My Project
Loading...
Searching...
No Matches
p_polys.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/***************************************************************
5 * File: p_polys.cc
6 * Purpose: implementation of ring independent poly procedures?
7 * Author: obachman (Olaf Bachmann)
8 * Created: 8/00
9 *******************************************************************/
10
11#include <ctype.h>
12
13#include "misc/auxiliary.h"
14
15#include "misc/options.h"
16#include "misc/intvec.h"
17
18
19#include "coeffs/longrat.h" // snumber is needed...
20#include "coeffs/numbers.h" // ndCopyMap
21
23
24#define TRANSEXT_PRIVATES
25
28
29#include "polys/weight.h"
30#include "polys/simpleideals.h"
31
32#include "ring.h"
33#include "p_polys.h"
34
38
39
40#ifdef HAVE_PLURAL
41#include "nc/nc.h"
42#include "nc/sca.h"
43#endif
44
45#ifdef HAVE_SHIFTBBA
46#include "polys/shiftop.h"
47#endif
48
49#include "clapsing.h"
50
51/*
52 * lift ideal with coeffs over Z (mod N) to Q via Farey
53 */
54poly p_Farey(poly p, number N, const ring r)
55{
56 poly h=p_Copy(p,r);
57 poly hh=h;
58 while(h!=NULL)
59 {
61 pSetCoeff0(h,n_Farey(c,N,r->cf));
62 n_Delete(&c,r->cf);
63 pIter(h);
64 }
65 while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66 {
67 p_LmDelete(&hh,r);
68 }
69 h=hh;
70 while((h!=NULL) && (pNext(h)!=NULL))
71 {
72 if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73 {
74 p_LmDelete(&pNext(h),r);
75 }
76 else pIter(h);
77 }
78 return hh;
79}
80/*2
81* xx,q: arrays of length 0..rl-1
82* xx[i]: SB mod q[i]
83* assume: char=0
84* assume: q[i]!=0
85* x: work space
86* destroys xx
87*/
89{
90 poly r,h,hh;
91 int j;
92 poly res_p=NULL;
93 loop
94 {
95 /* search the lead term */
96 r=NULL;
97 for(j=rl-1;j>=0;j--)
98 {
99 h=xx[j];
100 if ((h!=NULL)
101 &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102 r=h;
103 }
104 /* nothing found -> return */
105 if (r==NULL) break;
106 /* create the monomial in h */
107 h=p_Head(r,R);
108 /* collect the coeffs in x[..]*/
109 for(j=rl-1;j>=0;j--)
110 {
111 hh=xx[j];
112 if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113 {
114 x[j]=pGetCoeff(hh);
116 xx[j]=hh;
117 }
118 else
119 x[j]=n_Init(0, R->cf);
120 }
122 for(j=rl-1;j>=0;j--)
123 {
124 x[j]=NULL; // n_Init(0...) takes no memory
125 }
126 if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127 else
128 {
129 //Print("new mon:");pWrite(h);
130 p_SetCoeff(h,n,R);
131 pNext(h)=res_p;
132 res_p=h; // building res_p in reverse order!
133 }
134 }
136 p_Test(res_p, R);
137 return res_p;
138}
139
140/***************************************************************
141 *
142 * Completing what needs to be set for the monomial
143 *
144 ***************************************************************/
145// this is special for the syz stuff
149
151
152#ifndef SING_NDEBUG
153# define MYTEST 0
154#else /* ifndef SING_NDEBUG */
155# define MYTEST 0
156#endif /* ifndef SING_NDEBUG */
157
158void p_Setm_General(poly p, const ring r)
159{
161 int pos=0;
162 if (r->typ!=NULL)
163 {
164 loop
165 {
166 unsigned long ord=0;
167 sro_ord* o=&(r->typ[pos]);
168 switch(o->ord_typ)
169 {
170 case ro_dp:
171 {
172 int a,e;
173 a=o->data.dp.start;
174 e=o->data.dp.end;
175 for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r);
176 p->exp[o->data.dp.place]=ord;
177 break;
178 }
179 case ro_wp_neg:
180 ord=POLY_NEGWEIGHT_OFFSET; // no break;
181 case ro_wp:
182 {
183 int a,e;
184 a=o->data.wp.start;
185 e=o->data.wp.end;
186 int *w=o->data.wp.weights;
187#if 1
188 for(int i=a;i<=e;i++) ord+=((unsigned long)p_GetExp(p,i,r))*((unsigned long)w[i-a]);
189#else
190 long ai;
191 int ei,wi;
192 for(int i=a;i<=e;i++)
193 {
194 ei=p_GetExp(p,i,r);
195 wi=w[i-a];
196 ai=ei*wi;
197 if (ai/ei!=wi) pSetm_error=TRUE;
198 ord+=ai;
199 if (ord<ai) pSetm_error=TRUE;
200 }
201#endif
202 p->exp[o->data.wp.place]=ord;
203 break;
204 }
205 case ro_am:
206 {
208 const short a=o->data.am.start;
209 const short e=o->data.am.end;
210 const int * w=o->data.am.weights;
211#if 1
212 for(short i=a; i<=e; i++, w++)
213 ord += ((*w) * p_GetExp(p,i,r));
214#else
215 long ai;
216 int ei,wi;
217 for(short i=a;i<=e;i++)
218 {
219 ei=p_GetExp(p,i,r);
220 wi=w[i-a];
221 ai=ei*wi;
222 if (ai/ei!=wi) pSetm_error=TRUE;
223 ord += ai;
224 if (ord<ai) pSetm_error=TRUE;
225 }
226#endif
227 const int c = p_GetComp(p,r);
228
229 const short len_gen= o->data.am.len_gen;
230
231 if ((c > 0) && (c <= len_gen))
232 {
233 assume( w == o->data.am.weights_m );
234 assume( w[0] == len_gen );
235 ord += w[c];
236 }
237
238 p->exp[o->data.am.place] = ord;
239 break;
240 }
241 case ro_wp64:
242 {
243 int64 ord=0;
244 int a,e;
245 a=o->data.wp64.start;
246 e=o->data.wp64.end;
247 int64 *w=o->data.wp64.weights64;
248 int64 ei,wi,ai;
249 for(int i=a;i<=e;i++)
250 {
251 //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]);
252 //ord+=((int64)p_GetExp(p,i,r))*w[i-a];
253 ei=(int64)p_GetExp(p,i,r);
254 wi=w[i-a];
255 ai=ei*wi;
256 if(ei!=0 && ai/ei!=wi)
257 {
259 #if SIZEOF_LONG == 4
260 Print("ai %lld, wi %lld\n",ai,wi);
261 #else
262 Print("ai %ld, wi %ld\n",ai,wi);
263 #endif
264 }
265 ord+=ai;
266 if (ord<ai)
267 {
269 #if SIZEOF_LONG == 4
270 Print("ai %lld, ord %lld\n",ai,ord);
271 #else
272 Print("ai %ld, ord %ld\n",ai,ord);
273 #endif
274 }
275 }
276 #if SIZEOF_LONG == 4
277 int64 mask=(int64)0x7fffffff;
278 long a_0=(long)(ord&mask); //2^31
279 long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/
280
281 //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n"
282 //,(int)mask,(int)ord,(int)a_0,(int)a_1);
283 //Print("mask: %d",mask);
284
285 p->exp[o->data.wp64.place]=a_1;
286 p->exp[o->data.wp64.place+1]=a_0;
287 #elif SIZEOF_LONG == 8
288 p->exp[o->data.wp64.place]=ord;
289 #endif
290// if(p_Setm_error) PrintS("***************************\n"
291// "***************************\n"
292// "**WARNING: overflow error**\n"
293// "***************************\n"
294// "***************************\n");
295 break;
296 }
297 case ro_cp:
298 {
299 int a,e;
300 a=o->data.cp.start;
301 e=o->data.cp.end;
302 int pl=o->data.cp.place;
303 for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; }
304 break;
305 }
306 case ro_syzcomp:
307 {
308 long c=__p_GetComp(p,r);
309 long sc = c;
310 int* Components = (_componentsExternal ? _components :
311 o->data.syzcomp.Components);
312 long* ShiftedComponents = (_componentsExternal ? _componentsShifted:
313 o->data.syzcomp.ShiftedComponents);
314 if (ShiftedComponents != NULL)
315 {
316 assume(Components != NULL);
317 assume(c == 0 || Components[c] != 0);
318 sc = ShiftedComponents[Components[c]];
319 assume(c == 0 || sc != 0);
320 }
321 p->exp[o->data.syzcomp.place]=sc;
322 break;
323 }
324 case ro_syz:
325 {
326 const unsigned long c = __p_GetComp(p, r);
327 const short place = o->data.syz.place;
328 const int limit = o->data.syz.limit;
329
330 if (c > (unsigned long)limit)
331 p->exp[place] = o->data.syz.curr_index;
332 else if (c > 0)
333 {
334 assume( (1 <= c) && (c <= (unsigned long)limit) );
335 p->exp[place]= o->data.syz.syz_index[c];
336 }
337 else
338 {
339 assume(c == 0);
340 p->exp[place]= 0;
341 }
342 break;
343 }
344 // Prefix for Induced Schreyer ordering
345 case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?)
