ret = ksReducePoly(h, with, strat->kNoetherTail(), NULL, NULL, strat);
160#ifdef KDEBUG
161 if (TEST_OPT_DEBUG)
162 {
163 PrintS("to ");h->wrp();PrintLn();
164 }
165#endif
166 return ret;
167}
168
170{
171 int i,at,ei,li,ii;
172 int j = 0;
173 int pass = 0;
174 long d,reddeg;
175
176 d = h->GetpFDeg()+ h->ecart;
177 reddeg = strat->LazyDegree+d;
178 h->SetShortExpVector();
179 loop
180 {
181 j = kFindDivisibleByInT(strat, h);
182 if (j < 0)
183 {
184 if (strat->honey) h->SetLength(strat->length_pLength);
185 return 1;
186 }
187
188 ei = strat->T[j].ecart;
189 ii = j;
190
191 if (ei > h->ecart)
192 {
193 unsigned long not_sev=~h->sev;
194 poly h_t= h->GetLmTailRing();
195 li = strat->T[j].length;
196 if (li<=0) li=strat->T[j].GetpLength();
197 // the polynomial to reduce with (up to the moment) is;
198 // pi with ecart ei and length li
199 // look for one with smaller ecart
200 i = j;
201 loop
202 {
203 /*- takes the first possible with respect to ecart -*/
204 i++;
205 if (i > strat->tl) break;
206#if 1
207 if (strat->T[i].length<=0) strat->T[i].GetpLength();
208 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
209 strat->T[i].length < li))
210 &&
211 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h_t, not_sev, strat->tailRing))
212#else
213 j = kFindDivisibleByInT(strat, h, i);
214 if (j < 0) break;
215 i = j;
216 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
217 strat->T[i].length < li))
218#endif
219 {
220 // the polynomial to reduce with is now
221 ii = i;
222 ei = strat->T[i].ecart;
223 if (ei <= h->ecart) break;
224 li = strat->T[i].length;
225 }
226 }
227 }
228
229 // end of search: have to reduce with pi
230 if ((ei > h->ecart)&&(strat->kNoether==NULL))
231 {
232 // It is not possible to reduce h with smaller ecart;
233 // if possible h goes to the lazy-set L,i.e
234 // if its position in L would be not the last one
235 strat->fromT = TRUE;
236 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
237 {
238 h->SetLmCurrRing();
239 if (strat->honey && strat->posInLDependsOnLength)
240 h->SetLength(strat->length_pLength);
241 assume(h->FDeg == h->pFDeg());
242 at = strat->posInL(strat->L,strat->Ll,h,strat);
243 if (at <= strat->Ll)
244 {
245 /*- h will not become the next element to reduce -*/
246 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
247#ifdef KDEBUG
248 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
249#endif
250 h->Clear();
251 strat->fromT = FALSE;
252 return -1;
253 }
254 }
255 }
256
257 // now we finally can reduce
258 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
259 strat->fromT=FALSE;
260
261 // are we done ???
262 if (h->IsNull())
263 {
265 kDeleteLcm(h);
266 h->Clear();
267 return 0;
268 }
269 if (TEST_OPT_IDLIFT)
270 {
271 if (h->p!=NULL)
272 {
273 if(p_GetComp(h->p,currRing)>strat->syzComp)
274 {
275 h->Delete();
276 return 0;
277 }
278 }
279 else if (h->t_p!=NULL)
280 {
281 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
282 {
283 h->Delete();
284 return 0;
285 }
286 }
287 }
288 #if 0
289 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
290 {
291 if (h->p!=NULL)
292 {
293 if(p_GetComp(h->p,currRing)>strat->syzComp)
294 {
295 return 1;
296 }
297 }
298 else if (h->t_p!=NULL)
299 {
300 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
301 {
302 return 1;
303 }
304 }
305 }
306 #endif
307
308 // done ? NO!
309 h->SetShortExpVector();
310 h->SetpFDeg();
311 if (strat->honey)
312 {
313 if (ei <= h->ecart)
314 h->ecart = d-h->GetpFDeg();
315 else
316 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
317 }
318 else
319 // this has the side effect of setting h->length
320 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
321#if 0
322 if (strat->syzComp!=0)
323 {
324 if ((strat->syzComp>0) && (h->Comp() > strat->syzComp))
325 {
326 assume(h->MinComp() > strat->syzComp);
327 if (strat->honey) h->SetLength();
328#ifdef KDEBUG
329 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
330#endif
331 return -2;
332 }
333 }
334#endif
335 /*- try to reduce the s-polynomial -*/
336 pass++;
337 d = h->GetpFDeg()+h->ecart;
338 /*
339 *test whether the polynomial should go to the lazyset L
340 *-if the degree jumps
341 *-if the number of pre-defined reductions jumps
342 */
343 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
344 && ((d >= reddeg) || (pass > strat->LazyPass)))
345 {
346 h->SetLmCurrRing();
347 if (strat->honey && strat->posInLDependsOnLength)
348 h->SetLength(strat->length_pLength);
349 assume(h->FDeg == h->pFDeg());
350 at = strat->posInL(strat->L,strat->Ll,h,strat);
351 if (at <= strat->Ll)
352 {
353 int dummy=strat->sl;
354 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
355 {
356 if (strat->honey && !strat->posInLDependsOnLength)
357 h->SetLength(strat->length_pLength);
358 return 1;
359 }
360 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
361#ifdef KDEBUG
362 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
363#endif
364 h->Clear();
365 return -1;
366 }
367 }
368 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
369 {
370 Print(".%ld",d);mflush();
371 reddeg = d+1;
372 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
373 {
374 strat->overflow=TRUE;
375 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
376 h->GetP();
377 at = strat->posInL(strat->L,strat->Ll,h,strat);
378 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
379 h->Clear();
380 return -1;
381 }
382 }
383 }
384}
385
387{
388 int i,at,ei,li,ii;
389 int j = 0;
390 int pass = 0;
391 long d,reddeg;
392
393 d = h->GetpFDeg()+ h->ecart;
394 reddeg = strat->LazyDegree+d;
395 h->SetShortExpVector();
396 loop
397 {
398 j = kFindDivisibleByInT(strat, h);
399 if (j < 0)
400 {
401 // over ZZ: cleanup coefficients by complete reduction with monomials
402 postReduceByMon(h, strat);
403 if(h->p == NULL)
404 {
405 kDeleteLcm(h);
406 h->Clear();
407 return 0;
408 }
409 if (strat->honey) h->SetLength(strat->length_pLength);
410 if(strat->tl >= 0)
411 h->i_r1 = strat->tl;
412 else
413 h->i_r1 = -1;
414 if (h->GetLmTailRing() == NULL)
415 {
416 kDeleteLcm(h);
417 h->Clear();
418 return 0;
419 }
420 return 1;
421 }
422
423 ei = strat->T[j].ecart;
424 ii = j;
425 if (ei > h->ecart && ii < strat->tl)
426 {
427 li = strat->T[j].length;
428 // the polynomial to reduce with (up to the moment) is;
429 // pi with ecart ei and length li
430 // look for one with smaller ecart
431 i = j;
432 loop
433 {
434 /*- takes the first possible with respect to ecart -*/
435 i++;
436#if 1
437 if (i > strat->tl) break;
438 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
439 strat->T[i].length < li))
440 &&
441 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
442 &&
443 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
444#else
445 j = kFindDivisibleByInT(strat, h, i);
446 if (j < 0) break;
447 i = j;
448 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
449 strat->T[i].length < li))
450#endif
451 {
452 // the polynomial to reduce with is now
453 ii = i;
454 ei = strat->T[i].ecart;
455 if (ei <= h->ecart) break;
456 li = strat->T[i].length;
457 }
458 }
459 }
460
461 // end of search: have to reduce with pi
462 if (ei > h->ecart)
463 {
464 // It is not possible to reduce h with smaller ecart;
465 // if possible h goes to the lazy-set L,i.e
466 // if its position in L would be not the last one
467 strat->fromT = TRUE;
468 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
469 {
470 h->SetLmCurrRing();
471 if (strat->honey && strat->posInLDependsOnLength)
472 h->SetLength(strat->length_pLength);
473 assume(h->FDeg == h->pFDeg());
474 at = strat->posInL(strat->L,strat->Ll,h,strat);
475 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
476 {
477 /*- h will not become the next element to reduce -*/
478 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
479 #ifdef KDEBUG
480 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
481 #endif
482 h->Clear();
483 strat->fromT = FALSE;
484 return -1;
485 }
486 }
487 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
488 }
489 else
490 {
491 // now we finally can reduce
492 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
493 }
494 strat->fromT=FALSE;
495 // are we done ???
496 if (h->IsNull())
497 {
498 kDeleteLcm(h);
499 h->Clear();
500 return 0;
501 }
502
503 // NO!
504 h->SetShortExpVector();
505 h->SetpFDeg();
506 if (strat->honey)
507 {
508 if (ei <= h->ecart)
509 h->ecart = d-h->GetpFDeg();
510 else
511 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
512 }
513 else
514 // this has the side effect of setting h->length
515 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
516 /*- try to reduce the s-polynomial -*/
517 pass++;
518 d = h->GetpFDeg()+h->ecart;
519 /*
520 *test whether the polynomial should go to the lazyset L
521 *-if the degree jumps
522 *-if the number of pre-defined reductions jumps
523 */
524 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
525 && ((d >= reddeg) || (pass > strat->LazyPass)))
526 {
527 h->SetLmCurrRing();
528 if (strat->honey && strat->posInLDependsOnLength)
529 h->SetLength(strat->length_pLength);
530 assume(h->FDeg == h->pFDeg());
531 at = strat->posInL(strat->L,strat->Ll,h,strat);
532 if (at <= strat->Ll)
533 {
534 int dummy=strat->sl;
535 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
536 {
537 if (strat->honey && !strat->posInLDependsOnLength)
538 h->SetLength(strat->length_pLength);
539 return 1;
540 }
541 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
542#ifdef KDEBUG
543 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
544#endif
545 h->Clear();
546 return -1;
547 }
548 }
549 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
550 {
551 Print(".%ld",d);mflush();
552 reddeg = d+1;
553 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
554 {
555 strat->overflow=TRUE;
556 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
557 h->GetP();
558 at = strat->posInL(strat->L,strat->Ll,h,strat);
559 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
560 h->Clear();
561 return -1;
562 }
563 }
564 }
565}
566
568{
569 int i,at,ei,li,ii;
570 int j = 0;
571 int pass = 0;
572 long d,reddeg;
573 int docoeffred = 0;
574 poly T0p = strat->T[0].p;
575 int T0ecart = strat->T[0].ecart;
576
577
578 d = h->GetpFDeg()+ h->ecart;
579 reddeg = strat->LazyDegree+d;
580 h->SetShortExpVector();
581 if ((strat->tl>=0)
582 &&strat->T[0].GetpFDeg() == 0
583 && strat->T[0].length <= 2)
584 {
585 docoeffred = 1;
586 }
587 loop
588 {
589 /* cut down the lead coefficients, only possible if the degree of
590 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
591 * we ask for the length of T[0] to be <= 2 */
592 if (docoeffred)
593 {
594 j = kTestDivisibleByT0_Z(strat, h);
595 if (j == 0 && n_DivBy(pGetCoeff(h->p), pGetCoeff(T0p), currRing->cf) == FALSE
596 && T0ecart <= h->ecart)
597 {
598 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
599 * => we try to cut down the lead coefficient at least */
600 /* first copy T[j] in order to multiply it with a coefficient later on */
602 TObject tj = strat->T[0];
603 tj.Copy();
604 /* compute division with remainder of lc(h) and lc(T[j]) */
606 &rest, currRing->cf);
607 /* set corresponding new lead coefficient already. we do not
608 * remove the lead term in ksReducePolyLC, but only apply
609 * a lead coefficient reduction */
610 tj.Mult_nn(mult);
611 ksReducePolyLC(h, &tj, NULL, &rest, strat);
612 tj.Delete();
613 tj.Clear();
614 if (n_IsZero(pGetCoeff(h->GetP()),currRing->cf))
615 {
616 h->LmDeleteAndIter();
617 }
618 }
619 }
620 j = kFindDivisibleByInT(strat, h);
621 if (j < 0)
622 {
623 // over ZZ: cleanup coefficients by complete reduction with monomials
624 postReduceByMon(h, strat);
625 if(h->p == NULL)
626 {
627 kDeleteLcm(h);
628 h->Clear();
629 return 0;
630 }
631 if (strat->honey) h->SetLength(strat->length_pLength);
632 if(strat->tl >= 0)
633 h->i_r1 = strat->tl;
634 else
635 h->i_r1 = -1;
636 if (h->GetLmTailRing() == NULL)
637 {
638 kDeleteLcm(h);
639 h->Clear();
640 return 0;
641 }
642 return 1;
643 }
644
645 ei = strat->T[j].ecart;
646 ii = j;
647#if 1
648 if (ei > h->ecart && ii < strat->tl)
649 {
650 li = strat->T[j].length;
651 // the polynomial to reduce with (up to the moment) is;
652 // pi with ecart ei and length li
653 // look for one with smaller ecart
654 i = j;
655 loop
656 {
657 /*- takes the first possible with respect to ecart -*/
658 i++;
659#if 1
660 if (i > strat->tl) break;
661 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
662 strat->T[i].length < li))
663 &&
664 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
665 &&
666 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
667#else
668 j = kFindDivisibleByInT(strat, h, i);
669 if (j < 0) break;
670 i = j;
671 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
672 strat->T[i].length < li))
673#endif
674 {
675 // the polynomial to reduce with is now
676 ii = i;
677 ei = strat->T[i].ecart;
678 if (ei <= h->ecart) break;
679 li = strat->T[i].length;
680 }
681 }
682 }
683#endif
684
685 // end of search: have to reduce with pi
686 if (ei > h->ecart)
687 {
688 // It is not possible to reduce h with smaller ecart;
689 // if possible h goes to the lazy-set L,i.e
690 // if its position in L would be not the last one
691 strat->fromT = TRUE;
692 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
693 {
694 h->SetLmCurrRing();
695 if (strat->honey && strat->posInLDependsOnLength)
696 h->SetLength(strat->length_pLength);
697 assume(h->FDeg == h->pFDeg());
698 at = strat->posInL(strat->L,strat->Ll,h,strat);
699 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
700 {
701 /*- h will not become the next element to reduce -*/
702 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
703#ifdef KDEBUG
704 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
705#endif
706 h->Clear();
707 strat->fromT = FALSE;
708 return -1;
709 }
710 }
711 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
712 }
713 else
714 {
715 // now we finally can reduce
716 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
717 }
718 strat->fromT=FALSE;
719 // are we done ???
720 if (h->IsNull())
721 {
722 kDeleteLcm(h);
723 h->Clear();
724 return 0;
725 }
726
727 // NO!