346 {
347 assume(p != NULL);
348
349#ifndef SING_NDEBUG
350#if MYTEST
351 Print("p_Setm_General: ro_isTemp ord: pos: %d, p: ", pos); p_wrp(p, r);
352#endif
353#endif
354 int c = p_GetComp(p, r);
355
356 assume( c >= 0 );
357
358 // Let's simulate case ro_syz above....
359 // Should accumulate (by Suffix) and be a level indicator
360 const int* const pVarOffset = o->data.isTemp.pVarOffset;
361
362 assume( pVarOffset != NULL );
363
364 // TODO: Can this be done in the suffix???
365 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
366 {
367 const int vo = pVarOffset[i];
368 if( vo != -1) // TODO: optimize: can be done once!
369 {
370 // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct:
371 p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim
372 // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
373 assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
374 }
375 }
376#ifndef SING_NDEBUG
377 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
378 {
379 const int vo = pVarOffset[i];
380 if( vo != -1) // TODO: optimize: can be done once!
381 {
382 // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
383 assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
384 }
385 }
386#if MYTEST
387// if( p->exp[o->data.isTemp.start] > 0 )
388 PrintS("after Values: "); p_wrp(p, r);
389#endif
390#endif
391 break;
392 }
393
394 // Suffix for Induced Schreyer ordering
395 case ro_is:
396 {
397#ifndef SING_NDEBUG
398#if MYTEST
399 Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_wrp(p, r);
400#endif
401#endif
402
403 assume(p != NULL);
404
405 int c = p_GetComp(p, r);
406
407 assume( c >= 0 );
408 const ideal F = o->data.is.F;
409 const int limit = o->data.is.limit;
410 assume( limit >= 0 );
411 const int start = o->data.is.start;
412
413 if( F != NULL && c > limit )
414 {
415#ifndef SING_NDEBUG
416#if MYTEST
417 Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit);
418 PrintS("preComputed Values: ");
419 p_wrp(p, r);
420#endif
421#endif
422// if( c > limit ) // BUG???
423 p->exp[start] = 1;
424// else
425// p->exp[start] = 0;
426
427
428 c -= limit;
429 assume( c > 0 );
430 c--;
431
432 if( c >= IDELEMS(F) )
433 break;
434
435 assume( c < IDELEMS(F) ); // What about others???
436
437 const poly pp = F->m[c]; // get reference monomial!!!
438
439 if(pp == NULL)
440 break;
441
442 assume(pp != NULL);
443
444#ifndef SING_NDEBUG
445#if MYTEST
446 Print("Respective F[c - %d: %d] pp: ", limit, c);
447 p_wrp(pp, r);
448#endif
449#endif
450
451 const int end = o->data.is.end;
452 assume(start <= end);
453
454
455// const int st = o->data.isTemp.start;
456
457#ifndef SING_NDEBUG
458#if MYTEST
459 Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]);
460#endif
461#endif
462
463 // p_ExpVectorAdd(p, pp, r);
464
465 for( int i = start; i <= end; i++) // v[0] may be here...
466 p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F)
467
468 // p_MemAddAdjust(p, ri);
469 if (r->NegWeightL_Offset != NULL)
470 {
471 for (int i=r->NegWeightL_Size-1; i>=0; i--)
472 {
473 const int _i = r->NegWeightL_Offset[i];
474 if( start <= _i && _i <= end )
475 p->exp[_i] -= POLY_NEGWEIGHT_OFFSET;
476 }
477 }
478
479
480#ifndef SING_NDEBUG
481 const int* const pVarOffset = o->data.is.pVarOffset;
482
483 assume( pVarOffset != NULL );
484
485 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
486 {
487 const int vo = pVarOffset[i];
488 if( vo != -1) // TODO: optimize: can be done once!
489 // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct:
490 assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) );
491 }
492 // TODO: how to check this for computed values???
493#if MYTEST
494 PrintS("Computed Values: "); p_wrp(p, r);
495#endif
496#endif
497 } else
498 {
499 p->exp[start] = 0; //!!!!????? where?????
500
501 const int* const pVarOffset = o->data.is.pVarOffset;
502
503 // What about v[0] - component: it will be added later by
504 // suffix!!!
505 // TODO: Test it!
506 const int vo = pVarOffset[0];
507 if( vo != -1 )
508 p->exp[vo] = c; // initial component v[0]!
509
510#ifndef SING_NDEBUG
511#if MYTEST
512 Print("ELSE p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]);
513 p_wrp(p, r);
514#endif
515#endif
516 }
517
518 break;
519 }
520 default:
521 dReportError("wrong ord in rSetm:%d\n",o->ord_typ);
522 return;
523 }
524 pos++;
525 if (pos == r->OrdSize) return;
526 }
527 }
528}
529
530void p_Setm_Syz(poly p, ring r, int* Components, long* ShiftedComponents)
531{
532 _components = Components;
533 _componentsShifted = ShiftedComponents;
535 p_Setm_General(p, r);
537}
538
539// dummy for lp, ls, etc
540void p_Setm_Dummy(poly p, const ring r)
541{
543}
544
545// for dp, Dp, ds, etc
546void p_Setm_TotalDegree(poly p, const ring r)
547{
549 p->exp[r->pOrdIndex] = p_Totaldegree(p, r);
550}
551
552// for wp, Wp, ws, etc
553void p_Setm_WFirstTotalDegree(poly p, const ring r)
554{
556 p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r);
557}
558
560{
561 // covers lp, rp, ls,
562 if (r->typ == NULL) return p_Setm_Dummy;
563
564 if (r->OrdSize == 1)
565 {
566 if (r->typ[0].ord_typ == ro_dp &&
567 r->typ[0].data.dp.start == 1 &&
568 r->typ[0].data.dp.end == r->N &&
569 r->typ[0].data.dp.place == r->pOrdIndex)
570 return p_Setm_TotalDegree;
571 if (r->typ[0].ord_typ == ro_wp &&
572 r->typ[0].data.wp.start == 1 &&
573 r->typ[0].data.wp.end == r->N &&
574 r->typ[0].data.wp.place == r->pOrdIndex &&
575 r->typ[0].data.wp.weights == r->firstwv)
577 }
578 return p_Setm_General;
579}
580
581
582/* -------------------------------------------------------------------*/
583/* several possibilities for pFDeg: the degree of the head term */
584
585/* compatible with ordering */
586long p_Deg(poly a, const ring r)
587{
588 p_LmCheckPolyRing(a, r);
589// assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
590 return p_GetOrder(a, r);
591}
592
593// p_WTotalDegree for weighted orderings
594// whose first block covers all variables
595long p_WFirstTotalDegree(poly p, const ring r)
596{
597 int i;
598 long sum = 0;
599
600 for (i=1; i<= r->firstBlockEnds; i++)
601 {
602 sum += p_GetExp(p, i, r)*r->firstwv[i-1];
603 }
604 return sum;
605}
606
607/*2
608* compute the degree of the leading monomial of p
609* with respect to weights from the ordering
610* the ordering is not compatible with degree so do not use p->Order
611*/
612long p_WTotaldegree(poly p, const ring r)
613{
615 int i, k;
616 long j =0;
617
618 // iterate through each block:
619 for (i=0;r->order[i]!=0;i++)
620 {
621 int b0=r->block0[i];
622 int b1=r->block1[i];
623 switch(r->order[i])
624 {
625 case ringorder_M:
626 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
627 { // in jedem block:
628 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
629 }
630 break;
631 case ringorder_am:
632 b1=si_min(b1,r->N); /* no break, continue as ringorder_a*/
633 case ringorder_a:
634 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
635 { // only one line
636 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
637 }
638 return j*r->OrdSgn;
639 case ringorder_wp:
640 case ringorder_ws:
641 case ringorder_Wp:
642 case ringorder_Ws:
643 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
644 { // in jedem block:
645 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
646 }
647 break;
648 case ringorder_lp:
649 case ringorder_ls:
650 case ringorder_rs:
651 case ringorder_dp:
652 case ringorder_ds:
653 case ringorder_Dp:
654 case ringorder_Ds:
655 case ringorder_rp:
656 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
657 {
658 j+= p_GetExp(p,k,r);
659 }
660 break;
661 case ringorder_a64:
662 {
663 int64* w=(int64*)r->wvhdl[i];
664 for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
665 {
666 //there should be added a line which checks if w[k]>2^31
667 j+= p_GetExp(p,k+1, r)*(long)w[k];
668 }
669 //break;
670 return j;
671 }
672 default:
673 #if 0
674 case ringorder_c: /* nothing to do*/
675 case ringorder_C: /* nothing to do*/
676 case ringorder_S: /* nothing to do*/
677 case ringorder_s: /* nothing to do*/
678 case ringorder_IS: /* nothing to do */
679 case ringorder_unspec: /* to make clang happy, does not occur*/
680 case ringorder_no: /* to make clang happy, does not occur*/
681 case ringorder_L: /* to make clang happy, does not occur*/
682 case ringorder_aa: /* ignored by p_WTotaldegree*/
683 #endif
684 break;
685 /* no default: all orderings covered */
686 }
687 }
688 return j;
689}
690
691long p_DegW(poly p, const int *w, const ring R)
692{
693 p_Test(p, R);
694 assume( w != NULL );
695 long r=-LONG_MAX;
696
697 while (p!=NULL)
698 {
699 long t=totaldegreeWecart_IV(p,R,w);
700 if (t>r) r=t;
701 pIter(p);
702 }
703 return r;
704}
705
706int p_Weight(int i, const ring r)
707{
708 if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
709 {
710 return 1;
711 }
712 return r->firstwv[i-1];
713}
714
715long p_WDegree(poly p, const ring r)
716{
717 if (r->firstwv==NULL) return p_Totaldegree(p, r);
719 int i;
720 long j =0;
721
722 for(i=1;i<=r->firstBlockEnds;i++)
723 j+=p_GetExp(p, i, r)*r->firstwv[i-1];
724
725 for (;i<=rVar(r);i++)
726 j+=p_GetExp(p,i, r)*p_Weight(i, r);
727
728 return j;
729}
730
731
732/* ---------------------------------------------------------------------*/
733/* several possibilities for pLDeg: the maximal degree of a monomial in p*/
734/* compute in l also the pLength of p */
735
736/*2
737* compute the length of a polynomial (in l)
738* and the degree of the monomial with maximal degree: the last one
739*/
740long pLDeg0(poly p,int *l, const ring r)
741{
742 p_CheckPolyRing(p, r);
743 long unsigned k= p_GetComp(p, r);
744 int ll=1;
745
746 if (k > 0)
747 {
748 while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
749 {
750 pIter(p);
751 ll++;
752 }
753 }
754 else
755 {
756 while (pNext(p)!=NULL)
757 {
758 pIter(p);
759 ll++;
760 }
761 }
762 *l=ll;
763 return r->pFDeg(p, r);
764}
765
766/*2
767* compute the length of a polynomial (in l)
768* and the degree of the monomial with maximal degree: the last one
769* but search in all components before syzcomp
770*/
771long pLDeg0c(poly p,int *l, const ring r)
772{
773 assume(p!=NULL);
774 p_Test(p,r);
775 p_CheckPolyRing(p, r);
776 long o;
777 int ll=1;
778
779 if (! rIsSyzIndexRing(r))
780 {
781 while (pNext(p) != NULL)
782 {
783 pIter(p);
784 ll++;
785 }
786 o = r->pFDeg(p, r);
787 }
788 else
789 {
790 long unsigned curr_limit = rGetCurrSyzLimit(r);
791 poly pp = p;
792 while ((p=pNext(p))!=NULL)
793 {
794 if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
795 ll++;
796 else break;
797 pp = p;
798 }
799 p_Test(pp,r);
800 o = r->pFDeg(pp, r);
801 }
802 *l=ll;
803 return o;
804}
805
806/*2
807* compute the length of a polynomial (in l)
808* and the degree of the monomial with maximal degree: the first one
809* this works for the polynomial case with degree orderings
810* (both c,dp and dp,c)
811*/
812long pLDegb(poly p,int *l, const ring r)
813{
814 p_CheckPolyRing(p, r);
815 long unsigned k= p_GetComp(p, r);
816 long o = r->pFDeg(p, r);
817 int ll=1;
818
819 if (k != 0)
820 {
821 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
822 {
823 ll++;
824 }
825 }
826 else
827 {
828 while ((p=pNext(p)) !=NULL)
829 {
830 ll++;
831 }
832 }
833 *l=ll;
834 return o;
835}
836
837/*2
838* compute the length of a polynomial (in l)
839* and the degree of the monomial with maximal degree:
840* this is NOT the last one, we have to look for it
841*/
842long pLDeg1(poly p,int *l, const ring r)
843{
844 p_CheckPolyRing(p, r);
845 long unsigned k= p_GetComp(p, r);
846 int ll=1;
847 long t,max;
848
849 max=r->pFDeg(p, r);
850 if (k > 0)
851 {
852 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
853 {
854 t=r->pFDeg(p, r);
855 if (t>max) max=t;
856 ll++;
857 }
858 }
859 else
860 {
861 while ((p=pNext(p))!=NULL)
862 {
863 t=r->pFDeg(p, r);
864 if (t>max) max=t;
865 ll++;
866 }
867 }
868 *l=ll;
869 return max;
870}
871
872/*2
873* compute the length of a polynomial (in l)
874* and the degree of the monomial with maximal degree:
875* this is NOT the last one, we have to look for it
876* in all components
877*/
878long pLDeg1c(poly p,int *l, const ring r)
879{
880 p_CheckPolyRing(p, r);
881 int ll=1;
882 long t,max;
883
884 max=r->pFDeg(p, r);
885 if (rIsSyzIndexRing(r))
886 {
887 long unsigned limit = rGetCurrSyzLimit(r);
888 while ((p=pNext(p))!=NULL)
889 {
890 if (__p_GetComp(p, r)<=limit)
891 {
892 if ((t=r->pFDeg(p, r))>max) max=t;
893 ll++;
894 }
895 else break;
896 }
897 }
898 else
899 {
900 while ((p=pNext(p))!=NULL)
901 {
902 if ((t=r->pFDeg(p, r))>max) max=t;
903 ll++;
904 }
905 }
906 *l=ll;
907 return max;
908}
909
910// like pLDeg1, only pFDeg == pDeg
911long pLDeg1_Deg(poly p,int *l, const ring r)
912{
913 assume(r->pFDeg == p_Deg);
914 p_CheckPolyRing(p, r);
915 long unsigned k= p_GetComp(p, r);
916 int ll=1;
917 long t,max;
918
919 max=p_GetOrder(p, r);