728 h->SetShortExpVector();
729 h->SetpFDeg();
730 if (strat->honey)
731 {
732 if (ei <= h->ecart)
733 h->ecart = d-h->GetpFDeg();
734 else
735 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
736 }
737 else
738 // this has the side effect of setting h->length
739 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
740 /*- try to reduce the s-polynomial -*/
741 pass++;
742 d = h->GetpFDeg()+h->ecart;
743 /*
744 *test whether the polynomial should go to the lazyset L
745 *-if the degree jumps
746 *-if the number of pre-defined reductions jumps
747 */
748 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
749 && ((d >= reddeg) || (pass > strat->LazyPass)))
750 {
751 h->SetLmCurrRing();
752 if (strat->honey && strat->posInLDependsOnLength)
753 h->SetLength(strat->length_pLength);
754 assume(h->FDeg == h->pFDeg());
755 at = strat->posInL(strat->L,strat->Ll,h,strat);
756 if (at <= strat->Ll)
757 {
758 int dummy=strat->sl;
759 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
760 {
761 if (strat->honey && !strat->posInLDependsOnLength)
762 h->SetLength(strat->length_pLength);
763 return 1;
764 }
765 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
766#ifdef KDEBUG
767 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
768#endif
769 h->Clear();
770 return -1;
771 }
772 }
773 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
774 {
775 Print(".%ld",d);mflush();
776 reddeg = d+1;
777 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
778 {
779 strat->overflow=TRUE;
780 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
781 h->GetP();
782 at = strat->posInL(strat->L,strat->Ll,h,strat);
783 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
784 h->Clear();
785 return -1;
786 }
787 }
788 }
789}
790
791/*2
792*reduces h with elements from T choosing the first possible
793* element in t with respect to the given pDivisibleBy
794*/
796{
797 if (strat->tl<0) return 1;
798 if (h->IsNull()) return 0;
799
800 int at;
801 long reddeg,d;
802 int pass = 0;
803 int cnt = RED_CANONICALIZE;
804 int j = 0;
805
806 reddeg = d = h->GetpFDeg();
807 if (! strat->homog)
808 {
809 d += h->ecart;
810 reddeg = strat->LazyDegree+d;
811 }
812 h->SetShortExpVector();
813 loop
814 {
815 j = kFindDivisibleByInT(strat, h);
816 if (j < 0)
817 {
818 h->SetDegStuffReturnLDeg(strat->LDegLast);
819 return 1;
820 }
821
823 strat->T[j].pNorm();
824#ifdef KDEBUG
825 if (TEST_OPT_DEBUG)
826 {
827 PrintS("reduce ");
828 h->wrp();
829 PrintS(" with ");
830 strat->T[j].wrp();
831 }
832#endif
833 ksReducePoly(h, &(strat->T[j]), strat->kNoetherTail(), NULL, NULL, strat);
834#ifdef KDEBUG
835 if (TEST_OPT_DEBUG)
836 {
837 PrintS(" to ");
838 wrp(h->p);
839 PrintLn();
840 }
841#endif
842 if (h->IsNull())
843 {
845 kDeleteLcm(h);
846 h->Clear();
847 return 0;
848 }
849 if (TEST_OPT_IDLIFT)
850 {
851 if (h->p!=NULL)
852 {
853 if(p_GetComp(h->p,currRing)>strat->syzComp)
854 {
855 h->Delete();
856 return 0;
857 }
858 }
859 else if (h->t_p!=NULL)
860 {
861 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
862 {
863 h->Delete();
864 return 0;
865 }
866 }
867 }
868 #if 0
869 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
870 {
871 if (h->p!=NULL)
872 {
873 if(p_GetComp(h->p,currRing)>strat->syzComp)
874 {
875 return 1;
876 }
877 }
878 else if (h->t_p!=NULL)
879 {
880 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
881 {
882 return 1;
883 }
884 }
885 }
886 #endif
887 h->SetShortExpVector();
888
889#if 0
890 if ((strat->syzComp!=0) && !strat->honey)
891 {
892 if ((strat->syzComp>0) &&
893 (h->Comp() > strat->syzComp))
894 {
895 assume(h->MinComp() > strat->syzComp);
896#ifdef KDEBUG
897 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
898#endif
899 if (strat->homog)
900 h->SetDegStuffReturnLDeg(strat->LDegLast);
901 return -2;
902 }
903 }
904#endif
905 if (!strat->homog)
906 {
907 if (!TEST_OPT_OLDSTD && strat->honey)
908 {
909 h->SetpFDeg();
910 if (strat->T[j].ecart <= h->ecart)
911 h->ecart = d - h->GetpFDeg();
912 else
913 h->ecart = d - h->GetpFDeg() + strat->T[j].ecart - h->ecart;
914
915 d = h->GetpFDeg() + h->ecart;
916 }
917 else
918 d = h->SetDegStuffReturnLDeg(strat->LDegLast);
919 /*- try to reduce the s-polynomial -*/
920 cnt--;
921 pass++;
922 /*
923 *test whether the polynomial should go to the lazyset L
924 *-if the degree jumps
925 *-if the number of pre-defined reductions jumps
926 */
927 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
928 && ((d >= reddeg) || (pass > strat->LazyPass)))
929 {
930 h->SetLmCurrRing();
931 if (strat->posInLDependsOnLength)
932 h->SetLength(strat->length_pLength);
933 at = strat->posInL(strat->L,strat->Ll,h,strat);
934 if (at <= strat->Ll)
935 {
936 int dummy=strat->sl;
937 if (kFindDivisibleByInS(strat,&dummy, h) < 0)
938 return 1;
939 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
940#ifdef KDEBUG
941 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
942#endif
943 h->Clear();
944 return -1;
945 }
946 }
947 if (UNLIKELY(cnt==0))
948 {
949 h->CanonicalizeP();
951 //if (TEST_OPT_PROT) { PrintS("!");mflush(); }
952 }
953 if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
954 {
955 reddeg = d+1;
956 Print(".%ld",d);mflush();
957 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
958 {
959 strat->overflow=TRUE;
960 //Print("OVERFLOW in redFirst d=%ld, max=%ld",d,strat->tailRing->bitmask);
961 h->GetP();
962 at = strat->posInL(strat->L,strat->Ll,h,strat);
963 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
964 h->Clear();
965 return -1;
966 }
967 }
968 }
969 }
970}
971
972/*2
973* reduces h with elements from T choosing first possible
974* element in T with respect to the given ecart
975* used for computing normal forms outside kStd
976*/
977static poly redMoraNF (poly h,kStrategy strat, int flag)
978{
979 LObject H;
980 H.p = h;
981 int j = 0;
982 int z = 10;
983 int o = H.SetpFDeg();
984 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
985 if ((flag & 2) == 0) cancelunit(&H,TRUE);
986 H.sev = pGetShortExpVector(H.p);
987 loop
988 {
989 if (j > strat->tl)
990 {
991 return H.p;
992 }
993 if (TEST_V_DEG_STOP)
994 {
995 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
996 if (H.p==NULL) return NULL;
997 }
998 unsigned long not_sev = ~ H.sev;
999 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1000 )
1001 {
1002 /*- remember the found T-poly -*/
1003 // poly pi = strat->T[j].p;
1004 int ei = strat->T[j].ecart;
1005 int li = strat->T[j].length;
1006 int ii = j;
1007 /*
1008 * the polynomial to reduce with (up to the moment) is;
1009 * pi with ecart ei and length li
1010 */
1011 loop
1012 {
1013 /*- look for a better one with respect to ecart -*/
1014 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1015 j++;
1016 if (j > strat->tl) break;
1017 if (ei <= H.ecart) break;
1018 if (((strat->T[j].ecart < ei)
1019 || ((strat->T[j].ecart == ei)
1020 && (strat->T[j].length < li)))
1021 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1022 )
1023 {
1024 /*
1025 * the polynomial to reduce with is now;
1026 */
1027 // pi = strat->T[j].p;
1028 ei = strat->T[j].ecart;
1029 li = strat->T[j].length;
1030 ii = j;
1031 }
1032 }
1033 /*
1034 * end of search: have to reduce with pi
1035 */
1036 z++;
1037 if (z>10)
1038 {
1039 pNormalize(H.p);
1040 z=0;
1041 }
1042 if ((ei > H.ecart) && (strat->kNoether==NULL))
1043 {
1044 /*
1045 * It is not possible to reduce h with smaller ecart;
1046 * we have to reduce with bad ecart: H has to enter in T
1047 */
1048 LObject L= H;
1049 L.Copy();
1050 H.GetP();
1051 H.length=H.pLength=pLength(H.p);
1052 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1053 (flag & KSTD_NF_NONORM)==0);
1054 enterT(H,strat);
1055 H = L;
1056 }
1057 else
1058 {
1059 /*
1060 * we reduce with good ecart, h need not to be put to T
1061 */
1062 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1063 (flag & KSTD_NF_NONORM)==0);
1064 }
1065 if (H.p == NULL)
1066 return NULL;
1067 /*- try to reduce the s-polynomial -*/
1068 o = H.SetpFDeg();
1069 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1070 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1071 j = 0;
1072 H.sev = pGetShortExpVector(H.p);
1073 }
1074 else
1075 {
1076 j++;
1077 }
1078 }
1079}
1080
1081static poly redMoraNFRing (poly h,kStrategy strat, int flag)
1082{
1083 LObject H;
1084 H.p = h;
1085 int j0, j = 0;
1086 int docoeffred = 0;
1087 poly T0p = strat->T[0].p;
1088 int T0ecart = strat->T[0].ecart;
1089 int o = H.SetpFDeg();
1090 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
1091 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1092 H.sev = pGetShortExpVector(H.p);
1093 unsigned long not_sev = ~ H.sev;
1094 if (strat->T[0].GetpFDeg() == 0 && strat->T[0].length <= 2)
1095 {
1096 docoeffred = 1; // euclidean ring required: n_QuotRem
1097 if (currRing->cf->cfQuotRem==ndQuotRem)
1098 {
1099 docoeffred = 0;
1100 }
1101 }
1102 loop
1103 {
1104 /* cut down the lead coefficients, only possible if the degree of
1105 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
1106 * we ask for the length of T[0] to be <= 2 */
1107 if (docoeffred)
1108 {
1109 j0 = kTestDivisibleByT0_Z(strat, &H);
1110 if ((j0 == 0)
1111 && (n_DivBy(pGetCoeff(H.p), pGetCoeff(T0p), currRing->cf) == FALSE)
1112 && (T0ecart <= H.ecart))
1113 {
1114 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
1115 * => we try to cut down the lead coefficient at least */
1116 /* first copy T[j0] in order to multiply it with a coefficient later on */
1117 number mult, rest;
1118 TObject tj = strat->T[0];
1119 tj.Copy();
1120 /* compute division with remainder of lc(h) and lc(T[j]) */
1122 &rest, currRing->cf);
1123 /* set corresponding new lead coefficient already. we do not
1124 * remove the lead term in ksReducePolyLC, but only apply
1125 * a lead coefficient reduction */
1126 tj.Mult_nn(mult);
1127 ksReducePolyLC(&H, &tj, NULL, &rest, strat);
1128 tj.Delete();
1129 tj.Clear();
1130 }
1131 }
1132 if (j > strat->tl)
1133 {
1134 return H.p;
1135 }
1136 if (TEST_V_DEG_STOP)
1137 {
1138 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
1139 if (H.p==NULL) return NULL;
1140 }
1141 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1142 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1143 )
1144 {
1145 /*- remember the found T-poly -*/
1146 // poly pi = strat->T[j].p;
1147 int ei = strat->T[j].ecart;
1148 int li = strat->T[j].length;
1149 int ii = j;
1150 /*
1151 * the polynomial to reduce with (up to the moment) is;
1152 * pi with ecart ei and length li
1153 */
1154 loop
1155 {
1156 /*- look for a better one with respect to ecart -*/
1157 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1158 j++;
1159 if (j > strat->tl) break;
1160 if (ei <= H.ecart) break;
1161 if (((strat->T[j].ecart < ei)
1162 || ((strat->T[j].ecart == ei)
1163 && (strat->T[j].length < li)))
1164 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1165 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1166 )
1167 {
1168 /*
1169 * the polynomial to reduce with is now;
1170 */
1171 // pi = strat->T[j].p;
1172 ei = strat->T[j].ecart;
1173 li = strat->T[j].length;
1174 ii = j;
1175 }
1176 }
1177 /*
1178 * end of search: have to reduce with pi
1179 */
1180 if ((ei > H.ecart) && (strat->kNoether==NULL))
1181 {
1182 /*
1183 * It is not possible to reduce h with smaller ecart;
1184 * we have to reduce with bad ecart: H has to enter in T
1185 */
1186 LObject L= H;
1187 L.Copy();
1188 H.GetP();
1189 H.length=H.pLength=pLength(H.p);
1190 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1191 (flag & KSTD_NF_NONORM)==0);
1192 enterT_strong(H,strat);
1193 H = L;
1194 }
1195 else
1196 {
1197 /*
1198 * we reduce with good ecart, h need not to be put to T
1199 */
1200 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1201 (flag & KSTD_NF_NONORM)==0);
1202 }
1203 if (H.p == NULL)
1204 return NULL;
1205 /*- try to reduce the s-polynomial -*/
1206 o = H.SetpFDeg();
1207 if ((flag &2 ) == 0) cancelunit(&H,TRUE);
1208 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1209 j = 0;
1210 H.sev = pGetShortExpVector(H.p);
1211 not_sev = ~ H.sev;
1212 }
1213 else
1214 {
1215 j++;
1216 }
1217 }
1218}
1219
1220/*2
1221*reorders L with respect to posInL
1222*/
1224{
1225 int i,j,at;
1226
1227 for (i=1; i<=strat->Ll; i++)
1228 {
1229 at = strat->posInL(strat->L,i-1,&(strat->L[i]),strat);
1230 if (at != i)
1231 {
1232 LObject p = strat->L[i];
1233 for (j=i-1; j>=at; j--) strat->L[j+1] = strat->L[j];
1234 strat->L[at] = p;
1235 }
1236 }
1237}
1238
1239/*2
1240*reorders T with respect to length
1241*/
1243{
1244 int i,j,at;
1245 TObject p;
1246 unsigned long sev;
1247
1248
1249 for (i=1; i<=strat->tl; i++)
1250 {
1251 if (strat->T[i-1].length > strat->T[i].length)
1252 {
1253 p = strat->T[i];
1254 sev = strat->sevT[i];
1255 at = i-1;
1256 loop
1257 {
1258 at--;
1259 if (at < 0) break;
1260 if (strat->T[i].length > strat->T[at].length) break;
1261 }
1262 for (j = i-1; j>at; j--)
1263 {
1264 strat->T[j+1]=strat->T[j];
1265 strat->sevT[j+1]=strat->sevT[j];
1266 strat->R[strat->T[j+1].i_r] = &(strat->T[j+1]);
1267 }
1268 strat->T[at+1]=p;
1269 strat->sevT[at+1] = sev;
1270 strat->R[p.i_r] = &(strat->T[at+1]);
1271 }
1272 }
1273}
1274
1275/*2
1276*looks whether exactly (currRing->N)-1 axis are used
1277*returns last != 0 in this case
1278*last is the (first) unused axis
1279*/
1280void missingAxis (int* last,kStrategy strat)
1281{
1282 int i = 0;
1283 int k = 0;
1284
1285 *last = 0;
1287 {
1288 loop
1289 {
1290 i++;
1291 if (i > (currRing->N)) break;
1292 if (strat->NotUsedAxis[i])
1293 {
1294 *last = i;
1295 k++;
1296 }
1297 if (k>1)
1298 {
1299 *last = 0;
1300 break;
1301 }
1302 }
1303 }
1304}
1305
1306/*2
1307*last is the only non used axis, it looks
1308*for a monomial in p being a pure power of this
1309*variable and returns TRUE in this case
1310*(*length) gives the length between the pure power and the leading term
1311*(should be minimal)
1312*/
1313BOOLEAN hasPurePower (const poly p,int last, int *length,kStrategy strat)
1314{
1315 poly h;
1316 int i;
1317
1318 if (pNext(p) == strat->tail)
1319 return FALSE;
1320 pp_Test(p, currRing, strat->tailRing);
1321 if (strat->ak <= 0 || p_MinComp(p, currRing, strat->tailRing) == strat->ak)
1322 {
1324 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(p), currRing->cf))) i=0;
1325 if (i == last)
1326 {
1327 *length = 0;
1328 return TRUE;
1329 }
1330 *length = 1;
1331 h = pNext(p);
1332 while (h != NULL)
1333 {
1334 i = p_IsPurePower(h, strat->tailRing);
1335 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(h), currRing->cf))) i=0;
1336 if (i==last) return TRUE;
1337 (*length)++;
1338 pIter(h);
1339 }
1340 }
1341 return FALSE;
1342}
1343
1345{
1346 if (L->bucket != NULL)
1347 {
1348 poly p = L->GetP();
1349 return hasPurePower(p, last, length, strat);
1350 }
1351 else
1352 {
1353 return hasPurePower(L->p, last, length, strat);
1354 }
1355}
1356
1357/*2
1358* looks up the position of polynomial p in L
1359* in the case of looking for the pure powers
1360*/
1361int posInL10 (const LSet set,const int length, LObject* p,const kStrategy strat)
1362{
1363 int j,dp,dL;
1364
1365 if (length<0) return 0;
1366 if (hasPurePower(p,strat->lastAxis,&dp,strat))
1367 {
1368 int op= p->GetpFDeg() +p->ecart;