920 if (k > 0)
921 {
922 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
923 {
924 t=p_GetOrder(p, r);
925 if (t>max) max=t;
926 ll++;
927 }
928 }
929 else
930 {
931 while ((p=pNext(p))!=NULL)
932 {
933 t=p_GetOrder(p, r);
934 if (t>max) max=t;
935 ll++;
936 }
937 }
938 *l=ll;
939 return max;
940}
941
942long pLDeg1c_Deg(poly p,int *l, const ring r)
943{
944 assume(r->pFDeg == p_Deg);
945 p_CheckPolyRing(p, r);
946 int ll=1;
947 long t,max;
948
949 max=p_GetOrder(p, r);
950 if (rIsSyzIndexRing(r))
951 {
952 long unsigned limit = rGetCurrSyzLimit(r);
953 while ((p=pNext(p))!=NULL)
954 {
955 if (__p_GetComp(p, r)<=limit)
956 {
957 if ((t=p_GetOrder(p, r))>max) max=t;
958 ll++;
959 }
960 else break;
961 }
962 }
963 else
964 {
965 while ((p=pNext(p))!=NULL)
966 {
967 if ((t=p_GetOrder(p, r))>max) max=t;
968 ll++;
969 }
970 }
971 *l=ll;
972 return max;
973}
974
975// like pLDeg1, only pFDeg == pTotoalDegree
976long pLDeg1_Totaldegree(poly p,int *l, const ring r)
977{
978 p_CheckPolyRing(p, r);
979 long unsigned k= p_GetComp(p, r);
980 int ll=1;
981 long t,max;
982
983 max=p_Totaldegree(p, r);
984 if (k > 0)
985 {
986 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
987 {
988 t=p_Totaldegree(p, r);
989 if (t>max) max=t;
990 ll++;
991 }
992 }
993 else
994 {
995 while ((p=pNext(p))!=NULL)
996 {
997 t=p_Totaldegree(p, r);
998 if (t>max) max=t;
999 ll++;
1000 }
1001 }
1002 *l=ll;
1003 return max;
1004}
1005
1006long pLDeg1c_Totaldegree(poly p,int *l, const ring r)
1007{
1008 p_CheckPolyRing(p, r);
1009 int ll=1;
1010 long t,max;
1011
1012 max=p_Totaldegree(p, r);
1013 if (rIsSyzIndexRing(r))
1014 {
1015 long unsigned limit = rGetCurrSyzLimit(r);
1016 while ((p=pNext(p))!=NULL)
1017 {
1018 if (__p_GetComp(p, r)<=limit)
1019 {
1020 if ((t=p_Totaldegree(p, r))>max) max=t;
1021 ll++;
1022 }
1023 else break;
1024 }
1025 }
1026 else
1027 {
1028 while ((p=pNext(p))!=NULL)
1029 {
1030 if ((t=p_Totaldegree(p, r))>max) max=t;
1031 ll++;
1032 }
1033 }
1034 *l=ll;
1035 return max;
1036}
1037
1038// like pLDeg1, only pFDeg == p_WFirstTotalDegree
1039long pLDeg1_WFirstTotalDegree(poly p,int *l, const ring r)
1040{
1041 p_CheckPolyRing(p, r);
1042 long unsigned k= p_GetComp(p, r);
1043 int ll=1;
1044 long t,max;
1045
1047 if (k > 0)
1048 {
1049 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1050 {
1051 t=p_WFirstTotalDegree(p, r);
1052 if (t>max) max=t;
1053 ll++;
1054 }
1055 }
1056 else
1057 {
1058 while ((p=pNext(p))!=NULL)
1059 {
1060 t=p_WFirstTotalDegree(p, r);
1061 if (t>max) max=t;
1062 ll++;
1063 }
1064 }
1065 *l=ll;
1066 return max;
1067}
1068
1069long pLDeg1c_WFirstTotalDegree(poly p,int *l, const ring r)
1070{
1071 p_CheckPolyRing(p, r);
1072 int ll=1;
1073 long t,max;
1074
1076 if (rIsSyzIndexRing(r))
1077 {
1078 long unsigned limit = rGetCurrSyzLimit(r);
1079 while ((p=pNext(p))!=NULL)
1080 {
1081 if (__p_GetComp(p, r)<=limit)
1082 {
1083 if ((t=p_Totaldegree(p, r))>max) max=t;
1084 ll++;
1085 }
1086 else break;
1087 }
1088 }
1089 else
1090 {
1091 while ((p=pNext(p))!=NULL)
1092 {
1093 if ((t=p_Totaldegree(p, r))>max) max=t;
1094 ll++;
1095 }
1096 }
1097 *l=ll;
1098 return max;
1099}
1100
1101/***************************************************************
1102 *
1103 * Maximal Exponent business
1104 *
1105 ***************************************************************/
1106
1107static inline unsigned long
1108p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r,
1109 unsigned long number_of_exp)
1110{
1111 const unsigned long bitmask = r->bitmask;
1112 unsigned long ml1 = l1 & bitmask;
1113 unsigned long ml2 = l2 & bitmask;
1114 unsigned long max = (ml1 > ml2 ? ml1 : ml2);
1115 unsigned long j = number_of_exp - 1;
1116
1117 if (j > 0)
1118 {
1119 unsigned long mask = bitmask << r->BitsPerExp;
1120 while (1)
1121 {
1122 ml1 = l1 & mask;
1123 ml2 = l2 & mask;
1124 max |= ((ml1 > ml2 ? ml1 : ml2) & mask);
1125 j--;
1126 if (j == 0) break;
1127 mask = mask << r->BitsPerExp;
1128 }
1129 }
1130 return max;
1131}
1132
1133static inline unsigned long
1134p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r)
1135{
1136 return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong);
1137}
1138
1139poly p_GetMaxExpP(poly p, const ring r)
1140{
1141 p_CheckPolyRing(p, r);
1142 if (p == NULL) return p_Init(r);
1143 poly max = p_LmInit(p, r);
1144 pIter(p);
1145 if (p == NULL) return max;
1146 int i, offset;
1147 unsigned long l_p, l_max;
1148 unsigned long divmask = r->divmask;
1149
1150 do
1151 {
1152 offset = r->VarL_Offset[0];
1153 l_p = p->exp[offset];
1154 l_max = max->exp[offset];
1155 // do the divisibility trick to find out whether l has an exponent
1156 if (l_p > l_max ||
1157 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1158 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1159
1160 for (i=1; i<r->VarL_Size; i++)
1161 {
1162 offset = r->VarL_Offset[i];
1163 l_p = p->exp[offset];
1164 l_max = max->exp[offset];
1165 // do the divisibility trick to find out whether l has an exponent
1166 if (l_p > l_max ||
1167 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1168 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1169 }
1170 pIter(p);
1171 }
1172 while (p != NULL);
1173 return max;
1174}
1175
1176unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max)
1177{
1178 unsigned long l_p, divmask = r->divmask;
1179 int i;
1180
1181 while (p != NULL)
1182 {
1183 l_p = p->exp[r->VarL_Offset[0]];
1184 if (l_p > l_max ||
1185 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1187 for (i=1; i<r->VarL_Size; i++)
1188 {
1189 l_p = p->exp[r->VarL_Offset[i]];
1190 // do the divisibility trick to find out whether l has an exponent
1191 if (l_p > l_max ||
1192 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1194 }
1195 pIter(p);
1196 }
1197 return l_max;
1198}
1199
1200
1201
1202
1203/***************************************************************
1204 *
1205 * Misc things
1206 *
1207 ***************************************************************/
1208// returns TRUE, if all monoms have the same component
1209BOOLEAN p_OneComp(poly p, const ring r)
1210{
1211 if(p!=NULL)
1212 {
1213 long i = p_GetComp(p, r);
1214 while (pNext(p)!=NULL)
1215 {
1216 pIter(p);
1217 if(i != p_GetComp(p, r)) return FALSE;
1218 }
1219 }
1220 return TRUE;
1221}
1222
1223/*2
1224*test if a monomial /head term is a pure power,
1225* i.e. depends on only one variable
1226*/
1227int p_IsPurePower(const poly p, const ring r)