1369 for (j=length; j>=0; j--)
1370 {
1371 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat))
1372 return j+1;
1373 if (dp < dL)
1374 return j+1;
1375 if ((dp == dL)
1376 && (set[j].GetpFDeg()+set[j].ecart >= op))
1377 return j+1;
1378 }
1379 }
1380 j=length;
1381 loop
1382 {
1383 if (j<0) break;
1384 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat)) break;
1385 j--;
1386 }
1387 return strat->posInLOld(set,j,p,strat);
1388}
1389
1390
1391/*2
1392* computes the s-polynomials L[ ].p in L
1393*/
1395{
1396 int dL;
1397 int j=strat->Ll;
1398 loop
1399 {
1400 if (j<0) break;
1401 if (hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat))
1402 {
1403 LObject p;
1404 p=strat->L[strat->Ll];
1405 strat->L[strat->Ll]=strat->L[j];
1406 strat->L[j]=p;
1407 break;
1408 }
1409 j--;
1410 }
1411 if (j<0)
1412 {
1413 j=strat->Ll;
1414 loop
1415 {
1416 if (j<0) break;
1417 if (pNext(strat->L[j].p) == strat->tail)
1418 {
1420 pLmDelete(strat->L[j].p); /*deletes the short spoly and computes*/
1421 else
1422 pLmFree(strat->L[j].p); /*deletes the short spoly and computes*/
1423 strat->L[j].p = NULL;
1424 poly m1 = NULL, m2 = NULL;
1425 // check that spoly creation is ok
1426 while (strat->tailRing != currRing &&
1427 !kCheckSpolyCreation(&(strat->L[j]), strat, m1, m2))
1428 {
1429 assume(m1 == NULL && m2 == NULL);
1430 // if not, change to a ring where exponents are at least
1431 // large enough
1432 kStratChangeTailRing(strat);
1433 }
1434 /* create the real one */
1435 ksCreateSpoly(&(strat->L[j]), strat->kNoetherTail(), FALSE,
1436 strat->tailRing, m1, m2, strat->R);
1437
1438 strat->L[j].SetLmCurrRing();
1439 if (!strat->honey)
1440 strat->initEcart(&strat->L[j]);
1441 else
1442 strat->L[j].SetLength(strat->length_pLength);
1443
1444 BOOLEAN pp = hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat);
1445
1446 strat->L[j].PrepareRed(strat->use_buckets);
1447
1448 if (pp)
1449 {
1450 LObject p;
1451 p=strat->L[strat->Ll];
1452 strat->L[strat->Ll]=strat->L[j];
1453 strat->L[j]=p;
1454 break;
1455 }
1456 }
1457 j--;
1458 }
1459 }
1460}
1461
1462/*2
1463* computes the s-polynomials L[ ].p in L and
1464* cuts elements in L above noether
1465*/
1467{
1468
1469 int i = 0;
1470 kTest_TS(strat);
1471 while (i <= strat->Ll)
1472 {
1473 if (pNext(strat->L[i].p) == strat->tail)
1474 {
1475 /*- deletes the int spoly and computes -*/
1476 if (pLmCmp(strat->L[i].p,strat->kNoether) == -1)
1477 {
1479 pLmDelete(strat->L[i].p);
1480 else
1481 pLmFree(strat->L[i].p);
1482 strat->L[i].p = NULL;
1483 }
1484 else
1485 {
1487 pLmDelete(strat->L[i].p);
1488 else
1489 pLmFree(strat->L[i].p);
1490 strat->L[i].p = NULL;
1491 poly m1 = NULL, m2 = NULL;
1492 // check that spoly creation is ok
1493 while (strat->tailRing != currRing &&
1494 !kCheckSpolyCreation(&(strat->L[i]), strat, m1, m2))
1495 {
1496 assume(m1 == NULL && m2 == NULL);
1497 // if not, change to a ring where exponents are at least
1498 // large enough
1499 kStratChangeTailRing(strat);
1500 }
1501 /* create the real one */
1502 ksCreateSpoly(&(strat->L[i]), strat->kNoetherTail(), FALSE,
1503 strat->tailRing, m1, m2, strat->R);
1504 if (! strat->L[i].IsNull())
1505 {
1506 strat->L[i].SetLmCurrRing();
1507 strat->L[i].SetpFDeg();
1508 strat->L[i].ecart
1509 = strat->L[i].pLDeg(strat->LDegLast) - strat->L[i].GetpFDeg();
1510 if (strat->use_buckets) strat->L[i].PrepareRed(TRUE);
1511 }
1512 }
1513 }
1514 deleteHC(&(strat->L[i]), strat);
1515 if (strat->L[i].IsNull())
1516 deleteInL(strat->L,&strat->Ll,i,strat);
1517 else
1518 {
1519#ifdef KDEBUG
1520 kTest_L(&(strat->L[i]), strat, TRUE, i, strat->T, strat->tl);
1521#endif
1522 i++;
1523 }
1524 }
1525 kTest_TS(strat);
1526}
1527
1528/*2
1529* cuts in T above strat->kNoether and tries to cancel a unit
1530* changes also S as S is a subset of T
1531*/
1533{
1534 int i = 0;
1535 LObject p;
1536
1537 while (i <= strat->tl)
1538 {
1539 p = strat->T[i];
1540 deleteHC(&p,strat, TRUE);
1541 /*- tries to cancel a unit: -*/
1542 cancelunit(&p);
1543 if (TEST_OPT_INTSTRATEGY) /* deleteHC and/or cancelunit may have changed p*/
1544 p.pCleardenom();
1545 if (p.p != strat->T[i].p)
1546 {
1547 strat->sevT[i] = pGetShortExpVector(p.p);
1548 p.SetpFDeg();
1549 }
1550 strat->T[i] = p;
1551 i++;
1552 }
1553}
1554
1555/*2
1556* arranges red, pos and T if strat->kAllAxis (first time)
1557*/
1559{
1560 if (strat->update)
1561 {
1562 kTest_TS(strat);
1563 strat->update = (strat->tl == -1);
1564 if (TEST_OPT_WEIGHTM)
1565 {
1567 if (strat->tailRing != currRing)
1568 {
1569 strat->tailRing->pFDeg = strat->pOrigFDeg_TailRing;
1570 strat->tailRing->pLDeg = strat->pOrigLDeg_TailRing;
1571 }
1572 int i;
1573 for (i=strat->Ll; i>=0; i--)
1574 {
1575 strat->L[i].SetpFDeg();
1576 }
1577 for (i=strat->tl; i>=0; i--)
1578 {
1579 strat->T[i].SetpFDeg();
1580 }
1581 if (ecartWeights)
1582 {
1583 omFreeSize((ADDRESS)ecartWeights,(rVar(currRing)+1)*sizeof(short));
1585 }
1586 }
1587 if (TEST_OPT_FASTHC)
1588 {
1589 strat->posInL = strat->posInLOld;
1590 strat->lastAxis = 0;
1591 }
1592 if (TEST_OPT_FINDET)
1593 return;
1594
1595 strat->use_buckets = kMoraUseBucket(strat);
1596 updateT(strat);
1597
1599 {
1600 strat->posInT = posInT2;
1601 reorderT(strat);
1602 }
1603 }
1604 kTest_TS(strat);
1605}
1606
1607/*2
1608*-puts p to the standardbasis s at position at
1609*-reduces the tail of p if TEST_OPT_REDTAIL
1610*-tries to cancel a unit
1611*-HEckeTest
1612* if TRUE
1613* - decides about reduction-strategies
1614* - computes noether
1615* - stops computation if TEST_OPT_FINDET
1616* - cuts the tails of the polynomials
1617* in s,t and the elements in L above noether
1618* and cancels units if possible
1619* - reorders s,L
1620*/
1621void enterSMora (LObject &p,int atS,kStrategy strat, int atR = -1)
1622{
1623 enterSBba(p, atS, strat, atR);
1624 #ifdef KDEBUG
1625 if (TEST_OPT_DEBUG)
1626 {
1627 Print("new s%d:",atS);
1628 p_wrp(p.p,currRing,strat->tailRing);
1629 PrintLn();
1630 }
1631 #endif
1632 HEckeTest(p.p,strat);
1633 if (strat->kAllAxis)
1634 {
1635 if (newHEdge(strat))
1636 {
1637 firstUpdate(strat);
1638 if (TEST_OPT_FINDET)
1639 return;
1640
1641 /*- cuts elements in L above noether and reorders L -*/
1642 updateLHC(strat);
1643 /*- reorders L with respect to posInL -*/
1644 reorderL(strat);
1645 }
1646 }
1647 else if ((strat->kNoether==NULL)
1648 && (TEST_OPT_FASTHC))
1649 {
1650 if (strat->posInLOldFlag)
1651 {
1652 missingAxis(&strat->lastAxis,strat);
1653 if (strat->lastAxis)
1654 {
1655 strat->posInLOld = strat->posInL;
1656 strat->posInLOldFlag = FALSE;
1657 strat->posInL = posInL10;
1658 strat->posInLDependsOnLength = TRUE;
1659 updateL(strat);
1660 reorderL(strat);
1661 }
1662 }
1663 else if (strat->lastAxis)
1664 updateL(strat);
1665 }
1666}
1667
1668/*2
1669*-puts p to the standardbasis s at position at
1670*-HEckeTest
1671* if TRUE
1672* - computes noether
1673*/
1674void enterSMoraNF (LObject &p, int atS,kStrategy strat, int atR = -1)
1675{
1676 enterSBba(p, atS, strat, atR);
1677 if ((!strat->kAllAxis) || (strat->kNoether!=NULL)) HEckeTest(p.p,strat);
1678 if (strat->kAllAxis)
1679 newHEdge(strat);
1680}
1681
1683{
1684 /* setting global variables ------------------- */
1685 strat->enterS = enterSBba;
1686 strat->red = redHoney;
1687 if (strat->honey)
1688 strat->red = redHoney;
1689 else if (currRing->pLexOrder && !strat->homog)
1690 strat->red = redLazy;
1691 else
1692 {
1693 strat->LazyPass *=4;
1694 strat->red = redHomog;
1695 }
1697 {
1698 if (rField_is_Z(currRing))
1699 strat->red = redRing_Z;
1700 else
1701 strat->red = redRing;
1702 }
1703 if (TEST_OPT_IDLIFT
1704 && (!rIsNCRing(currRing))
1705 && (!rField_is_Ring(currRing)))
1706 strat->red=redLiftstd;
1707 if (currRing->pLexOrder && strat->honey)
1708 strat->initEcart = initEcartNormal;
1709 else
1710 strat->initEcart = initEcartBBA;
1711 if (strat->honey)
1713 else
1715// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1716// {
1717// //interred machen Aenderung
1718// strat->pOrigFDeg=pFDeg;
1719// strat->pOrigLDeg=pLDeg;
1720// //h=ggetid("ecart");
1721// //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1722// //{
1723// // ecartWeights=iv2array(IDINTVEC(h));
1724// //}
1725// //else
1726// {
1727// ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1728// /*uses automatic computation of the ecartWeights to set them*/
1729// kEcartWeights(F->m,IDELEMS(F)-1,ecartWeights);
1730// }
1731// pRestoreDegProcs(currRing,totaldegreeWecart, maxdegreeWecart);
1732// if (TEST_OPT_PROT)
1733// {
1734// for(i=1; i<=(currRing->N); i++)
1735// Print(" %d",ecartWeights[i]);
1736// PrintLn();
1737// mflush();
1738// }
1739// }
1740}
1741
1743{
1744 int i;
1745 //idhdl h;
1746 /* setting global variables ------------------- */
1747 strat->enterS = enterSSba;
1748 strat->red2 = redHoney;
1749 if (strat->honey)
1750 strat->red2 = redHoney;
1751 else if (currRing->pLexOrder && !strat->homog)
1752 strat->red2 = redLazy;
1753 else
1754 {
1755 strat->LazyPass *=4;
1756 strat->red2 = redHomog;
1757 }
1759 {
1761 {strat->red2 = redRiloc;}
1762 else
1763 {strat->red2 = redRing;}
1764 }
1765 if (currRing->pLexOrder && strat->honey)
1766 strat->initEcart = initEcartNormal;
1767 else
1768 strat->initEcart = initEcartBBA;
1769 if (strat->honey)
1771 else
1773 //strat->kIdeal = NULL;
1774 //if (strat->ak==0) strat->kIdeal->rtyp=IDEAL_CMD;
1775 //else strat->kIdeal->rtyp=MODUL_CMD;
1776 //strat->kIdeal->data=(void *)strat->Shdl;
1777 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1778 {
1779 //interred machen Aenderung
1780 strat->pOrigFDeg = currRing->pFDeg;
1781 strat->pOrigLDeg = currRing->pLDeg;
1782 //h=ggetid("ecart");
1783 //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1784 //{
1785 // ecartWeights=iv2array(IDINTVEC(h));
1786 //}
1787 //else
1788 {
1789 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1790 /*uses automatic computation of the ecartWeights to set them*/
1792 }
1794 if (TEST_OPT_PROT)
1795 {
1796 for(i=1; i<=(currRing->N); i++)
1797 Print(" %d",ecartWeights[i]);
1798 PrintLn();
1799 mflush();
1800 }
1801 }
1802 // for sig-safe reductions in signature-based
1803 // standard basis computations
1805 strat->red = redSigRing;
1806 else
1807 strat->red = redSig;
1808 //strat->sbaOrder = 1;
1809 strat->currIdx = 1;
1810}
1811
1813{
1814 int i,j;
1815
1816 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
1817 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
1818 strat->enterS = enterSMora;
1819 strat->initEcartPair = initEcartPairMora; /*- ecart approximation -*/
1820 strat->posInLOld = strat->posInL;
1821 strat->posInLOldFlag = TRUE;
1822 strat->initEcart = initEcartNormal;
1823 if (strat->homog)
1824 strat->red = redFirst; /*take the first possible in T*/
1825 else
1826 strat->red = redEcart;/*take the first possible in under ecart-restriction*/
1827 if ( currRing->ppNoether!=NULL )
1828 {
1829 strat->kNoether = pCopy((currRing->ppNoether));
1830 if (TEST_OPT_PROT)
1831 {
1832 Print("H(%ld)",p_FDeg(strat->kNoether,currRing)+1);
1833 mflush();
1834 }
1835 }
1836 if (strat->kNoether!=NULL)
1837 {
1838 HCord = currRing->pFDeg((strat->kNoether),currRing)+1;
1839 }
1840 else
1841 {
1842 HCord = INT_MAX-3;/*- very large -*/
1843 }
1844
1846 {
1847 if (rField_is_Z(currRing))
1848 strat->red = redRiloc_Z;
1849 else
1850 strat->red = redRiloc;
1851 }
1852
1853 /*reads the ecartWeights used for Graebes method from the
1854 *intvec ecart and set ecartWeights
1855 */
1856 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1857 {
1858 //interred machen Aenderung
1859 strat->pOrigFDeg=currRing->pFDeg;
1860 strat->pOrigLDeg=currRing->pLDeg;
1861 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1862 /*uses automatic computation of the ecartWeights to set them*/
1864
1866 if (TEST_OPT_PROT)
1867 {
1868 for(i=1; i<=(currRing->N); i++)
1869 Print(" %d",ecartWeights[i]);
1870 PrintLn();
1871 mflush();
1872 }
1873 }
1874 kOptimizeLDeg(currRing->pLDeg, strat);
1875}
1876
1877void kDebugPrint(kStrategy strat);
1878
1880{
1881 int olddeg = 0;
1882 int reduc = 0;
1883 int red_result = 1;
1884 int hilbeledeg=1,hilbcount=0;
1885 BITSET save1;
1888 {
1889 si_opt_1 &= ~Sy_bit(OPT_REDSB);
1890 si_opt_1 &= ~Sy_bit(OPT_REDTAIL);
1891 }
1892
1893 strat->update = TRUE;
1894 /*- setting global variables ------------------- -*/
1895 initBuchMoraCrit(strat);
1896 initHilbCrit(F,Q,&hilb,strat);
1897 initMora(F,strat);
1899 initBuchMoraPosRing(strat);
1900 else
1901 initBuchMoraPos(strat);
1902 /*Shdl=*/initBuchMora(F,Q,strat);
1903 if (TEST_OPT_FASTHC) missingAxis(&strat->lastAxis,strat);
1904 /*updateS in initBuchMora has Hecketest
1905 * and could have put strat->kHEdgdeFound FALSE*/
1906 if (TEST_OPT_FASTHC && (strat->lastAxis) && strat->posInLOldFlag)
1907 {
1908 strat->posInLOld = strat->posInL;
1909 strat->posInLOldFlag = FALSE;
1910 strat->posInL = posInL10;
1911 updateL(strat);
1912 reorderL(strat);
1913 }
1914 kTest_TS(strat);
1915 strat->use_buckets = kMoraUseBucket(strat);
1916
1917#ifdef HAVE_TAIL_RING
1918 if (strat->homog && strat->red == redFirst)
1919 if(!idIs0(F) &&(!rField_is_Ring(currRing)))
1921#endif
1922
1923 if (BVERBOSE(23))
1924 {
1925 kDebugPrint(strat);
1926 }
1927//deleteInL(strat->L,&strat->Ll,1,strat);
1928//deleteInL(strat->L,&strat->Ll,0,strat);
1929
1930 /*- compute-------------------------------------------*/
1931 while (strat->Ll >= 0)
1932 {
1933 #ifdef KDEBUG
1934 if (TEST_OPT_DEBUG) messageSets(strat);
1935 #endif
1936 if (siCntrlc)
1937 {
1938 while (strat->Ll >= 0)
1939 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1940 strat->noClearS=TRUE;
1941 }
1943 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg))
1944 {
1945 /*
1946 * stops computation if
1947 * - 24 (degBound)
1948 * && upper degree is bigger than Kstd1_deg
1949 */
1950 while ((strat->Ll >= 0)
1951 && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL)
1952 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg)
1953 )
1954 {
1955 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1956 //if (TEST_OPT_PROT)
1957 //{
1958 // PrintS("D"); mflush();
1959 //}
1960 }
1961 if (strat->Ll<0) break;
1962 else strat->noClearS=TRUE;
1963 }
1964 strat->P = strat->L[strat->Ll];/*- picks the last element from the lazyset L -*/
1965 if (strat->Ll==0) strat->interpt=TRUE;
1966 strat->Ll--;
1967 // create the real Spoly
1968 if (pNext(strat->P.p) == strat->tail)
1969 {
1970 /*- deletes the short spoly and computes -*/
1972 pLmDelete(strat->P.p);
1973 else
1974 pLmFree(strat->P.p);
1975 strat->P.p = NULL;
1976 poly m1 = NULL, m2 = NULL;
1977 // check that spoly creation is ok
1978 while (strat->tailRing != currRing &&
1979 !kCheckSpolyCreation(&(strat->P), strat, m1, m2))
1980 {
1981 assume(m1 == NULL && m2 == NULL);
1982 // if not, change to a ring where exponents are large enough
1983 kStratChangeTailRing(strat);
1984 }
1985 /* create the real one */
1986 ksCreateSpoly(&(strat->P), strat->kNoetherTail(), strat->use_buckets,
1987 strat->tailRing, m1, m2, strat->R);
1988 if (!strat->use_buckets)
1989 strat->P.SetLength(strat->length_pLength);
1990 strat->P.PrepareRed(strat->use_buckets);
1991 }
1992 else if (strat->P.p1 == NULL)
1993 {
1994 // for input polys, prepare reduction (buckets !)