1228{
1229 int i,k=0;
1230
1231 for (i=r->N;i;i--)
1232 {
1233 if (p_GetExp(p,i, r)!=0)
1234 {
1235 if(k!=0) return 0;
1236 k=i;
1237 }
1238 }
1239 return k;
1240}
1241
1242/*2
1243*test if a polynomial is univariate
1244* return -1 for constant,
1245* 0 for not univariate,s
1246* i if dep. on var(i)
1247*/
1248int p_IsUnivariate(poly p, const ring r)
1249{
1250 int i,k=-1;
1251
1252 while (p!=NULL)
1253 {
1254 for (i=r->N;i;i--)
1255 {
1256 if (p_GetExp(p,i, r)!=0)
1257 {
1258 if((k!=-1)&&(k!=i)) return 0;
1259 k=i;
1260 }
1261 }
1262 pIter(p);
1263 }
1264 return k;
1265}
1266
1267// set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0
1268int p_GetVariables(poly p, int * e, const ring r)
1269{
1270 int i;
1271 int n=0;
1272 while(p!=NULL)
1273 {
1274 n=0;
1275 for(i=r->N; i>0; i--)
1276 {
1277 if(e[i]==0)
1278 {
1279 if (p_GetExp(p,i,r)>0)
1280 {
1281 e[i]=1;
1282 n++;
1283 }
1284 }
1285 else
1286 n++;
1287 }
1288 if (n==r->N) break;
1289 pIter(p);
1290 }
1291 return n;
1292}
1293
1294
1295/*2
1296* returns a polynomial representing the integer i
1297*/
1298poly p_ISet(long i, const ring r)
1299{
1300 poly rc = NULL;
1301 if (i!=0)
1302 {
1303 rc = p_Init(r);
1304 pSetCoeff0(rc,n_Init(i,r->cf));
1305 if (n_IsZero(pGetCoeff(rc),r->cf))
1306 p_LmDelete(&rc,r);
1307 }
1308 return rc;
1309}
1310
1311/*2
1312* an optimized version of p_ISet for the special case 1
1313*/
1314poly p_One(const ring r)
1315{
1316 poly rc = p_Init(r);
1317 pSetCoeff0(rc,n_Init(1,r->cf));
1318 return rc;
1319}
1320
1321void p_Split(poly p, poly *h)
1322{
1323 *h=pNext(p);
1324 pNext(p)=NULL;
1325}
1326
1327/*2
1328* pair has no common factor ? or is no polynomial
1329*/
1330BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r)
1331{
1332
1333 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1334 return FALSE;
1335 int i = rVar(r);
1336 loop
1337 {
1338 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1339 return FALSE;
1340 i--;
1341 if (i == 0)
1342 return TRUE;
1343 }
1344}
1345
1346BOOLEAN p_HasNotCFRing(poly p1, poly p2, const ring r)
1347{
1348
1349 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1350 return FALSE;
1351 int i = rVar(r);
1352 loop
1353 {
1354 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1355 return FALSE;
1356 i--;
1357 if (i == 0) {
1358 if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1359 n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1360 return FALSE;
1361 } else {
1362 return TRUE;
1363 }
1364 }
1365 }
1366}
1367
1368/*2
1369* convert monomial given as string to poly, e.g. 1x3y5z
1370*/
1371const char * p_Read(const char *st, poly &rc, const ring r)
1372{
1373 if (r==NULL) { rc=NULL;return st;}
1374 int i,j;
1375 rc = p_Init(r);
1376 const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1377 if (s==st)
1378 /* i.e. it does not start with a coeff: test if it is a ringvar*/
1379 {
1380 j = r_IsRingVar(s,r->names,r->N);
1381 if (j >= 0)
1382 {
1383 p_IncrExp(rc,1+j,r);
1384 while (*s!='\0') s++;
1385 goto done;
1386 }
1387 }
1388 while (*s!='\0')
1389 {
1390 char ss[2];
1391 ss[0] = *s++;
1392 ss[1] = '\0';
1393 j = r_IsRingVar(ss,r->names,r->N);
1394 if (j >= 0)
1395 {
1396 const char *s_save=s;
1397 s = eati(s,&i);
1398 if (((unsigned long)i) > r->bitmask/2)
1399 {
1400 // exponent to large: it is not a monomial
1401 p_LmDelete(&rc,r);
1402 return s_save;
1403 }
1404 p_AddExp(rc,1+j, (long)i, r);
1405 }
1406 else
1407 {
1408 // 1st char of is not a varname
1409 // We return the parsed polynomial nevertheless. This is needed when
1410 // we are parsing coefficients in a rational function field.
1411 s--;
1412 break;
1413 }
1414 }
1415done:
1416 if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1417 else
1418 {
1419#ifdef HAVE_PLURAL
1420 // in super-commutative ring
1421 // squares of anti-commutative variables are zeroes!
1422 if(rIsSCA(r))
1423 {
1424 const unsigned int iFirstAltVar = scaFirstAltVar(r);
1425 const unsigned int iLastAltVar = scaLastAltVar(r);
1426
1427 assume(rc != NULL);
1428
1429 for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1430 if( p_GetExp(rc, k, r) > 1 )
1431 {
1432 p_LmDelete(&rc, r);
1433 goto finish;
1434 }
1435 }
1436#endif
1437
1438 p_Setm(rc,r);
1439 }
1440finish:
1441 return s;
1442}
1443poly p_mInit(const char *st, BOOLEAN &ok, const ring r)
1444{
1445 poly p;
1446 char *sst=(char*)st;
1447 BOOLEAN neg=FALSE;
1448 if (sst[0]=='-') { neg=TRUE; sst=sst+1; }
1449 const char *s=p_Read(sst,p,r);
1450 if (*s!='\0')
1451 {
1452 if ((s!=sst)&&isdigit(sst[0]))
1453 {
1455 }
1456 ok=FALSE;
1457 if (p!=NULL)
1458 {
1459 if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1460 else p_LmDelete(p,r);
1461 }
1462 return NULL;
1463 }
1464 p_Test(p,r);
1465 ok=!errorreported;
1466 if (neg) p=p_Neg(p,r);
1467 return p;
1468}
1469
1470/*2
1471* returns a polynomial representing the number n
1472* destroys n
1473*/
1474poly p_NSet(number n, const ring r)
1475{
1476 if (n_IsZero(n,r->cf))
1477 {
1478 n_Delete(&n, r->cf);
1479 return NULL;
1480 }
1481 else
1482 {
1483 poly rc = p_Init(r);
1484 pSetCoeff0(rc,n);
1485 return rc;
1486 }
1487}
1488/*2
1489* assumes that LM(a) = LM(b)*m, for some monomial m,
1490* returns the multiplicant m,
1491* leaves a and b unmodified
1492*/
1493poly p_MDivide(poly a, poly b, const ring r)
1494{
1495 assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1496 int i;
1497 poly result = p_Init(r);
1498
1499 for(i=(int)r->N; i; i--)
1500 p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1501 p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1502 p_Setm(result,r);
1503 return result;
1504}
1505
1506poly p_Div_nn(poly p, const number n, const ring r)
1507{
1508 pAssume(!n_IsZero(n,r->cf));
1509 p_Test(p, r);
1510 poly result = p;
1511 poly prev = NULL;
1512 if (!n_IsOne(n,r->cf))
1513 {
1514 while (p!=NULL)
1515 {
1516 number nc = n_Div(pGetCoeff(p),n,r->cf);
1517 if (!n_IsZero(nc,r->cf))
1518 {
1519 p_SetCoeff(p,nc,r);
1520 prev=p;
1521 pIter(p);
1522 }
1523 else
1524 {
1525 if (prev==NULL)
1526 {
1527 p_LmDelete(&result,r);
1528 p=result;
1529 }
1530 else
1531 {
1532 p_LmDelete(&pNext(prev),r);
1533 p=pNext(prev);
1534 }
1535 }
1536 }
1537 p_Test(result,r);
1538 }
1539 return(result);
1540}
1541
1542poly p_Div_mm(poly p, const poly m, const ring r)
1543{
1544 p_Test(p, r);
1545 p_Test(m, r);
1546 poly result = p;
1547 poly prev = NULL;
1548 number n=pGetCoeff(m);