1995 strat->P.SetLength(strat->length_pLength);
1996 strat->P.PrepareRed(strat->use_buckets);
1997 }
1998
1999 // the s-poly
2000 if (!strat->P.IsNull())
2001 {
2002 // might be NULL from noether !!!
2003 if (TEST_OPT_PROT)
2004 message(strat->P.ecart+strat->P.GetpFDeg(),&olddeg,&reduc,strat, red_result);
2005 // reduce
2006 red_result = strat->red(&strat->P,strat);
2007 }
2008
2009 // the reduced s-poly
2010 if (! strat->P.IsNull())
2011 {
2012 strat->P.GetP();
2013 // statistics
2014 if (TEST_OPT_PROT) PrintS("s");
2015 // normalization
2017 strat->P.pCleardenom();
2018 else
2019 strat->P.pNorm();
2020 // tailreduction
2021 strat->P.p = redtail(&(strat->P),strat->sl,strat);
2022 if (strat->P.p==NULL)
2023 {
2024 WerrorS("exponent overflow - wrong ordering");
2025 return(idInit(1,1));
2026 }
2027 // set ecart -- might have changed because of tail reductions
2028 if ((!strat->noTailReduction) && (!strat->honey))
2029 strat->initEcart(&strat->P);
2030 // cancel unit
2031 cancelunit(&strat->P);
2032 // for char 0, clear denominators
2033 if ((strat->P.p->next==NULL) /* i.e. cancelunit did something*/
2035 strat->P.pCleardenom();
2036
2037 strat->P.SetShortExpVector();
2038 enterT(strat->P,strat);
2039 // build new pairs
2041 superenterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2042 else
2043 enterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2044 // put in S
2045 strat->enterS(strat->P,
2046 posInS(strat,strat->sl,strat->P.p, strat->P.ecart),
2047 strat, strat->tl);
2048 // apply hilbert criterion
2049 if (hilb!=NULL)
2050 {
2051 if (strat->homog==isHomog)
2053 else
2055 }
2056
2057 // clear strat->P
2058 kDeleteLcm(&strat->P);
2059
2060#ifdef KDEBUG
2061 // make sure kTest_TS does not complain about strat->P
2062 strat->P.Clear();
2063#endif
2064 }
2065 if (strat->kAllAxis)
2066 {
2067 if ((TEST_OPT_FINDET)
2068 || ((TEST_OPT_MULTBOUND) && (scMult0Int(strat->Shdl,NULL) < Kstd1_mu)))
2069 {
2070 // obachman: is this still used ???
2071 /*
2072 * stops computation if strat->kAllAxis and
2073 * - 27 (finiteDeterminacyTest)
2074 * or
2075 * - 23
2076 * (multBound)
2077 * && multiplicity of the ideal is smaller then a predefined number mu
2078 */
2079 while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
2080 }
2081 }
2082 kTest_TS(strat);
2083 }
2084 /*- complete reduction of the standard basis------------------------ -*/
2085 if (TEST_OPT_REDSB) completeReduce(strat);
2086 else if (TEST_OPT_PROT) PrintLn();
2087 /*- release temp data------------------------------- -*/
2088 exitBuchMora(strat);
2089 /*- polynomials used for HECKE: HC, noether -*/
2090 if (TEST_OPT_FINDET)
2091 {
2092 if (strat->kNoether!=NULL)
2093 Kstd1_mu=currRing->pFDeg(strat->kNoether,currRing);
2094 else
2095 Kstd1_mu=-1;
2096 }
2097 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2099// if (TEST_OPT_WEIGHTM)
2100// {
2101// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2102// if (ecartWeights)
2103// {
2104// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
2105// ecartWeights=NULL;
2106// }
2107// }
2108 if(nCoeff_is_Z(currRing->cf))
2109 finalReduceByMon(strat);
2110 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
2112 idTest(strat->Shdl);
2113 return (strat->Shdl);
2114}
2115
2116poly kNF1 (ideal F,ideal Q,poly q, kStrategy strat, int lazyReduce)
2117{
2118 assume(q!=NULL);
2119 assume(!(idIs0(F)&&(Q==NULL)));
2120
2121// lazy_reduce flags: can be combined by |
2122//#define KSTD_NF_LAZY 1
2123 // do only a reduction of the leading term
2124//#define KSTD_NF_ECART 2
2125 // only local: reduce even with bad ecart
2126 poly p;
2127 int i;
2128 int j;
2129 int o;
2130 LObject h;
2131 BITSET save1;
2133
2134 //if ((idIs0(F))&&(Q==NULL))
2135 // return pCopy(q); /*F=0*/
2136 //strat->ak = si_max(idRankFreeModule(F),pMaxComp(q));
2137 /*- creating temp data structures------------------- -*/
2138 strat->kAllAxis = (currRing->ppNoether) != NULL;
2139 strat->kNoether = pCopy((currRing->ppNoether));
2142 si_opt_1&=~Sy_bit(OPT_INTSTRATEGY);
2144 && (! TEST_V_DEG_STOP)
2145 && (0<Kstd1_deg)
2146 && ((strat->kNoether==NULL)
2148 {
2149 pLmDelete(&strat->kNoether);
2150 strat->kNoether=pOne();
2151 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2152 pSetm(strat->kNoether);
2153 // strat->kAllAxis=TRUE;
2154 }
2155 initBuchMoraCrit(strat);
2157 initBuchMoraPosRing(strat);
2158 else
2159 initBuchMoraPos(strat);
2160 initMora(F,strat);
2161 strat->enterS = enterSMoraNF;
2162 /*- set T -*/
2163 strat->tl = -1;
2164 strat->tmax = setmaxT;
2165 strat->T = initT();
2166 strat->R = initR();
2167 strat->sevT = initsevT();
2168 /*- set S -*/
2169 strat->sl = -1;
2170 /*- init local data struct.-------------------------- -*/
2171 /*Shdl=*/initS(F,Q,strat);
2172 if ((strat->ak!=0)
2173 && (strat->kAllAxis)) /*never true for ring-cf*/
2174 {
2175 if (strat->ak!=1)
2176 {
2177 pSetComp(strat->kNoether,1);
2178 pSetmComp(strat->kNoether);
2179 poly p=pHead(strat->kNoether);
2180 pSetComp(p,strat->ak);
2181 pSetmComp(p);
2182 p=pAdd(strat->kNoether,p);
2183 strat->kNoether=pNext(p);
2185 }
2186 }
2187 if (((lazyReduce & KSTD_NF_LAZY)==0)
2188 && (!rField_is_Ring(currRing)))
2189 {
2190 for (i=strat->sl; i>=0; i--)
2191 pNorm(strat->S[i]);
2192 }
2193 /*- puts the elements of S also to T -*/
2194 for (i=0; i<=strat->sl; i++)
2195 {
2196 h.p = strat->S[i];
2197 h.ecart = strat->ecartS[i];
2198 if (strat->sevS[i] == 0) strat->sevS[i] = pGetShortExpVector(h.p);
2199 else assume(strat->sevS[i] == pGetShortExpVector(h.p));
2200 h.length = pLength(h.p);
2201 h.sev = strat->sevS[i];
2202 h.SetpFDeg();
2203 enterT(h,strat);
2204 }
2205#ifdef KDEBUG
2206// kDebugPrint(strat);
2207#endif
2208 /*- compute------------------------------------------- -*/
2209 p = pCopy(q);
2210 deleteHC(&p,&o,&j,strat);
2211 kTest(strat);
2212 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2213 if (BVERBOSE(23)) kDebugPrint(strat);
2215 {
2216 if (p!=NULL) p = redMoraNFRing(p,strat, lazyReduce & KSTD_NF_ECART);
2217 }
2218 else
2219 {
2220 if (p!=NULL) p = redMoraNF(p,strat, lazyReduce & KSTD_NF_ECART);
2221 }
2222 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2223 {
2224 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2225 p = redtail(p,strat->sl,strat);
2226 }
2227 /*- release temp data------------------------------- -*/
2228 cleanT(strat);
2229 assume(strat->L==NULL); /*strat->L unused */
2230 assume(strat->B==NULL); /*strat->B unused */
2231 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2232 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2233 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2234 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2235 omFree(strat->sevT);
2236 omFree(strat->S_2_R);
2237 omFree(strat->R);
2238
2239 omfree((ADDRESS)strat->fromQ);
2240 strat->fromQ=NULL;
2241 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2242// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2243// {
2244// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2245// if (ecartWeights)
2246// {
2247// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2248// ecartWeights=NULL;
2249// }
2250// }
2251 idDelete(&strat->Shdl);
2253 if (TEST_OPT_PROT) PrintLn();
2254 return p;
2255}
2256
2258{
2259 assume(!idIs0(q));
2260 assume(!(idIs0(F)&&(Q==NULL)));
2261
2262// lazy_reduce flags: can be combined by |
2263//#define KSTD_NF_LAZY 1
2264 // do only a reduction of the leading term
2265//#define KSTD_NF_ECART 2
2266 // only local: reduce even with bad ecart
2267 poly p;
2268 int i;
2269 int j;
2270 int o;
2271 LObject h;
2272 ideal res;
2273 BITSET save1;
2275
2276 //if (idIs0(q)) return idInit(IDELEMS(q),si_max(q->rank,F->rank));
2277 //if ((idIs0(F))&&(Q==NULL))
2278 // return idCopy(q); /*F=0*/
2279 //strat->ak = si_max(idRankFreeModule(F),idRankFreeModule(q));
2280 /*- creating temp data structures------------------- -*/
2281 strat->kAllAxis = (currRing->ppNoether) != NULL;
2282 strat->kNoether=pCopy((currRing->ppNoether));
2285 && (0<Kstd1_deg)
2286 && ((strat->kNoether==NULL)
2288 {
2289 pLmDelete(&strat->kNoether);
2290 strat->kNoether=pOne();
2291 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2292 pSetm(strat->kNoether);
2293 //strat->kAllAxis=TRUE;
2294 }
2295 initBuchMoraCrit(strat);
2297 initBuchMoraPosRing(strat);
2298 else
2299 initBuchMoraPos(strat);
2300 initMora(F,strat);
2301 strat->enterS = enterSMoraNF;
2302 /*- set T -*/
2303 strat->tl = -1;
2304 strat->tmax = setmaxT;
2305 strat->T = initT();
2306 strat->R = initR();
2307 strat->sevT = initsevT();
2308 /*- set S -*/
2309 strat->sl = -1;
2310 /*- init local data struct.-------------------------- -*/
2311 /*Shdl=*/initS(F,Q,strat);
2312 if ((strat->ak!=0)
2313 && (strat->kNoether!=NULL))
2314 {
2315 if (strat->ak!=1)
2316 {
2317 pSetComp(strat->kNoether,1);
2318 pSetmComp(strat->kNoether);
2319 poly p=pHead(strat->kNoether);
2320 pSetComp(p,strat->ak);
2321 pSetmComp(p);
2322 p=pAdd(strat->kNoether,p);
2323 strat->kNoether=pNext(p);
2325 }
2326 }
2327 if (((lazyReduce & KSTD_NF_LAZY)==0)
2328 && (!rField_is_Ring(currRing)))
2329 {
2330 for (i=strat->sl; i>=0; i--)
2331 pNorm(strat->S[i]);
2332 }
2333 /*- compute------------------------------------------- -*/
2334 res=idInit(IDELEMS(q),strat->ak);
2335 for (i=0; i<IDELEMS(q); i++)
2336 {
2337 if (q->m[i]!=NULL)
2338 {
2339 p = pCopy(q->m[i]);
2340 deleteHC(&p,&o,&j,strat);
2341 if (p!=NULL)
2342 {
2343 /*- puts the elements of S also to T -*/
2344 for (j=0; j<=strat->sl; j++)
2345 {
2346 h.p = strat->S[j];
2347 h.ecart = strat->ecartS[j];
2348 h.pLength = h.length = pLength(h.p);
2349 if (strat->sevS[j] == 0) strat->sevS[j] = pGetShortExpVector(h.p);
2350 else assume(strat->sevS[j] == pGetShortExpVector(h.p));
2351 h.sev = strat->sevS[j];
2352 h.SetpFDeg();
2354 enterT_strong(h,strat);
2355 else
2356 enterT(h,strat);
2357 }
2358 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2360 {
2361 p = redMoraNFRing(p,strat, lazyReduce);
2362 }
2363 else
2364 p = redMoraNF(p,strat, lazyReduce);
2365 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2366 {
2367 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2368 p = redtail(p,strat->sl,strat);
2369 }
2370 cleanT(strat);
2371 }
2372 res->m[i]=p;
2373 }
2374 //else
2375 // res->m[i]=NULL;
2376 }
2377 /*- release temp data------------------------------- -*/
2378 assume(strat->L==NULL); /*strat->L unused */
2379 assume(strat->B==NULL); /*strat->B unused */
2380 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2381 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2382 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2383 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2384 omFree(strat->sevT);
2385 omFree(strat->S_2_R);
2386 omFree(strat->R);
2387 omfree((ADDRESS)strat->fromQ);
2388 strat->fromQ=NULL;
2389 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2390// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2391// {
2392// pFDeg=strat->pOrigFDeg;
2393// pLDeg=strat->pOrigLDeg;
2394// if (ecartWeights)
2395// {
2396// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2397// ecartWeights=NULL;
2398// }
2399// }
2400 idDelete(&strat->Shdl);
2402 if (TEST_OPT_PROT) PrintLn();
2403 return res;
2404}
2405
2407
2408long kModDeg(poly p,const ring r)
2409{
2410 long o=p_WDegree(p, r);
2411 long i=__p_GetComp(p, r);
2412 if (i==0) return o;
2413 //assume((i>0) && (i<=kModW->length()));
2414 if (i<=kModW->length())
2415 return o+(*kModW)[i-1];
2416 return o;
2417}
2418long kHomModDeg(poly p,const ring r)
2419{
2420 int i;
2421 long j=0;
2422
2423 for (i=r->N;i>0;i--)
2424 j+=p_GetExp(p,i,r)*(*kHomW)[i-1];
2425 if (kModW == NULL) return j;
2426 i = __p_GetComp(p,r);
2427 if (i==0) return j;
2428 return j+(*kModW)[i-1];
2429}
2430static int kFindLuckyPrime(ideal F, ideal Q) // TODO
2431{
2432 int prim=32003;
2433 // assume coeff are in Q
2434 return prim;
2435}
2436
2437static poly kTryHC(ideal F, ideal Q)
2438{
2439 if (TEST_V_NOT_TRICKS ||(Q!=NULL))
2440 return NULL;
2441 int prim=kFindLuckyPrime(F,Q);
2442 if (TEST_OPT_PROT) Print("try HC in ring over ZZ/%d\n",prim);
2443 // create Zp_ring
2446 nKillChar(Zp_ring->cf);
2447 Zp_ring->cf=nInitChar(n_Zp, (void*)(long)prim);
2449 // map data
2452 if (nMap==NULL) return NULL;
2454 ideal QQ=NULL;
2456 // call std
2457 kStrategy strat=new skStrategy;
2458 strat->LazyPass=20;
2459 strat->LazyDegree = 1;
2460 strat->kModW=kModW=NULL;
2461 strat->kHomW=kHomW=NULL;
2462 strat->homog = (tHomog)idHomIdeal(F,Q);
2463 ideal res=mora(FF,QQ,NULL,NULL,strat);
2464 // clean
2465 idDelete(&FF);
2466 poly HC=NULL;
2467 if (strat->kNoether!=NULL) scComputeHC(res,QQ,0,HC);
2468 delete strat;
2469 if (QQ!=NULL) idDelete(&QQ);
2470 idDelete(&res);
2471 // map back
2473 if (HC!=NULL)
2474 {
2475 //p_IncrExp(HC,Zp_ring->N,Zp_ring);
2476 for (int i=rVar(Zp_ring)-1; i>0; i--)
2477 {
2478 if (pGetExp(HC, i) > 0) pDecrExp(HC,i);
2479 }
2480 p_Setm(HC,Zp_ring);
2481 if (TEST_OPT_PROT) Print("HC(%ld) found\n",pTotaldegree(HC));
2482 pSetCoeff0(HC,nInit(1));
2483 }
2484 else
2485 {
2486 if (TEST_OPT_PROT) PrintS("HC not found\n");
2487 }
2489 return HC;
2490}
2491
2493 int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
2494{
2495 assume(!idIs0(F));
2496 assume((Q==NULL)||(!idIs0(Q)));
2497
2498 kStrategy strat=new skStrategy;
2499
2500 ideal r;
2501 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2503