1549 while (p!=NULL)
1550 {
1551 number nc = n_Div(pGetCoeff(p),n,r->cf);
1552 n_Normalize(nc,r->cf);
1553 if (!n_IsZero(nc,r->cf))
1554 {
1555 p_SetCoeff(p,nc,r);
1556 prev=p;
1557 p_ExpVectorSub(p,m,r);
1558 pIter(p);
1559 }
1560 else
1561 {
1562 if (prev==NULL)
1563 {
1564 p_LmDelete(&result,r);
1565 p=result;
1566 }
1567 else
1568 {
1569 p_LmDelete(&pNext(prev),r);
1570 p=pNext(prev);
1571 }
1572 }
1573 }
1574 p_Test(result,r);
1575 return(result);
1576}
1577
1578/*2
1579* divides a by the monomial b, ignores monomials which are not divisible
1580* assumes that b is not NULL, destroys b
1581*/
1582poly p_DivideM(poly a, poly b, const ring r)
1583{
1584 if (a==NULL) { p_Delete(&b,r); return NULL; }
1585 poly result=a;
1586
1587 if(!p_IsConstant(b,r))
1588 {
1589 if (rIsNCRing(r))
1590 {
1591 WerrorS("p_DivideM not implemented for non-commuative rings");
1592 return NULL;
1593 }
1594 poly prev=NULL;
1595 while (a!=NULL)
1596 {
1597 if (p_DivisibleBy(b,a,r))
1598 {
1599 p_ExpVectorSub(a,b,r);
1600 prev=a;
1601 pIter(a);
1602 }
1603 else
1604 {
1605 if (prev==NULL)
1606 {
1607 p_LmDelete(&result,r);
1608 a=result;
1609 }
1610 else
1611 {
1612 p_LmDelete(&pNext(prev),r);
1613 a=pNext(prev);
1614 }
1615 }
1616 }
1617 }
1618 if (result!=NULL)
1619 {
1621 //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1622 if (rField_is_Zp(r))
1623 {
1624 inv = n_Invers(inv,r->cf);
1626 n_Delete(&inv, r->cf);
1627 }
1628 else
1629 {
1631 }
1632 }
1633 p_Delete(&b, r);
1634 return result;
1635}
1636
1637poly pp_DivideM(poly a, poly b, const ring r)
1638{
1639 if (a==NULL) { return NULL; }
1640 // TODO: better implementation without copying a,b
1641 return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1642}
1643
1644#ifdef HAVE_RINGS
1645/* TRUE iff LT(f) | LT(g) */
1647{
1648 int exponent;
1649 for(int i = (int)rVar(r); i>0; i--)
1650 {
1651 exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1652 if (exponent < 0) return FALSE;
1653 }
1654 return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1655}
1656#endif
1657
1658// returns the LCM of the head terms of a and b in *m
1659void p_Lcm(const poly a, const poly b, poly m, const ring r)
1660{
1661 for (int i=r->N; i; --i)
1662 p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1663
1664 p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1665 /* Don't do a pSetm here, otherwise hres/lres chockes */
1666}
1667
1668poly p_Lcm(const poly a, const poly b, const ring r)
1669{
1670 poly m=p_Init(r);
1671 p_Lcm(a, b, m, r);
1672 p_Setm(m,r);
1673 return(m);
1674}
1675
1676#ifdef HAVE_RATGRING
1677/*2
1678* returns the rational LCM of the head terms of a and b
1679* without coefficient!!!
1680*/
1681poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r)
1682{
1683 poly m = // p_One( r);
1684 p_Init(r);
1685
1686// const int (currRing->N) = r->N;
1687
1688 // for (int i = (currRing->N); i>=r->real_var_start; i--)
1689 for (int i = r->real_var_end; i>=r->real_var_start; i--)
1690 {
1691 const int lExpA = p_GetExp (a, i, r);
1692 const int lExpB = p_GetExp (b, i, r);
1693
1694 p_SetExp (m, i, si_max(lExpA, lExpB), r);
1695 }
1696
1697 p_SetComp (m, lCompM, r);
1698 p_Setm(m,r);
1699 p_GetCoeff(m, r)=NULL;
1700
1701 return(m);
1702};
1703
1705{
1706 /* modifies p*/
1707 // Print("start: "); Print(" "); p_wrp(*p,r);
1708 p_LmCheckPolyRing2(*p, r);
1709 poly q = p_Head(*p,r);
1710 const long cmp = p_GetComp(*p, r);
1711 while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1712 {
1713 p_LmDelete(p,r);
1714 // Print("while: ");p_wrp(*p,r);Print(" ");
1715 }
1716 // p_wrp(*p,r);Print(" ");
1717 // PrintS("end\n");
1718 p_LmDelete(&q,r);
1719}
1720
1721
1722/* returns x-coeff of p, i.e. a poly in x, s.t. corresponding xd-monomials
1723have the same D-part and the component 0
1724does not destroy p
1725*/
1726poly p_GetCoeffRat(poly p, int ishift, ring r)
1727{
1728 poly q = pNext(p);
1729 poly res; // = p_Head(p,r);
1730 res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1731 p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1732 poly s;
1733 long cmp = p_GetComp(p, r);
1734 while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1735 {
1736 s = p_GetExp_k_n(q, ishift+1, r->N, r);
1737 p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1738 res = p_Add_q(res,s,r);
1739 q = pNext(q);
1740 }
1741 cmp = 0;
1742 p_SetCompP(res,cmp,r);
1743 return res;
1744}
1745
1746
1747
1748void p_ContentRat(poly &ph, const ring r)
1749// changes ph
1750// for rat coefficients in K(x1,..xN)
1751{
1752 // init array of RatLeadCoeffs
1753 // poly p_GetCoeffRat(poly p, int ishift, ring r);
1754
1755 int len=pLength(ph);
1756 poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1757 poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1758 int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1759 int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1760 int k = 0;
1761 poly p = p_Copy(ph, r); // ph will be needed below
1762 int mintdeg = p_Totaldegree(p, r);
1763 int minlen = len;
1764 int dd = 0; int i;
1765 int HasConstantCoef = 0;
1766 int is = r->real_var_start - 1;
1767 while (p!=NULL)
1768 {
1769 LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat instead of p_HeadRat(p, is, currRing); !
1770 C[k] = p_GetCoeffRat(p, is, r);
1771 D[k] = p_Totaldegree(C[k], r);
1772 mintdeg = si_min(mintdeg,D[k]);
1773 L[k] = pLength(C[k]);
1774 minlen = si_min(minlen,L[k]);
1775 if (p_IsConstant(C[k], r))
1776 {
1777 // C[k] = const, so the content will be numerical
1778 HasConstantCoef = 1;
1779 // smth like goto cleanup and return(pContent(p));
1780 }
1781 p_LmDeleteAndNextRat(&p, is, r);
1782 k++;
1783 }
1784
1785 // look for 1 element of minimal degree and of minimal length
1786 k--;
1787 poly d;
1788 int mindeglen = len;
1789 if (k<=0) // this poly is not a ratgring poly -> pContent
1790 {
1791 p_Delete(&C[0], r);
1792 p_Delete(&LM[0], r);
1793 p_ContentForGB(ph, r);
1794 goto cleanup;
1795 }
1796
1797 int pmindeglen;
1798 for(i=0; i<=k; i++)
1799 {
1800 if (D[i] == mintdeg)
1801 {
1802 if (L[i] < mindeglen)
1803 {
1804 mindeglen=L[i];
1805 pmindeglen = i;
1806 }
1807 }
1808 }
1809 d = p_Copy(C[pmindeglen], r);
1810 // there are dd>=1 mindeg elements
1811 // and pmideglen is the coordinate of one of the smallest among them
1812
1813 // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1814 // return naGcd(d,d2,currRing);
1815
1816 // adjoin pContentRat here?