2504 strat->s_poly=sp;
2506 strat->syzComp = syzComp;
2507 if (TEST_OPT_SB_1
2509 )
2510 strat->newIdeal = newIdeal;
2512 strat->LazyPass=20;
2513 else
2514 strat->LazyPass=2;
2515 strat->LazyDegree = 1;
2516 strat->ak = 0;
2517 if (id_IsModule(F,currRing)) strat->ak = id_RankFreeModule(F,currRing);
2518 strat->kModW=kModW=NULL;
2519 strat->kHomW=kHomW=NULL;
2520 if (vw != NULL)
2521 {
2522 currRing->pLexOrder=FALSE;
2523 strat->kHomW=kHomW=vw;
2524 strat->pOrigFDeg = currRing->pFDeg;
2525 strat->pOrigLDeg = currRing->pLDeg;
2527 toReset = TRUE;
2528 }
2529 if (h==testHomog)
2530 {
2531 if (strat->ak == 0)
2532 {
2533 h = (tHomog)idHomIdeal(F,Q);
2534 w=NULL;
2535 }
2536 else if (!TEST_OPT_DEGBOUND)
2537 {
2538 if (w!=NULL)
2539 h = (tHomog)idHomModule(F,Q,w);
2540 else
2541 h = (tHomog)idHomIdeal(F,Q);
2542 }
2543 }
2544 currRing->pLexOrder=b;
2545 if (h==isHomog)
2546 {
2547 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2548 {
2549 strat->kModW = kModW = *w;
2550 if (vw == NULL)
2551 {
2552 strat->pOrigFDeg = currRing->pFDeg;
2553 strat->pOrigLDeg = currRing->pLDeg;
2555 toReset = TRUE;
2556 }
2557 }
2558 currRing->pLexOrder = TRUE;
2559 if (hilb==NULL) strat->LazyPass*=2;
2560 }
2561 strat->homog=h;
2562#ifdef KDEBUG
2563 idTest(F);
2564 if (Q!=NULL) idTest(Q);
2565#endif
2566#ifdef HAVE_PLURAL
2568 {
2569 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2570 strat->no_prod_crit = ! bIsSCA;
2571 if (w!=NULL)
2572 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2573 else
2574 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2575 }
2576 else
2577#endif
2578 {
2579 #if PRE_INTEGER_CHECK
2580 //the preinteger check strategy is not for modules
2581 if(nCoeff_is_Z(currRing->cf) && strat->ak <= 0)
2582 {
2583 ideal FCopy = idCopy(F);
2584 poly pFmon = preIntegerCheck(FCopy, Q);
2585 if(pFmon != NULL)
2586 {
2588 strat->kModW=kModW=NULL;
2589 if (h==testHomog)
2590 {
2591 if (strat->ak == 0)
2592 {
2594 w=NULL;
2595 }
2596 else if (!TEST_OPT_DEGBOUND)
2597 {
2598 if (w!=NULL)
2600 else
2602 }
2603 }
2604 currRing->pLexOrder=b;
2605 if (h==isHomog)
2606 {
2607 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2608 {
2609 strat->kModW = kModW = *w;
2610 if (vw == NULL)
2611 {
2612 strat->pOrigFDeg = currRing->pFDeg;
2613 strat->pOrigLDeg = currRing->pLDeg;
2615 toReset = TRUE;
2616 }
2617 }
2618 currRing->pLexOrder = TRUE;
2619 if (hilb==NULL) strat->LazyPass*=2;
2620 }
2621 strat->homog=h;
2622 }
2623 omTestMemory(1);
2624 if(w == NULL)
2625 {
2627 r=mora(FCopy,Q,NULL,hilb,strat);
2628 else
2629 r=bba(FCopy,Q,NULL,hilb,strat);
2630 }
2631 else
2632 {
2634 r=mora(FCopy,Q,*w,hilb,strat);
2635 else
2636 r=bba(FCopy,Q,*w,hilb,strat);
2637 }
2638 idDelete(&FCopy);
2639 }
2640 else
2641 #endif
2642 {
2643 if(w==NULL)
2644 {
2646 r=mora(F,Q,NULL,hilb,strat);
2647 else
2648 r=bba(F,Q,NULL,hilb,strat);
2649 }
2650 else
2651 {
2653 r=mora(F,Q,*w,hilb,strat);
2654 else
2655 r=bba(F,Q,*w,hilb,strat);
2656 }
2657 }
2658 }
2659#ifdef KDEBUG
2660 idTest(r);
2661#endif
2662 if (toReset)
2663 {
2664 kModW = NULL;
2666 }
2667 currRing->pLexOrder = b;
2668//Print("%d reductions canceled \n",strat->cel);
2669 delete(strat);
2670 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2671 return r;
2672}
2673
2675 int newIdeal, intvec *vw, s_poly_proc_t sp)
2676{
2677 if(idIs0(F))
2678 return idInit(1,F->rank);
2679
2680 if((Q!=NULL)&&(idIs0(Q))) Q=NULL;
2681#ifdef HAVE_SHIFTBBA
2682 if(rIsLPRing(currRing)) return kStdShift(F, Q, h, w, hilb, syzComp, newIdeal, vw, FALSE);
2683#endif
2684
2685 /* test HC precomputation*/
2686 poly resetppNoether = currRing->ppNoether;
2687 if ((IDELEMS(F)>1)
2688 && (h!=isHomog)
2689 && (hilb==NULL)
2690 && (vw==NULL)
2691 && (newIdeal==0)
2692 && (sp==NULL)
2693 && (!id_IsModule(F,currRing))
2697 && (currRing->ppNoether==NULL))
2698 {
2699 currRing->ppNoether=kTryHC(F,Q);
2700 ideal res=kStd_internal(F,Q,h,w,hilb,syzComp,newIdeal,vw,sp);
2701 if (currRing->ppNoether!=NULL) pLmDelete(currRing->ppNoether);
2702 currRing->ppNoether=resetppNoether;
2703 return res;
2704 }
2705 return kStd_internal(F,Q,h,w,hilb,syzComp,newIdeal,vw,sp);
2706}
2707
2708ideal kSba(ideal F, ideal Q, tHomog h,intvec ** w, int sbaOrder, int arri, intvec *hilb,int syzComp,
2709 int newIdeal, intvec *vw)
2710{
2711 if(idIs0(F))
2712 return idInit(1,F->rank);
2714 {
2715 ideal r;
2716 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2718 kStrategy strat=new skStrategy;
2719 strat->sbaOrder = sbaOrder;
2720 if (arri!=0)
2721 {
2722 strat->rewCrit1 = arriRewDummy;
2723 strat->rewCrit2 = arriRewCriterion;
2725 }
2726 else
2727 {
2731 }
2732
2734 strat->syzComp = syzComp;
2735 if (TEST_OPT_SB_1)
2736 //if(!rField_is_Ring(currRing)) // always true here
2737 strat->newIdeal = newIdeal;
2739 strat->LazyPass=20;
2740 else
2741 strat->LazyPass=2;
2742 strat->LazyDegree = 1;
2746 strat->ak = 0;
2747 if (id_IsModule(F,currRing)) strat->ak = id_RankFreeModule(F,currRing);
2748 strat->kModW=kModW=NULL;
2749 strat->kHomW=kHomW=NULL;
2750 if (vw != NULL)
2751 {
2752 currRing->pLexOrder=FALSE;
2753 strat->kHomW=kHomW=vw;
2754 strat->pOrigFDeg = currRing->pFDeg;
2755 strat->pOrigLDeg = currRing->pLDeg;
2757 toReset = TRUE;
2758 }
2759 if (h==testHomog)
2760 {
2761 if (strat->ak == 0)
2762 {
2763 h = (tHomog)idHomIdeal(F,Q);
2764 w=NULL;
2765 }
2766 else if (!TEST_OPT_DEGBOUND)
2767 {
2768 if (w!=NULL)
2769 h = (tHomog)idHomModule(F,Q,w);
2770 else
2771 h = (tHomog)idHomIdeal(F,Q);
2772 }
2773 }
2774 currRing->pLexOrder=b;
2775 if (h==isHomog)
2776 {
2777 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2778 {
2779 strat->kModW = kModW = *w;
2780 if (vw == NULL)
2781 {
2782 strat->pOrigFDeg = currRing->pFDeg;
2783 strat->pOrigLDeg = currRing->pLDeg;
2785 toReset = TRUE;
2786 }
2787 }
2788 currRing->pLexOrder = TRUE;
2789 if (hilb==NULL) strat->LazyPass*=2;
2790 }
2791 strat->homog=h;
2792 #ifdef KDEBUG
2793 idTest(F);
2794 if(Q != NULL)
2795 idTest(Q);
2796 #endif
2797 #ifdef HAVE_PLURAL
2799 {
2800 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2801 strat->no_prod_crit = ! bIsSCA;
2802 if (w!=NULL)
2803 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2804 else
2805 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2806 }
2807 else
2808 #endif
2809 {
2811 {
2812 if (w!=NULL)
2813 r=mora(F,Q,*w,hilb,strat);
2814 else
2815 r=mora(F,Q,NULL,hilb,strat);
2816 }
2817 else
2818 {
2819 strat->sigdrop = FALSE;
2820 if (w!=NULL)
2821 r=sba(F,Q,*w,hilb,strat);
2822 else
2823 r=sba(F,Q,NULL,hilb,strat);
2824 }
2825 }
2826 #ifdef KDEBUG
2827 idTest(r);
2828 #endif
2829 if (toReset)
2830 {
2831 kModW = NULL;
2833 }
2834 currRing->pLexOrder = b;
2835 //Print("%d reductions canceled \n",strat->cel);
2836 //delete(strat);
2837 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2838 return r;
2839 }
2840 else
2841 {
2842 //--------------------------RING CASE-------------------------
2843 assume(sbaOrder == 1);
2844 assume(arri == 0);
2845 ideal r;
2846 r = idCopy(F);
2847 int sbaEnterS = -1;
2848 bool sigdrop = TRUE;
2849 //This is how we set the SBA algorithm;
2850 int totalsbaruns = 1,blockedreductions = 20,blockred = 0,loops = 0;
2851 while(sigdrop && (loops < totalsbaruns || totalsbaruns == -1)
2852 && (blockred <= blockedreductions))
2853 {
2854 loops++;
2855 if(loops == 1)
2856 sigdrop = FALSE;
2857 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2859 kStrategy strat=new skStrategy;
2860 strat->sbaEnterS = sbaEnterS;
2861 strat->sigdrop = sigdrop;
2862 #if 0
2863 strat->blockred = blockred;
2864 #else
2865 strat->blockred = 0;
2866 #endif
2868 //printf("\nsbaEnterS beginning = %i\n",strat->sbaEnterS);
2869 //printf("\nsigdrop beginning = %i\n",strat->sigdrop);
2870 strat->sbaOrder = sbaOrder;
2871 if (arri!=0)
2872 {
2873 strat->rewCrit1 = arriRewDummy;
2874 strat->rewCrit2 = arriRewCriterion;
2876 }
2877 else
2878 {
2882 }
2883
2885 strat->syzComp = syzComp;
2886 if (TEST_OPT_SB_1)
2888 strat->newIdeal = newIdeal;
2890 strat->LazyPass=20;
2891 else
2892 strat->LazyPass=2;
2893 strat->LazyDegree = 1;
2897 strat->ak = 0;
2898 if (id_IsModule(F,currRing)) strat->ak = id_RankFreeModule(F,currRing);
2899 strat->kModW=kModW=NULL;
2900 strat->kHomW=kHomW=NULL;
2901 if (vw != NULL)
2902 {
2903 currRing->pLexOrder=FALSE;
2904 strat->kHomW=kHomW=vw;
2905 strat->pOrigFDeg = currRing->pFDeg;
2906 strat->pOrigLDeg = currRing->pLDeg;
2908 toReset = TRUE;
2909 }
2910 if (h==testHomog)
2911 {
2912 if (strat->ak == 0)
2913 {
2914 h = (tHomog)idHomIdeal(F,Q);
2915 w=NULL;
2916 }
2917 else if (!TEST_OPT_DEGBOUND)
2918 {
2919 if (w!=NULL)
2920 h = (tHomog)idHomModule(F,Q,w);
2921 else
2922 h = (tHomog)idHomIdeal(F,Q);
2923 }
2924 }
2925 currRing->pLexOrder=b;
2926 if (h==isHomog)
2927 {
2928 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2929 {
2930 strat->kModW = kModW = *w;
2931 if (vw == NULL)
2932 {
2933 strat->pOrigFDeg = currRing->pFDeg;
2934 strat->pOrigLDeg = currRing->pLDeg;
2936 toReset = TRUE;
2937 }
2938 }
2939 currRing->pLexOrder = TRUE;
2940 if (hilb==NULL) strat->LazyPass*=2;
2941 }
2942 strat->homog=h;
2943 #ifdef KDEBUG
2944 idTest(F);
2945 if(Q != NULL)
2946 idTest(Q);
2947 #endif
2948 #ifdef HAVE_PLURAL
2950 {
2951 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2952 strat->no_prod_crit = ! bIsSCA;
2953 if (w!=NULL)
2954 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2955 else
2956 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2957 }
2958 else
2959 #endif
2960 {
2962 {
2963 if (w!=NULL)
2964 r=mora(F,Q,*w,hilb,strat);
2965 else
2966 r=mora(F,Q,NULL,hilb,strat);
2967 }
2968 else
2969 {
2970 if (w!=NULL)
2971 r=sba(r,Q,*w,hilb,strat);
2972 else
2973 {
2974 r=sba(r,Q,NULL,hilb,strat);
2975 }
2976 }
2977 }
2978 #ifdef KDEBUG
2979 idTest(r);
2980 #endif
2981 if (toReset)
2982 {
2983 kModW = NULL;
2985 }
2986 currRing->pLexOrder = b;
2987 //Print("%d reductions canceled \n",strat->cel);
2988 sigdrop = strat->sigdrop;
2989 sbaEnterS = strat->sbaEnterS;
2990 blockred = strat->blockred;
2991 delete(strat);
2992 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2993 }
2994 // Go to std
2995 if(sigdrop || blockred > blockedreductions)
2996 {
2997 r = kStd(r, Q, h, w, hilb, syzComp, newIdeal, vw);
2998 }
2999 return r;
3000 }
3001}
3002
3003#ifdef HAVE_SHIFTBBA
3005 int newIdeal, intvec *vw, BOOLEAN rightGB)
3006{
3008 assume(idIsInV(F));
3010 {
3011 /* error: no local ord yet with shifts */
3012 WerrorS("No local ordering possible for shift algebra");
3013 return(NULL);
3014 }
3015 ideal r;
3016 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
3018 kStrategy strat=new skStrategy;
3019
3020 strat->rightGB = rightGB;
3021
3023 strat->syzComp = syzComp;
3024 if (TEST_OPT_SB_1)
3026 strat->newIdeal = newIdeal;
3028 strat->LazyPass=20;
3029 else
3030 strat->LazyPass=2;
3031 strat->LazyDegree = 1;
3032 strat->ak = 0;
3033 if (id_IsModule(F,currRing)) strat->ak = id_RankFreeModule(F,currRing);
3034 strat->kModW=kModW=NULL;
3035 strat->kHomW=kHomW=NULL;
3036 if (vw != NULL)
3037 {
3038 currRing->pLexOrder=FALSE;
3039 strat->kHomW=kHomW=vw;
3040 strat->pOrigFDeg = currRing->pFDeg;
3041 strat->pOrigLDeg = currRing->pLDeg;
3043 toReset = TRUE;
3044 }
3045 if (h==testHomog)
3046 {
3047 if (strat->ak == 0)
3048 {
3049 h = (tHomog)idHomIdeal(F,Q);
3050 w=NULL;
3051 }
3052 else if (!TEST_OPT_DEGBOUND)
3053 {
3054 if (w!=NULL)
3055 h = (tHomog)idHomModule(F,Q,w);
3056 else
3057 h = (tHomog)idHomIdeal(F,Q);
3058 }
3059 }
3060 currRing->pLexOrder=b;
3061 if (h==isHomog)
3062 {
3063 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3064 {
3065 strat->kModW = kModW = *w;
3066 if (vw == NULL)
3067 {
3068 strat->pOrigFDeg = currRing->pFDeg;
3069 strat->pOrigLDeg = currRing->pLDeg;
3071 toReset = TRUE;
3072 }
3073 }
3074 currRing->pLexOrder = TRUE;
3075 if (hilb==NULL) strat->LazyPass*=2;
3076 }
3077 strat->homog=h;
3078#ifdef KDEBUG
3079 idTest(F);
3080#endif
3081 /* global ordering */
3082 if (w!=NULL)
3083 r=bbaShift(F,Q,*w,hilb,strat);
3084 else
3085 r=bbaShift(F,Q,NULL,hilb,strat);
3086#ifdef KDEBUG
3087 idTest(r);
3088#endif
3089 if (toReset)
3090 {
3091 kModW = NULL;
3093 }
3094 currRing->pLexOrder = b;
3095//Print("%d reductions canceled \n",strat->cel);
3096 delete(strat);
3097 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
3098 assume(idIsInV(r));
3099 return r;
3100}
3101#endif
3102
3103//##############################################################
3104//##############################################################
3105//##############################################################
3106//##############################################################
3107//##############################################################
3108
3110 int syzComp, int reduced)
3111{
3112 if(idIs0(F))
3113 {
3114 M=idInit(1,F->rank);
3115 return idInit(1,F->rank);
3116 }
3118 {
3119 ideal sb;
3120 sb = kStd(F, Q, h, w, hilb);
3122 if(IDELEMS(sb) <= IDELEMS(F))
3123 {
3124 M = idCopy(sb);
3125 idSkipZeroes(M);
3126 return(sb);
3127 }
3128 else
3129 {
3130 M = idCopy(F);
3131 idSkipZeroes(M);
3132 return(sb);
3133 }
3134 }
3135 ideal r=NULL;
3136 int Kstd1_OldDeg = Kstd1_deg,i;
3138 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
3141 kStrategy strat=new skStrategy;
3142
3144 strat->syzComp = syzComp;
3146 strat->LazyPass=20;
3147 else
3148 strat->LazyPass=2;
3149 strat->LazyDegree = 1;