1817 for(i=0; i<=k; i++)
1818 {
1819 d=singclap_gcd(d,p_Copy(C[i], r), r);
1820 if (p_Totaldegree(d, r)==0)
1821 {
1822 // cleanup, pContent, return
1823 p_Delete(&d, r);
1824 for(;k>=0;k--)
1825 {
1826 p_Delete(&C[k], r);
1827 p_Delete(&LM[k], r);
1828 }
1829 p_ContentForGB(ph, r);
1830 goto cleanup;
1831 }
1832 }
1833 for(i=0; i<=k; i++)
1834 {
1835 poly h=singclap_pdivide(C[i],d, r);
1836 p_Delete(&C[i], r);
1837 C[i]=h;
1838 }
1839
1840 // zusammensetzen,
1841 p=NULL; // just to be sure
1842 for(i=0; i<=k; i++)
1843 {
1844 p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1845 C[i]=NULL; LM[i]=NULL;
1846 }
1847 p_Delete(&ph, r); // do not need it anymore
1848 ph = p;
1849 // aufraeumen, return
1850cleanup:
1851 omFree(C);
1852 omFree(LM);
1853 omFree(D);
1854 omFree(L);
1855}
1856
1857
1858#endif
1859
1860
1861/* assumes that p and divisor are univariate polynomials in r,
1862 mentioning the same variable;
1863 assumes divisor != NULL;
1864 p may be NULL;
1865 assumes a global monomial ordering in r;
1866 performs polynomial division of p by divisor:
1867 - afterwards p contains the remainder of the division, i.e.,
1868 p_before = result * divisor + p_afterwards;
1869 - if needResult == TRUE, then the method computes and returns 'result',
1870 otherwise NULL is returned (This parametrization can be used when
1871 one is only interested in the remainder of the division. In this
1872 case, the method will be slightly faster.)
1873 leaves divisor unmodified */
1874poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
1875{
1876 assume(divisor != NULL);
1877 if (p == NULL) return NULL;
1878
1879 poly result = NULL;
1880 number divisorLC = p_GetCoeff(divisor, r);
1881 int divisorLE = p_GetExp(divisor, 1, r);
1882 while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1883 {
1884 /* determine t = LT(p) / LT(divisor) */
1885 poly t = p_ISet(1, r);
1886 number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1887 n_Normalize(c,r->cf);
1888 p_SetCoeff(t, c, r);
1889 int e = p_GetExp(p, 1, r) - divisorLE;
1890 p_SetExp(t, 1, e, r);
1891 p_Setm(t, r);
1892 if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1893 p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1894 }
1895 return result;
1896}
1897
1898/*2
1899* returns the partial differentiate of a by the k-th variable
1900* does not destroy the input
1901*/
1902poly p_Diff(poly a, int k, const ring r)
1903{
1904 poly res, f, last;
1905 number t;
1906
1907 last = res = NULL;
1908 while (a!=NULL)
1909 {
1910 if (p_GetExp(a,k,r)!=0)
1911 {
1912 f = p_LmInit(a,r);
1913 t = n_Init(p_GetExp(a,k,r),r->cf);
1914 pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1915 n_Delete(&t,r->cf);
1916 if (n_IsZero(pGetCoeff(f),r->cf))
1917 p_LmDelete(&f,r);
1918 else
1919 {
1920 p_DecrExp(f,k,r);
1921 p_Setm(f,r);
1922 if (res==NULL)
1923 {
1924 res=last=f;
1925 }
1926 else
1927 {
1928 pNext(last)=f;
1929 last=f;
1930 }
1931 }
1932 }
1933 pIter(a);
1934 }
1935 return res;
1936}
1937
1938static poly p_DiffOpM(poly a, poly b,BOOLEAN multiply, const ring r)
1939{
1940 int i,j,s;
1941 number n,h,hh;
1942 poly p=p_One(r);
1943 n=n_Mult(pGetCoeff(a),pGetCoeff(b),r->cf);
1944 for(i=rVar(r);i>0;i--)
1945 {
1946 s=p_GetExp(b,i,r);
1947 if (s<p_GetExp(a,i,r))
1948 {
1949 n_Delete(&n,r->cf);
1950 p_LmDelete(&p,r);
1951 return NULL;
1952 }
1953 if (multiply)
1954 {
1955 for(j=p_GetExp(a,i,r); j>0;j--)
1956 {
1957 h = n_Init(s,r->cf);
1958 hh=n_Mult(n,h,r->cf);
1959 n_Delete(&h,r->cf);
1960 n_Delete(&n,r->cf);
1961 n=hh;
1962 s--;
1963 }
1964 p_SetExp(p,i,s,r);
1965 }
1966 else
1967 {
1968 p_SetExp(p,i,s-p_GetExp(a,i,r),r);
1969 }
1970 }
1971 p_Setm(p,r);
1972 /*if (multiply)*/ p_SetCoeff(p,n,r);
1973 if (n_IsZero(n,r->cf)) p=p_LmDeleteAndNext(p,r); // return NULL as p is a monomial
1974 return p;
1975}
1976
1977poly p_DiffOp(poly a, poly b,BOOLEAN multiply, const ring r)
1978{
1979 poly result=NULL;
1980 poly h;
1981 for(;a!=NULL;pIter(a))
1982 {
1983 for(h=b;h!=NULL;pIter(h))
1984 {
1985 result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1986 }
1987 }
1988 return result;
1989}
1990/*2
1991* subtract p2 from p1, p1 and p2 are destroyed
1992* do not put attention on speed: the procedure is only used in the interpreter
1993*/
1994poly p_Sub(poly p1, poly p2, const ring r)
1995{
1996 return p_Add_q(p1, p_Neg(p2,r),r);
1997}
1998
1999/*3
2000* compute for a monomial m
2001* the power m^exp, exp > 1
2002* destroys p
2003*/
2004static poly p_MonPower(poly p, int exp, const ring r)
2005{
2006 int i;
2007
2008 if(!n_IsOne(pGetCoeff(p),r->cf))
2009 {
2010 number x, y;
2011 y = pGetCoeff(p);
2012 n_Power(y,exp,&x,r->cf);
2013 n_Delete(&y,r->cf);
2014 pSetCoeff0(p,x);
2015 }
2016 for (i=rVar(r); i!=0; i--)
2017 {
2018 p_MultExp(p,i, exp,r);
2019 }
2020 p_Setm(p,r);
2021 return p;
2022}
2023
2024/*3
2025* compute for monomials p*q
2026* destroys p, keeps q
2027*/
2028static void p_MonMult(poly p, poly q, const ring r)
2029{
2030 number x, y;
2031
2032 y = pGetCoeff(p);
2033 x = n_Mult(y,pGetCoeff(q),r->cf);
2034 n_Delete(&y,r->cf);
2035 pSetCoeff0(p,x);
2036 //for (int i=pVariables; i!=0; i--)
2037 //{
2038 // pAddExp(p,i, pGetExp(q,i));
2039 //}
2040 //p->Order += q->Order;
2041 p_ExpVectorAdd(p,q,r);
2042}
2043
2044/*3
2045* compute for monomials p*q
2046* keeps p, q
2047*/
2048static poly p_MonMultC(poly p, poly q, const ring rr)
2049{
2050 number x;
2051 poly r = p_Init(rr);
2052
2053 x = n_Mult(pGetCoeff(p),pGetCoeff(q),rr->cf);
2054 pSetCoeff0(r,x);
2055 p_ExpVectorSum(r,p, q, rr);
2056 return r;
2057}
2058
2059/*3
2060* create binomial coef.
2061*/
2062static number* pnBin(int exp, const ring r)
2063{
2064 int e, i, h;
2065 number x, y, *bin=NULL;
2066
2067 x = n_Init(exp,r->cf);
2068 if (n_IsZero(x,r->cf))
2069 {
2070 n_Delete(&x,r->cf);
2071 return bin;
2072 }
2073 h = (exp >> 1) + 1;
2074 bin = (number *)omAlloc0(h*sizeof(number));
2075 bin[1] = x;
2076 if (exp < 4)
2077 return bin;
2078 i = exp - 1;
2079 for (e=2; e<h; e++)
2080 {
2081 x = n_Init(i,r->cf);
2082 i--;
2083 y = n_Mult(x,bin[e-1],r->cf);
2084 n_Delete(&x,r->cf);
2085 x = n_Init(e,r->cf);
2086 bin[e] = n_ExactDiv(y,x,r->cf);
2087 n_Delete(&x,r->cf);
2088 n_Delete(&y,r->cf);
2089 }
2090 return bin;
2091}
2092
2093static void pnFreeBin(number *bin, int exp,const coeffs r)
2094{
2095 int e, h = (exp >> 1) + 1;
2096
2097 if (bin[1] != NULL)
2098 {
2099 for (e=1; e<h; e++)
2100 n_Delete(&(bin[e]),r);
2101 }
2102 omFreeSize((ADDRESS)bin, h*sizeof(number));
2103}
2104
2105/*
2106* compute for a poly p = head+tail, tail is monomial
2107* (head + tail)^exp, exp > 1
2108* with binomial coef.