3150 strat->minim=(reduced % 2)+1;
3151 strat->ak = 0;
3152 if (id_IsModule(F,currRing)) strat->ak = id_RankFreeModule(F,currRing);
3153 if (delete_w)
3154 {
3155 temp_w=new intvec((strat->ak)+1);
3156 w = &temp_w;
3157 }
3158 if (h==testHomog)
3159 {
3160 if (strat->ak == 0)
3161 {
3162 h = (tHomog)idHomIdeal(F,Q);
3163 w=NULL;
3164 }
3165 else
3166 {
3167 h = (tHomog)idHomModule(F,Q,w);
3168 }
3169 }
3170 if (h==isHomog)
3171 {
3172 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3173 {
3174 kModW = *w;
3175 strat->kModW = *w;
3176 assume(currRing->pFDeg != NULL && currRing->pLDeg != NULL);
3177 strat->pOrigFDeg = currRing->pFDeg;
3178 strat->pOrigLDeg = currRing->pLDeg;
3180
3181 toReset = TRUE;
3182 if (reduced>1)
3183 {
3185 Kstd1_deg = -1;
3186 for (i=IDELEMS(F)-1;i>=0;i--)
3187 {
3188 if ((F->m[i]!=NULL) && (currRing->pFDeg(F->m[i],currRing)>=Kstd1_deg))
3189 Kstd1_deg = currRing->pFDeg(F->m[i],currRing)+1;
3190 }
3191 }
3192 }
3193 currRing->pLexOrder = TRUE;
3194 strat->LazyPass*=2;
3195 }
3196 strat->homog=h;
3197 ideal SB=NULL;
3199 {
3200 r=idMinBase(F,&SB); // SB and M via minbase
3201 strat->M=r;
3202 r=SB;
3203 }
3204 else
3205 {
3206 if (w!=NULL)
3207 r=bba(F,Q,*w,hilb,strat);
3208 else
3209 r=bba(F,Q,NULL,hilb,strat);
3210 }
3211#ifdef KDEBUG
3212 {
3213 int i;
3214 for (i=IDELEMS(r)-1; i>=0; i--) pTest(r->m[i]);
3215 }
3216#endif
3217 idSkipZeroes(r);
3218 if (toReset)
3219 {
3221 kModW = NULL;
3222 }
3223 currRing->pLexOrder = b;
3224 if ((delete_w)&&(temp_w!=NULL)) delete temp_w;
3225 if ((IDELEMS(r)==1) && (r->m[0]!=NULL) && pIsConstant(r->m[0]) && (strat->ak==0))
3226 {
3227 M=idInit(1,F->rank);
3228 M->m[0]=pOne();
3229 //if (strat->ak!=0) { pSetComp(M->m[0],strat->ak); pSetmComp(M->m[0]); }
3230 if (strat->M!=NULL) idDelete(&strat->M);
3231 }
3232 else if (strat->M==NULL)
3233 {
3234 M=idInit(1,F->rank);
3235 WarnS("no minimal generating set computed");
3236 }
3237 else
3238 {
3239 idSkipZeroes(strat->M);
3240 M=strat->M;
3241 strat->M=NULL;
3242 }
3243 delete(strat);
3244 if (reduced>2)
3245 {
3247 if (!oldDegBound)
3248 si_opt_1 &= ~Sy_bit(OPT_DEGBOUND);
3249 }
3250 else
3251 {
3252 if (IDELEMS(M)>IDELEMS(r))
3253 {
3254 idDelete(&M);
3255 M=idCopy(r);
3256 }
3257 }
3258 return r;
3259}
3260
3261poly kNF(ideal F, ideal Q, poly p,int syzComp, int lazyReduce)
3262{
3263 if (p==NULL)
3264 return NULL;
3265
3266 poly pp = p;
3267
3268#ifdef HAVE_PLURAL
3269 if(rIsSCA(currRing))
3270 {
3271 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3272 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3274
3275 if(Q == currRing->qideal)
3277 }
3278#endif
3279 if((Q!=NULL) &&(idIs0(Q))) Q=NULL;
3280
3281 if ((idIs0(F))&&(Q==NULL))
3282 {
3283#ifdef HAVE_PLURAL
3284 if(p != pp)
3285 return pp;
3286#endif
3287 return pCopy(p); /*F+Q=0*/
3288 }
3289
3290 kStrategy strat=new skStrategy;
3291 strat->syzComp = syzComp;
3293 poly res;
3294
3296 {
3297#ifdef HAVE_SHIFTBBA
3298 if (currRing->isLPring)
3299 {
3300 WerrorS("No local ordering possible for shift algebra");
3301 return(NULL);
3302 }
3303#endif
3304 res=kNF1(F,Q,pp,strat,lazyReduce);
3305 }
3306 else
3307 res=kNF2(F,Q,pp,strat,lazyReduce);
3308 delete(strat);
3309
3310#ifdef HAVE_PLURAL
3311 if(pp != p)
3312 p_Delete(&pp, currRing);
3313#endif
3314 return res;
3315}
3316
3317poly kNFBound(ideal F, ideal Q, poly p,int bound,int syzComp, int lazyReduce)
3318{
3319 if (p==NULL)
3320 return NULL;
3321
3322 poly pp = p;
3323
3324#ifdef HAVE_PLURAL
3325 if(rIsSCA(currRing))
3326 {
3327 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3328 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3330
3331 if(Q == currRing->qideal)
3333 }
3334#endif
3335
3336 if ((idIs0(F))&&(Q==NULL))
3337 {
3338#ifdef HAVE_PLURAL
3339 if(p != pp)
3340 return pp;
3341#endif
3342 return pCopy(p); /*F+Q=0*/
3343 }
3344
3345 kStrategy strat=new skStrategy;
3346 strat->syzComp = syzComp;
3348 poly res;
3349 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3350 delete(strat);
3351
3352#ifdef HAVE_PLURAL
3353 if(pp != p)
3354 p_Delete(&pp, currRing);
3355#endif
3356 return res;
3357}
3358
3359ideal kNF(ideal F, ideal Q, ideal p,int syzComp,int lazyReduce)
3360{
3361 ideal res;
3362 if (TEST_OPT_PROT)
3363 {
3364 Print("(S:%d)",IDELEMS(p));mflush();
3365 }
3366 if (idIs0(p))
3367 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3368
3369 ideal pp = p;
3370#ifdef HAVE_PLURAL
3371 if(rIsSCA(currRing))
3372 {
3373 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3374 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3376
3377 if(Q == currRing->qideal)
3379 }
3380#endif
3381
3382 if ((Q!=NULL)&&(idIs0(Q))) Q=NULL;
3383
3384 if ((idIs0(F))&&(Q==NULL))
3385 {
3386#ifdef HAVE_PLURAL
3387 if(p != pp)
3388 return pp;
3389#endif
3390 return idCopy(p); /*F+Q=0*/
3391 }
3392
3393 kStrategy strat=new skStrategy;
3394 strat->syzComp = syzComp;
3396 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3397 {
3398 strat->ak = si_max(strat->ak,(int)F->rank);
3399 }
3400
3402 {
3403#ifdef HAVE_SHIFTBBA
3404 if (currRing->isLPring)
3405 {
3406 WerrorS("No local ordering possible for shift algebra");
3407 return(NULL);
3408 }
3409#endif
3410 res=kNF1(F,Q,pp,strat,lazyReduce);
3411 }
3412 else
3413 res=kNF2(F,Q,pp,strat,lazyReduce);
3414 delete(strat);
3415
3416#ifdef HAVE_PLURAL
3417 if(pp != p)
3419#endif
3420
3421 return res;
3422}
3423
3425{
3426 ideal res;
3427 if (TEST_OPT_PROT)
3428 {
3429 Print("(S:%d)",IDELEMS(p));mflush();
3430 }
3431 if (idIs0(p))
3432 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3433
3434 ideal pp = p;
3435#ifdef HAVE_PLURAL
3436 if(rIsSCA(currRing))
3437 {
3438 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3439 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3441
3442 if(Q == currRing->qideal)
3444 }
3445#endif
3446
3447 if ((idIs0(F))&&(Q==NULL))
3448 {
3449#ifdef HAVE_PLURAL
3450 if(p != pp)
3451 return pp;
3452#endif
3453 return idCopy(p); /*F+Q=0*/
3454 }
3455
3456 kStrategy strat=new skStrategy;
3457 strat->syzComp = syzComp;
3459 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3460 {
3461 strat->ak = si_max(strat->ak,(int)F->rank);
3462 }
3463
3464 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3465 delete(strat);
3466
3467#ifdef HAVE_PLURAL
3468 if(pp != p)
3470#endif
3471
3472 return res;
3473}
3474
3475poly k_NF (ideal F, ideal Q, poly p,int syzComp, int lazyReduce, const ring _currRing)
3476{
3477 const ring save = currRing;
3479 poly ret = kNF(F, Q, p, syzComp, lazyReduce);
3481 return ret;
3482}
3483
3484/*2
3485*interreduces F
3486*/
3487// old version
3489{
3490 int j;
3491 kStrategy strat = new skStrategy;
3492
3493 ideal tempF = F;
3494 ideal tempQ = Q;
3495
3496#ifdef HAVE_PLURAL
3497 if(rIsSCA(currRing))
3498 {
3499 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3500 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3502
3503 // this should be done on the upper level!!! :
3504 // tempQ = SCAQuotient(currRing);
3505
3506 if(Q == currRing->qideal)
3508 }
3509#endif
3510
3511// if (TEST_OPT_PROT)
3512// {
3513// writeTime("start InterRed:");
3514// mflush();
3515// }
3516 //strat->syzComp = 0;
3517 strat->kAllAxis = (currRing->ppNoether) != NULL;
3518 strat->kNoether=pCopy((currRing->ppNoether));
3519 strat->ak = 0;
3521 initBuchMoraCrit(strat);
3522 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
3523 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
3524 strat->enterS = enterSBba;
3525 strat->posInT = posInT17;
3526 strat->initEcart = initEcartNormal;
3527 strat->sl = -1;
3528 strat->tl = -1;
3529 strat->tmax = setmaxT;
3530 strat->T = initT();
3531 strat->R = initR();
3532 strat->sevT = initsevT();
3534 initS(tempF, tempQ, strat);
3535 if (TEST_OPT_REDSB)
3536 strat->noTailReduction=FALSE;
3537 updateS(TRUE,strat);
3539 completeReduce(strat);
3540 //else if (TEST_OPT_PROT) PrintLn();
3541 cleanT(strat);
3542 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
3543 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
3544 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
3545 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
3546 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
3547 omfree(strat->sevT);
3548 omfree(strat->S_2_R);
3549 omfree(strat->R);
3550
3551 if (strat->fromQ)
3552 {
3553 for (j=IDELEMS(strat->Shdl)-1;j>=0;j--)
3554 {
3555 if(strat->fromQ[j]) pDelete(&strat->Shdl->m[j]);
3556 }
3557 omFree((ADDRESS)strat->fromQ);
3558 strat->fromQ=NULL;
3559 }
3560// if (TEST_OPT_PROT)
3561// {
3562// writeTime("end Interred:");
3563// mflush();
3564// }
3565 ideal shdl=strat->Shdl;
3567 if (strat->fromQ)
3568 {
3569 omfree(strat->fromQ);
3570 strat->fromQ=NULL;
3572 idDelete(&shdl);
3573 shdl=res;
3574 }
3575 delete(strat);
3576#ifdef HAVE_PLURAL
3577 if( tempF != F )
3579#endif
3580 return shdl;
3581}
3582// new version
3584{
3585 need_retry=0;
3586 int red_result = 1;
3587 int olddeg,reduc;
3589 // BOOLEAN toReset=FALSE;
3590 kStrategy strat=new skStrategy;
3591 tHomog h;
3592
3594 strat->LazyPass=20;
3595 else
3596 strat->LazyPass=2;
3597 strat->LazyDegree = 1;
3598 strat->ak = id_RankFreeModule(F,currRing);
3599 strat->syzComp = strat->ak;
3600 strat->kModW=kModW=NULL;
3601 strat->kHomW=kHomW=NULL;
3602 if (strat->ak == 0)
3603 {
3604 h = (tHomog)idHomIdeal(F,Q);
3605 }
3606 else if (!TEST_OPT_DEGBOUND)
3607 {
3608 h = (tHomog)idHomIdeal(F,Q);
3609 }
3610 else
3611 h = isNotHomog;
3612 if (h==isHomog)
3613 {
3614 strat->LazyPass*=2;
3615 }
3616 strat->homog=h;
3617#ifdef KDEBUG
3618 idTest(F);
3619#endif
3620
3621 initBuchMoraCrit(strat); /*set Gebauer, honey, sugarCrit*/
3623 initBuchMoraPosRing(strat);
3624 else
3625 initBuchMoraPos(strat);
3626 initBba(strat);
3627 /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/
3628 strat->posInL=posInL0; /* ord according pComp */
3629
3630 /*Shdl=*/initBuchMora(F, Q, strat);
3631 reduc = olddeg = 0;
3632
3633#ifndef NO_BUCKETS
3635 strat->use_buckets = 1;
3636#endif
3637
3638 // redtailBBa against T for inhomogeneous input
3639 if (!TEST_OPT_OLDSTD)
3640 withT = ! strat->homog;
3641
3642 // strat->posInT = posInT_pLength;
3643 kTest_TS(strat);
3644
3645#ifdef HAVE_TAIL_RING
3647#endif
3648
3649 /* compute------------------------------------------------------- */
3650 while (strat->Ll >= 0)
3651 {
3652 #ifdef KDEBUG
3653 if (TEST_OPT_DEBUG) messageSets(strat);
3654 #endif
3655 if (strat->Ll== 0) strat->interpt=TRUE;
3656 /* picks the last element from the lazyset L */
3657 strat->P = strat->L[strat->Ll];
3658 strat->Ll--;
3659
3660 if (strat->P.p1 == NULL)
3661 {
3662 // for input polys, prepare reduction
3663 strat->P.PrepareRed(strat->use_buckets);
3664 }
3665
3666 if (strat->P.p == NULL && strat->P.t_p == NULL)
3667 {
3668 red_result = 0;
3669 }
3670 else
3671 {
3672 if (TEST_OPT_PROT)
3673 message(strat->P.pFDeg(),
3674 &olddeg,&reduc,strat, red_result);
3675
3676 /* reduction of the element chosen from L */
3677 red_result = strat->red(&strat->P,strat);
3678 }
3679
3680 // reduction to non-zero new poly
3681 if (red_result == 1)
3682 {
3683 /* statistic */
3684 if (TEST_OPT_PROT) PrintS("s");
3685
3686 // get the polynomial (canonicalize bucket, make sure P.p is set)
3687 strat->P.GetP(strat->lmBin);
3688
3689 int pos=posInS(strat,strat->sl,strat->P.p,strat->P.ecart);
3690
3691 // reduce the tail and normalize poly
3692 // in the ring case we cannot expect LC(f) = 1,
3693 // therefore we call pCleardenom instead of pNorm
3695 {
3696 strat->P.pCleardenom();
3697 }
3698 else
3699 {
3700 strat->P.pNorm();
3701 }
3702
3703#ifdef KDEBUG
3704 if (TEST_OPT_DEBUG){PrintS("new s:");strat->P.wrp();PrintLn();}
3705#endif
3706
3707 // enter into S, L, and T
3708 if ((!TEST_OPT_IDLIFT) || (pGetComp(strat->P.p) <= strat->syzComp))
3709 {
3710 enterT(strat->P, strat);
3711 // posInS only depends on the leading term
3712 strat->enterS(strat->P, pos, strat, strat->tl);
3713
3714 if (pos<strat->sl)
3715 {
3716 need_retry++;
3717 // move all "larger" elements fromS to L
3718 // remove them from T
3719 int ii=pos+1;
3720 for(;ii<=strat->sl;ii++)
3721 {
3722 LObject h;
3723 h.Clear();
3724 h.tailRing=strat->tailRing;
3725 h.p=strat->S[ii]; strat->S[ii]=NULL;
3726 strat->initEcart(&h);
3727 h.sev=strat->sevS[ii];
3728 int jj=strat->tl;
3729 while (jj>=0)
3730 {
3731 if (strat->T[jj].p==h.p)
3732 {
3733 strat->T[jj].p=NULL;
3734 if (jj<strat->tl)
3735 {
3736 memmove(&(strat->T[jj]),&(strat->T[jj+1]),
3737 (strat->tl-jj)*sizeof(strat->T[jj]));
3738 memmove(&(strat->sevT[jj]),&(strat->sevT[jj+1]),
3739 (strat->tl-jj)*sizeof(strat->sevT[jj]));
3740 }
3741 strat->tl--;
3742 break;
3743 }
3744 jj--;
3745 }
3746 int lpos=strat->posInL(strat->L,strat->Ll,&h,strat);
3747 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,lpos);
3748 #ifdef KDEBUG
3749 if (TEST_OPT_DEBUG)
3750 {
3751 Print("move S[%d] -> L[%d]: ",ii,pos);
3752 p_wrp(h.p,currRing, strat->tailRing);
3753 PrintLn();
3754 }
3755 #endif
3756 }
3757 if (strat->fromQ!=NULL)
3758 {
3759 for(ii=pos+1;ii<=strat->sl;ii++) strat->fromQ[ii]=0;
3760 }
3761 strat->sl=pos;
3762 }
3763 }
3764 else
3765 {
3766 // clean P
3767 }
3768 kDeleteLcm(&strat->P);
3769 }
3770
3771#ifdef KDEBUG
3772 if (TEST_OPT_DEBUG)
3773 {
3774 messageSets(strat);
3775 }
3776 strat->P.Clear();
3777#endif
3778 //kTest_TS(strat);: i_r out of sync in kInterRedBba, but not used!
3779 }
3780#ifdef KDEBUG
3781 //if (TEST_OPT_DEBUG) messageSets(strat);
3782#endif
3783 /* complete reduction of the standard basis--------- */
3784
3785 if((need_retry<=0) && (TEST_OPT_REDSB))
3786 {
3787 completeReduce(strat);
3788 if (strat->completeReduce_retry)
3789 {
3790 // completeReduce needed larger exponents, retry
3791 // hopefully: kStratChangeTailRing already provided a larger tailRing
3792 // (otherwise: it will fail again)
3794 completeReduce(strat);
3795 if (strat->completeReduce_retry)
3796 {
3797#ifdef HAVE_TAIL_RING
3798 if(currRing->bitmask>strat->tailRing->bitmask)
3799 {
3800 // retry without T
3802 cleanT(strat);strat->tailRing=currRing;
3803 int i;
3804 for(i=strat->sl;i>=0;i--) strat->S_2_R[i]=-1;
3805 completeReduce(strat);
3806 }
3807 if (strat->completeReduce_retry)
3808#endif
3809 Werror("exponent bound is %ld",currRing->bitmask);
3810 }
3811 }
3812 }
3813 else if (TEST_OPT_PROT) PrintLn();
3814
3815
3816 /* release temp data-------------------------------- */
3817 exitBuchMora(strat);
3818// if (TEST_OPT_WEIGHTM)
3819// {
3820// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
3821// if (ecartWeights)
3822// {
3823// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
3824// ecartWeights=NULL;
3825// }
3826// }
3827 //if (TEST_OPT_PROT) messageStat(0/*hilbcount*/,strat);
3828 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
3829 ideal res=strat->Shdl;
3830 strat->Shdl=NULL;
3831 delete strat;
3832 return res;
3833}
3835{
3836#ifdef HAVE_PLURAL
3837 if(rIsPluralRing(currRing)) return kInterRedOld(F,Q);
3838#endif
3841 )
3842 return kInterRedOld(F,Q);
3843
3844 //return kInterRedOld(F,Q);
3845
3846 BITSET save1;
3848 //si_opt_1|=Sy_bit(OPT_NOT_SUGAR);
3850 //si_opt_1&= ~Sy_bit(OPT_REDTAIL);
3851 //si_opt_1&= ~Sy_bit(OPT_REDSB);
3852 //extern char * showOption() ;
3853 //Print("%s\n",showOption());
3854
3855 int need_retry;
3856 int counter=3;
3857 ideal res, res1;
3858 int elems=0;
3859 ideal null=NULL;
3860 if ((Q==NULL) || (!TEST_OPT_REDSB))
3861 {
3862 elems=idElem(F);
3864 }
3865 else
3866 {
3867 ideal FF=idSimpleAdd(F,Q);
3869 idDelete(&FF);
3870 null=idInit(1,1);
3871 if (need_retry)
3873 else
3874 res1=kNF(null,Q,res);
3875 idDelete(&res);
3876 res=res1;
3877 need_retry=1;
3878 }
3879 if (idElem(res)<=1) need_retry=0;
3880 while (need_retry && (counter>0))
3881 {
3882 #ifdef KDEBUG
3883 if (TEST_OPT_DEBUG) { Print("retry counter %d\n",counter); }
3884 #endif
3886 int new_elems=idElem(res1);
3887 counter -= (new_elems >= elems);
3888 elems = new_elems;
3889 idDelete(&res);
3890 if (idElem(res1)<=1) need_retry=0;
3891 if ((Q!=NULL) && (TEST_OPT_REDSB))
3892 {
3893 if (need_retry)
3895 else
3896 res=kNF(null,Q,res1);
3897 idDelete(&res1);
3898 }
3899 else
3900 res = res1;
3901 if (idElem(res)<=1) need_retry=0;
3902 }
3903 if (null!=NULL) idDelete(&null);
3906 return res;
3907}
3908
3909// returns TRUE if mora should use buckets, false otherwise
3911{
3912#ifdef MORA_USE_BUCKETS
3914 return FALSE;
3915 if ((strat->red == redFirst)
3916 ||((strat->red == redEcart)&&(strat->kNoether!=NULL)))
3917 {
3918#ifdef NO_LDEG
3919 if (strat->syzComp==0)
3920 return TRUE;
3921#else
3922 if ((strat->homog || strat->honey) && (strat->syzComp==0))
3923 return TRUE;
3924#endif
3925 }
3926 else
3927 {
3928 assume(strat->red == redEcart || strat->red == redRiloc || strat->red == redRiloc_Z);
3929 if (strat->honey && (strat->syzComp==0))
3930 return TRUE;
3931 }
3932#endif
3933 return FALSE;
3934}
#define BITSET
Definition auxiliary.h:85
static int si_max(const int a, const int b)
Definition auxiliary.h:125
#define UNLIKELY(X)
Definition auxiliary.h:405
int BOOLEAN
Definition auxiliary.h:88
#define TRUE
Definition auxiliary.h:101
#define FALSE
Definition auxiliary.h:97
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
int i
Definition cfEzgcd.cc:132
int k
Definition cfEzgcd.cc:99
int p
Definition cfModGcd.cc:4086
CanonicalForm b
Definition cfModGcd.cc:4111
static CanonicalForm bound(const CFMatrix &M)
Definition cf_linsys.cc:460
int length() const
KINLINE poly kNoetherTail()
Definition kInline.h:66
intvec * kModW
Definition kutil.h:335
bool sigdrop
Definition kutil.h:358
int syzComp
Definition kutil.h:354
int * S_2_R
Definition kutil.h:342
ring tailRing
Definition kutil.h:343
void(* chainCrit)(poly p, int ecart, kStrategy strat)
Definition kutil.h:291
char noTailReduction
Definition kutil.h:376
int currIdx
Definition kutil.h:317
char posInLOldFlag
Definition kutil.h:380
pFDegProc pOrigFDeg_TailRing
Definition kutil.h:298
int Ll
Definition kutil.h:351
TSet T
Definition kutil.h:326
BOOLEAN(* rewCrit1)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:293
omBin lmBin
Definition kutil.h:344
intset ecartS
Definition kutil.h:309
char honey
Definition kutil.h:375
char rightGB
Definition kutil.h:367
polyset S
Definition kutil.h:306
int minim
Definition kutil.h:357
poly kNoether
Definition kutil.h:329
BOOLEAN * NotUsedAxis
Definition kutil.h:332
LSet B
Definition kutil.h:328
int ak
Definition kutil.h:353
TObject ** R
Definition kutil.h:340
BOOLEAN(* rewCrit3)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:295
int lastAxis
Definition kutil.h:355
ideal M
Definition kutil.h:305
int tl
Definition kutil.h:350
int(* red2)(LObject *L, kStrategy strat)
Definition kutil.h:279
unsigned long * sevT
Definition kutil.h:325
intvec * kHomW
Definition kutil.h:336
poly tail
Definition kutil.h:334
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition kutil.h:284
int blockred
Definition kutil.h:363
ideal Shdl
Definition kutil.h:303
unsigned sbaOrder
Definition kutil.h:316
pFDegProc pOrigFDeg
Definition kutil.h:296
int blockredmax
Definition kutil.h:364
int tmax
Definition kutil.h:350
int(* posInLOld)(const LSet Ls, const int Ll, LObject *Lo, const kStrategy strat)
Definition kutil.h:288
char LDegLast
Definition kutil.h:383
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition kutil.h:287
char kAllAxis
Definition kutil.h:374
intset fromQ
Definition kutil.h:321
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition kutil.h:286
char use_buckets
Definition kutil.h:381
char interpt
Definition kutil.h:369
int newIdeal
Definition kutil.h:356
char fromT
Definition kutil.h:377
char completeReduce_retry
Definition kutil.h:401
void(* initEcart)(TObject *L)
Definition kutil.h:280
LObject P
Definition kutil.h:302
char noClearS
Definition kutil.h:400
int Lmax
Definition kutil.h:351
char z2homog
Definition kutil.h:372
int LazyPass
Definition kutil.h:353
char no_prod_crit
Definition kutil.h:392
char overflow
Definition kutil.h:402
void(* enterOnePair)(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.h:290
LSet L
Definition kutil.h:327
char length_pLength
Definition kutil.h:385
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition kutil.h:281
int(* red)(LObject *L, kStrategy strat)
Definition kutil.h:278
BOOLEAN(* rewCrit2)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:294
int sl
Definition kutil.h:348
int sbaEnterS
Definition kutil.h:361
int LazyDegree
Definition kutil.h:353
char posInLDependsOnLength
Definition kutil.h:387
unsigned long * sevS
Definition kutil.h:322
char homog
Definition kutil.h:370
pLDegProc pOrigLDeg
Definition kutil.h:297
char update
Definition kutil.h:379
s_poly_proc_t s_poly
Definition kutil.h:300
pLDegProc pOrigLDeg_TailRing
Definition kutil.h:299
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition coeffs.h:809
@ n_Zp
\F{p < 2^31}
Definition coeffs.h:29
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
static FORCE_INLINE number n_QuotRem(number a, number b, number *q, const coeffs r)
Definition coeffs.h:682
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition coeffs.h:701
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition numbers.cc:406
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition coeffs.h:468
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition coeffs.h:748
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition coeffs.h:80
void nKillChar(coeffs r)
undo all initialisations
Definition numbers.cc:556
#define Print
Definition emacs.cc:80
#define WarnS
Definition emacs.cc:78
CanonicalForm res
Definition facAbsFact.cc:60
const CanonicalForm & w
Definition facAbsFact.cc:51
CanonicalForm H
Definition facAbsFact.cc:60
int j
Definition facHensel.cc:110
void WerrorS(const char *s)
Definition feFopen.cc:24
#define VAR
Definition globaldefs.h:5
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
Definition hdegree.cc:1074
long scMult0Int(ideal S, ideal Q)
Definition hdegree.cc:924
STATIC_VAR poly last
Definition hdegree.cc:1137
ideal idMinBase(ideal h1, ideal *SB)
Definition ideals.cc:51
#define idDelete(H)
delete an ideal
Definition ideals.h:29
#define idSimpleAdd(A, B)
Definition ideals.h:42
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition ideals.h:96
#define idTest(id)
Definition ideals.h:47
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition ideals.h:91
ideal idCopy(ideal A)
Definition ideals.h:60
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
STATIC_VAR Poly * h
Definition janet.cc:971
KINLINE TSet initT()
Definition kInline.h:84
KINLINE TObject ** initR()
Definition kInline.h:95
KINLINE BOOLEAN arriRewDummy(poly, unsigned long, poly, kStrategy, int)
Definition kInline.h:1255
KINLINE unsigned long * initsevT()
Definition kInline.h:100
int redLiftstd(LObject *h, kStrategy strat)
Definition kLiftstd.cc:167
static ideal nc_GB(const ideal F, const ideal Q, const intvec *w, const intvec *hilb, kStrategy strat, const ring r)
Definition nc.h:27
void khCheckLocInhom(ideal Q, intvec *w, intvec *hilb, int &count, kStrategy strat)
Definition khstd.cc:244
void khCheck(ideal Q, intvec *w, intvec *hilb, int &eledeg, int &count, kStrategy strat)
Definition khstd.cc:28
int ksReducePolyLC(LObject *PR, TObject *PW, poly spNoether, number *coef, kStrategy strat)
Definition kspoly.cc:477
void ksCreateSpoly(LObject *Pair, poly spNoether, int use_buckets, ring tailRing, poly m1, poly m2, TObject **R)
Definition kspoly.cc:1203
int ksReducePoly(LObject *PR, TObject *PW, poly spNoether, number *coef, poly *mon, kStrategy strat, BOOLEAN reduce)
Definition kspoly.cc:187
long kHomModDeg(poly p, const ring r)
Definition kstd1.cc:2418
void reorderT(kStrategy strat)
Definition kstd1.cc:1242
poly kNFBound(ideal F, ideal Q, poly p, int bound, int syzComp, int lazyReduce)
Definition kstd1.cc:3317
ideal mora(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd1.cc:1879
void initMora(ideal F, kStrategy strat)
Definition kstd1.cc:1812
int redFirst(LObject *h, kStrategy strat)
Definition kstd1.cc:795
void firstUpdate(kStrategy strat)
Definition kstd1.cc:1558
long kModDeg(poly p, const ring r)
Definition kstd1.cc:2408
poly k_NF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce, const ring _currRing)
NOTE: this is just a wrapper which sets currRing for the actual kNF call.
Definition kstd1.cc:3475
int redEcart(LObject *h, kStrategy strat)
Definition kstd1.cc:169
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1674
static int kFindLuckyPrime(ideal F, ideal Q)
Definition kstd1.cc:2430
static int doRed(LObject *h, TObject *with, BOOLEAN intoT, kStrategy strat, bool redMoraNF)
Definition kstd1.cc:119
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition kstd1.cc:3109
void updateLHC(kStrategy strat)
Definition kstd1.cc:1466
static ideal kStd_internal(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition kstd1.cc:2492
ideal kStdShift(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, BOOLEAN rightGB)
Definition kstd1.cc:3004
void missingAxis(int *last, kStrategy strat)
Definition kstd1.cc:1280
void reorderL(kStrategy strat)
Definition kstd1.cc:1223
int posInL10(const LSet set, const int length, LObject *p, const kStrategy strat)
Definition kstd1.cc:1361
ideal kInterRedBba(ideal F, ideal Q, int &need_retry)
Definition kstd1.cc:3583
static BOOLEAN kMoraUseBucket(kStrategy strat)
Definition kstd1.cc:3910
poly kNF1(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition kstd1.cc:2116
ideal kInterRed(ideal F, const ideal Q)
Definition kstd1.cc:3834
static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
Definition kstd1.cc:100
void initBba(kStrategy strat)
Definition kstd1.cc:1682
int redRiloc(LObject *h, kStrategy strat)
Definition kstd1.cc:386
void initSba(ideal F, kStrategy strat)
Definition kstd1.cc:1742
static poly redMoraNFRing(poly h, kStrategy strat, int flag)
Definition kstd1.cc:1081
void kDebugPrint(kStrategy strat)
Definition kutil.cc:11497
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1621
VAR intvec * kHomW
Definition kstd1.cc:2406
VAR intvec * kModW
Definition kstd1.cc:2406
ideal kInterRedOld(ideal F, const ideal Q)
Definition kstd1.cc:3488
void updateL(kStrategy strat)
Definition kstd1.cc:1394
VAR BITSET validOpts
Definition kstd1.cc:60
void updateT(kStrategy strat)
Definition kstd1.cc:1532
BOOLEAN hasPurePower(const poly p, int last, int *length, kStrategy strat)
Definition kstd1.cc:1313
static poly kTryHC(ideal F, ideal Q)
Definition kstd1.cc:2437
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition kstd1.cc:3261
static poly redMoraNF(poly h, kStrategy strat, int flag)
Definition kstd1.cc:977
VAR BITSET kOptions
Definition kstd1.cc:45
int redRiloc_Z(LObject *h, kStrategy strat)
Definition kstd1.cc:567
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
Definition kstd1.cc:2708
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition kstd1.cc:2674
#define KSTD_NF_LAZY
Definition kstd1.h:17
EXTERN_VAR int Kstd1_deg
Definition kstd1.h:52
#define KSTD_NF_NONORM
Definition kstd1.h:21
BOOLEAN(* s_poly_proc_t)(kStrategy strat)
Definition kstd1.h:14
#define KSTD_NF_ECART
Definition kstd1.h:19
EXTERN_VAR int Kstd1_mu
Definition kstd1.h:52
int redRing_Z(LObject *h, kStrategy strat)
Definition kstd2.cc:724
int kFindDivisibleByInS(const kStrategy strat, int *max_ind, LObject *L)
return -1 if no divisor is found number of first divisor in S, otherwise
Definition kstd2.cc:468
int kTestDivisibleByT0_Z(const kStrategy strat, const LObject *L)
tests if T[0] divides the leading monomial of L, returns -1 if not
Definition kstd2.cc:146
poly kNF2(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition kstd2.cc:3942
int redHoney(LObject *h, kStrategy strat)
Definition kstd2.cc:2114
int redHomog(LObject *h, kStrategy strat)
Definition kstd2.cc:1154
ideal sba(ideal F0, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:2980
ideal bba(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:2622
int redLazy(LObject *h, kStrategy strat)
Definition kstd2.cc:1909
int redSigRing(LObject *h, kStrategy strat)
Definition kstd2.cc:1540
int redSig(LObject *h, kStrategy strat)
Definition kstd2.cc:1373
poly kNF2Bound(ideal F, ideal Q, poly q, int bound, kStrategy strat, int lazyReduce)
Definition kstd2.cc:4028
int redRing(LObject *h, kStrategy strat)
Definition kstd2.cc:992
int kFindDivisibleByInT(const kStrategy strat, const LObject *L, const int start)
return -1 if no divisor is found number of first divisor in T, otherwise
Definition kstd2.cc:321
ideal bbaShift(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition kstd2.cc:4590
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition kutil.cc:7464
poly redtail(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:6837
int posInT17(const TSet set, const int length, LObject &p)
Definition kutil.cc:5282
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:9748
VAR int HCord
Definition kutil.cc:244
BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int)
Definition kutil.cc:6647
void enterT(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9140
BOOLEAN arriRewCriterion(poly, unsigned long, poly, kStrategy strat, int start=0)
Definition kutil.cc:6622
void enterSSba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8914
BOOLEAN kTest(kStrategy strat)
Definition kutil.cc:1009
BOOLEAN kTest_TS(kStrategy strat)
Definition kutil.cc:1070
void enterOnePairNormal(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:1943
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition kutil.cc:1273
BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly, kStrategy strat, int start=0)
Definition kutil.cc:6563
int posInT2(const TSet set, const int length, LObject &p)
Definition kutil.cc:4929
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4491
void initHilbCrit(ideal, ideal, intvec **hilb, kStrategy strat)
Definition kutil.cc:9414
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition kutil.cc:1319
void initBuchMoraPos(kStrategy strat)
Definition kutil.cc:9577
void initS(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:7587
BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject *T, unsigned long expbound)
Definition kutil.cc:10957
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5615
void chainCritOpt_1(poly, int, kStrategy strat)
Definition kutil.cc:3449
void enterT_strong(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9239
void postReduceByMon(LObject *h, kStrategy strat)
used for GB over ZZ: intermediate reduction by monomial elements background: any known constant eleme...
Definition kutil.cc:10700
void HEckeTest(poly pp, kStrategy strat)
Definition kutil.cc:498
BOOLEAN kTest_L(LObject *L, kStrategy strat, BOOLEAN testp, int lpos, TSet T, int tlength)
Definition kutil.cc:923
void exitBuchMora(kStrategy strat)
Definition kutil.cc:9833
void initEcartNormal(TObject *h)
Definition kutil.cc:1297
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition kutil.cc:4667
void updateS(BOOLEAN toT, kStrategy strat)
Definition kutil.cc:8556
BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
Definition kutil.cc:10476
void cleanT(kStrategy strat)
Definition kutil.cc:562
BOOLEAN kTest_T(TObject *T, kStrategy strat, int i, char TN)
Definition kutil.cc:798
void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext)
Definition kutil.cc:291
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition kutil.cc:10076
void superenterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4461
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition kutil.cc:1212
void kStratInitChangeTailRing(kStrategy strat)
Definition kutil.cc:11050
void initBuchMoraCrit(kStrategy strat)
Definition kutil.cc:9432
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition kutil.cc:10282
void initBuchMoraPosRing(kStrategy strat)
Definition kutil.cc:9662
void messageSets(kStrategy strat)
Definition kutil.cc:7537
poly preIntegerCheck(const ideal Forig, const ideal Q)
used for GB over ZZ: look for constant and monomial elements in the ideal background: any known const...
Definition kutil.cc:10535
void chainCritNormal(poly p, int ecart, kStrategy strat)
Definition kutil.cc:3208
void initEcartBBA(TObject *h)
Definition kutil.cc:1305
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition kutil.cc:1312
void messageStat(int hilbcount, kStrategy strat)
Definition kutil.cc:7505
void finalReduceByMon(kStrategy strat)
used for GB over ZZ: final reduction by constant elements background: any known constant element of i...
Definition kutil.cc:10865
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8791
BOOLEAN newHEdge(kStrategy strat)
Definition kutil.cc:10404
void cancelunit(LObject *L, BOOLEAN inNF)
Definition kutil.cc:370
LObject * LSet
Definition kutil.h:60
static void kDeleteLcm(LObject *P)
Definition kutil.h:869
#define setmaxT
Definition kutil.h:33
#define RED_CANONICALIZE
Definition kutil.h:36
class sTObject TObject
Definition kutil.h:57
class sLObject LObject
Definition kutil.h:58
static bool rIsSCA(const ring r)
Definition nc.h:190
ideal id_KillSquares(const ideal id, const short iFirstAltVar, const short iLastAltVar, const ring r, const bool bSkipZeroes)
Definition sca.cc:1518
poly p_KillSquares(const poly p, const short iFirstAltVar, const short iLastAltVar, const ring r)
Definition sca.cc:1463
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition minpoly.cc:647
#define assume(x)
Definition mod2.h:389
#define p_GetComp(p, r)
Definition monomials.h:64
#define pIter(p)
Definition monomials.h:37
#define pNext(p)
Definition monomials.h:36
#define pSetCoeff0(p, n)
Definition monomials.h:59
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define __p_GetComp(p, r)
Definition monomials.h:63
number ndQuotRem(number a, number b, number *r, const coeffs R)
Definition numbers.cc:350
#define nEqual(n1, n2)
Definition numbers.h:20
#define nInit(i)
Definition numbers.h:24
#define omfree(addr)
#define omFreeSize(addr, size)
omError_t omTestMemory(int check_level)
Definition omDebug.c:94
#define omAlloc(size)
#define omFree(addr)
#define NULL
Definition omList.c:12
VAR BOOLEAN siCntrlc
Definition options.c:14
VAR unsigned si_opt_1
Definition options.c:5
#define TEST_OPT_WEIGHTM
Definition options.h:123
#define TEST_V_NOT_TRICKS
Definition options.h:137
#define OPT_SUGARCRIT
Definition options.h:81
#define OPT_PROT
Definition options.h:76
#define OPT_INFREDTAIL
Definition options.h:95
#define OPT_INTSTRATEGY
Definition options.h:93
#define TEST_OPT_IDLIFT
Definition options.h:131
#define TEST_OPT_INTSTRATEGY
Definition options.h:112
#define BVERBOSE(a)
Definition options.h:35
#define OPT_WEIGHTM
Definition options.h:98
#define TEST_OPT_FINDET
Definition options.h:113
#define OPT_REDTAIL
Definition options.h:92
#define SI_SAVE_OPT1(A)
Definition options.h:21
#define SI_RESTORE_OPT1(A)
Definition options.h:24
#define OPT_NOT_SUGAR
Definition options.h:79
#define TEST_OPT_OLDSTD
Definition options.h:125
#define OPT_REDTHROUGH
Definition options.h:83
#define OPT_REDSB
Definition options.h:77
#define Sy_bit(x)
Definition options.h:31
#define TEST_OPT_REDSB
Definition options.h:106
#define OPT_NOTREGULARITY
Definition options.h:97
#define TEST_OPT_DEGBOUND
Definition options.h:115
#define TEST_OPT_SB_1
Definition options.h:121
#define TEST_OPT_RETURN_SB
Definition options.h:114
#define TEST_OPT_MULTBOUND
Definition options.h:116
#define TEST_OPT_PROT
Definition options.h:105
#define TEST_OPT_REDTHROUGH
Definition options.h:124
#define OPT_INTERRUPT
Definition options.h:80
#define OPT_DEGBOUND
Definition options.h:91
#define TEST_V_DEG_STOP
Definition options.h:140
#define TEST_OPT_FASTHC
Definition options.h:111
#define TEST_OPT_DEBUG
Definition options.h:110
#define OPT_FASTHC
Definition options.h:86
#define TEST_OPT_REDTAIL_SYZ
Definition options.h:119
#define OPT_OLDSTD
Definition options.h:87
#define TEST_OPT_STAIRCASEBOUND
Definition options.h:117
#define TEST_OPT_NOT_BUCKETS
Definition options.h:107
pShallowCopyDeleteProc pGetShallowCopyDeleteProc(ring, ring)
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1227
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition p_polys.cc:3689
long pLDeg0c(poly p, int *l, const ring r)
Definition p_polys.cc:771
long pLDeg0(poly p, int *l, const ring r)
Definition p_polys.cc:740
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition p_polys.cc:3677
long p_WDegree(poly p, const ring r)
Definition p_polys.cc:715
static int pLength(poly a)
Definition p_polys.h:190
static void p_LmDelete(poly p, const ring r)
Definition p_polys.h:724
static long p_FDeg(const poly p, const ring r)
Definition p_polys.h:381
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:314
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163
static void p_Setm(poly p, const ring r)
Definition p_polys.h:234
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition p_polys.h:1925
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition p_polys.h:470
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:902
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
void rChangeCurrRing(ring r)
Definition polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition polys.cc:13
Compatibility layer for legacy polynomial operations (over currRing)
#define pAdd(p, q)
Definition polys.h:203
static long pTotaldegree(poly p)
Definition polys.h:282
#define pTest(p)
Definition polys.h:414
#define pDelete(p_ptr)
Definition polys.h:186
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition polys.h:67
#define pSetm(p)
Definition polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition polys.h:238
#define pGetComp(p)
Component.
Definition polys.h:37
void pNorm(poly p)
Definition polys.h:362
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition polys.h:146
#define pMaxComp(p)
Definition polys.h:299
#define pSetComp(p, v)
Definition polys.h:38
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition polys.h:76
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition polys.h:152
void wrp(poly p)
Definition polys.h:310
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition polys.h:70
#define pGetExp(p, i)
Exponent.
Definition polys.h:41
#define pSetmComp(p)
TODO:
Definition polys.h:273
#define pNormalize(p)
Definition polys.h:317
#define pSetExp(p, i, v)
Definition polys.h:42
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition polys.h:105
#define pCopy(p)
return a copy of the poly
Definition polys.h:185
#define pOne()
Definition polys.h:315
#define pDecrExp(p, i)
Definition polys.h:44
#define pWTotaldegree(p)
Definition polys.h:283
void PrintS(const char *s)
Definition reporter.cc:284
void PrintLn()
Definition reporter.cc:310
void Werror(const char *fmt,...)
Definition reporter.cc:189
#define mflush()
Definition reporter.h:58
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition ring.cc:3481
BOOLEAN rOrd_is_Ds(const ring r)
Definition ring.cc:2049
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition ring.cc:1424
void rDelete(ring r)
unconditionally deletes fields in r
Definition ring.cc:452
BOOLEAN rOrd_is_ds(const ring r)
Definition ring.cc:2039
static BOOLEAN rField_is_Z(const ring r)
Definition ring.h:514
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition ring.h:405
long(* pLDegProc)(poly p, int *length, ring r)
Definition ring.h:37
static BOOLEAN rIsLPRing(const ring r)
Definition ring.h:416
static BOOLEAN rField_is_Q(const ring r)
Definition ring.h:511
static BOOLEAN rIsNCRing(const ring r)
Definition ring.h:426
static BOOLEAN rField_is_numeric(const ring r)
Definition ring.h:520
BOOLEAN rHasMixedOrdering(const ring r)
Definition ring.h:768
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597
BOOLEAN rHasGlobalOrdering(const ring r)
Definition ring.h:766
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition ring.h:767
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition ring.h:553
#define rField_is_Ring(R)
Definition ring.h:490
ideal SCAQuotient(const ring r)
Definition sca.h:10
static short scaLastAltVar(ring r)
Definition sca.h:25
static short scaFirstAltVar(ring r)
Definition sca.h:18
#define idIsInV(I)
Definition shiftop.h:49
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
BOOLEAN id_IsModule(ideal A, const ring src)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
ideal id_PermIdeal(ideal I, int R, int C, const int *perm, const ring src, const ring dst, nMapFunc nMap, const int *par_perm, int P, BOOLEAN use_mult)
mapping ideals/matrices to other rings
#define IDELEMS(i)
static int idElem(const ideal F)
number of non-zero polys in F
#define M
Definition sirandom.c:25
#define Q
Definition sirandom.c:26
tHomog
Definition structs.h:31
@ isHomog
Definition structs.h:33
@ testHomog
Definition structs.h:34
@ isNotHomog
Definition structs.h:32
#define loop
Definition structs.h:71
long totaldegreeWecart(poly p, ring r)
Definition weight.cc:217
long maxdegreeWecart(poly p, int *l, ring r)
Definition weight.cc:247
void kEcartWeights(poly *s, int sl, short *eweight, const ring R)
Definition weight.cc:182
EXTERN_VAR short * ecartWeights
Definition weight.h:12