2109*/
2110static poly p_TwoMonPower(poly p, int exp, const ring r)
2111{
2112 int eh, e;
2113 long al;
2114 poly *a;
2115 poly tail, b, res, h;
2116 number x;
2117 number *bin = pnBin(exp,r);
2118
2119 tail = pNext(p);
2120 if (bin == NULL)
2121 {
2122 p_MonPower(p,exp,r);
2123 p_MonPower(tail,exp,r);
2124 p_Test(p,r);
2125 return p;
2126 }
2127 eh = exp >> 1;
2128 al = (exp + 1) * sizeof(poly);
2129 a = (poly *)omAlloc(al);
2130 a[1] = p;
2131 for (e=1; e<exp; e++)
2132 {
2133 a[e+1] = p_MonMultC(a[e],p,r);
2134 }
2135 res = a[exp];
2136 b = p_Head(tail,r);
2137 for (e=exp-1; e>eh; e--)
2138 {
2139 h = a[e];
2140 x = n_Mult(bin[exp-e],pGetCoeff(h),r->cf);
2141 p_SetCoeff(h,x,r);
2142 p_MonMult(h,b,r);
2143 res = pNext(res) = h;
2144 p_MonMult(b,tail,r);
2145 }
2146 for (e=eh; e!=0; e--)
2147 {
2148 h = a[e];
2149 x = n_Mult(bin[e],pGetCoeff(h),r->cf);
2150 p_SetCoeff(h,x,r);
2151 p_MonMult(h,b,r);
2152 res = pNext(res) = h;
2153 p_MonMult(b,tail,r);
2154 }
2155 p_LmDelete(&tail,r);
2156 pNext(res) = b;
2157 pNext(b) = NULL;
2158 res = a[exp];
2159 omFreeSize((ADDRESS)a, al);
2160 pnFreeBin(bin, exp, r->cf);
2161// tail=res;
2162// while((tail!=NULL)&&(pNext(tail)!=NULL))
2163// {
2164// if(nIsZero(pGetCoeff(pNext(tail))))
2165// {
2166// pLmDelete(&pNext(tail));
2167// }
2168// else
2169// pIter(tail);
2170// }
2171 p_Test(res,r);
2172 return res;
2173}
2174
2175static poly p_Pow(poly p, int i, const ring r)
2176{
2177 poly rc = p_Copy(p,r);
2178 i -= 2;
2179 do
2180 {
2181 rc = p_Mult_q(rc,p_Copy(p,r),r);
2182 p_Normalize(rc,r);
2183 i--;
2184 }
2185 while (i != 0);
2186 return p_Mult_q(rc,p,r);
2187}
2188
2189static poly p_Pow_charp(poly p, int i, const ring r)
2190{
2191 //assume char_p == i
2192 poly h=p;
2193 while(h!=NULL) { p_MonPower(h,i,r);pIter(h);}
2194 return p;
2195}
2196
2197/*2
2198* returns the i-th power of p
2199* p will be destroyed
2200*/
2201poly p_Power(poly p, int i, const ring r)
2202{
2203 poly rc=NULL;
2204
2205 if (i==0)
2206 {
2207 p_Delete(&p,r);
2208 return p_One(r);
2209 }
2210
2211 if(p!=NULL)
2212 {
2213 if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2215 && (!rIsLPRing(r))
2216 #endif
2217 )
2218 {
2219 Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2220 return NULL;
2221 }
2222 switch (i)
2223 {
2224// cannot happen, see above
2225// case 0:
2226// {
2227// rc=pOne();
2228// pDelete(&p);
2229// break;
2230// }
2231 case 1:
2232 rc=p;
2233 break;
2234 case 2:
2235 rc=p_Mult_q(p_Copy(p,r),p,r);
2236 break;
2237 default:
2238 if (i < 0)
2239 {
2240 p_Delete(&p,r);
2241 return NULL;
2242 }
2243 else
2244 {
2245#ifdef HAVE_PLURAL
2246 if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2247 {
2248 int j=i;
2249 rc = p_Copy(p,r);
2250 while (j>1)
2251 {
2252 rc = p_Mult_q(p_Copy(p,r),rc,r);
2253 j--;
2254 }
2255 p_Delete(&p,r);
2256 return rc;
2257 }
2258#endif
2259 rc = pNext(p);
2260 if (rc == NULL)
2261 return p_MonPower(p,i,r);
2262 /* else: binom ?*/
2263 int char_p=rInternalChar(r);
2264 if ((char_p>0) && (i>char_p)
2265 && ((rField_is_Zp(r,char_p)
2266 || (rField_is_Zp_a(r,char_p)))))
2267 {
2268 poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2269 int rest=i-char_p;
2270 while (rest>=char_p)
2271 {
2272 rest-=char_p;
2274 }
2275 poly res=h;
2276 if (rest>0)
2277 res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2278 p_Delete(&p,r);
2279 return res;
2280 }
2281 if ((pNext(rc) != NULL)
2282 || rField_is_Ring(r)
2283 )
2284 return p_Pow(p,i,r);
2285 if ((char_p==0) || (i<=char_p))
2286 return p_TwoMonPower(p,i,r);
2287 return p_Pow(p,i,r);
2288 }
2289 /*end default:*/
2290 }
2291 }
2292 return rc;
2293}
2294
2295/* --------------------------------------------------------------------------------*/
2296/* content suff */
2297//number p_InitContent(poly ph, const ring r);
2298
2299void p_Content(poly ph, const ring r)
2300{
2301 if (ph==NULL) return;
2302 const coeffs cf=r->cf;
2303 if (pNext(ph)==NULL)
2304 {
2305 p_SetCoeff(ph,n_Init(1,cf),r);
2306 return;
2307 }
2308 if ((cf->cfSubringGcd==ndGcd)
2309 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2310 return;
2311 number h;
2312 if ((rField_is_Q(r))
2313 || (rField_is_Q_a(r))
2314 || (rField_is_Zp_a)(r)
2315 || (rField_is_Z(r))
2316 )
2317 {
2318 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2319 }
2320 else
2321 {
2323 }
2324 poly p;
2325 if(n_IsOne(h,cf))
2326 {
2327 goto content_finish;
2328 }
2329 p=ph;
2330 // take the SubringGcd of all coeffs
2331 while (p!=NULL)
2332 {
2335 n_Delete(&h,cf);
2336 h = d;
2337 if(n_IsOne(h,cf))
2338 {
2339 goto content_finish;
2340 }
2341 pIter(p);
2342 }
2343 // if found<>1, divide by it
2344 p = ph;
2345 while (p!=NULL)
2346 {
2348 p_SetCoeff(p,d,r);
2349 pIter(p);
2350 }
2352 n_Delete(&h,r->cf);
2353 // and last: check leading sign:
2354 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2355}
2356
2357#define CLEARENUMERATORS 1
2358
2359void p_ContentForGB(poly ph, const ring r)
2360{
2361 if(TEST_OPT_CONTENTSB) return;
2362 assume( ph != NULL );
2363
2364 assume( r != NULL ); assume( r->cf != NULL );
2365
2366
2367#if CLEARENUMERATORS
2368 if( 0 )
2369 {
2370 const coeffs C = r->cf;
2371 // experimentall (recursive enumerator treatment) of alg. Ext!
2373 n_ClearContent(itr, r->cf);
2374
2375 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2376 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2377
2378 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2379 return;
2380 }
2381#endif
2382
2383
2384#ifdef HAVE_RINGS
2385 if (rField_is_Ring(r))
2386 {
2387 if (rField_has_Units(r))
2388 {
2389 number k = n_GetUnit(pGetCoeff(ph),r->cf);
2390 if (!n_IsOne(k,r->cf))
2391 {
2392 number tmpGMP = k;
2393 k = n_Invers(k,r->cf);
2394 n_Delete(&tmpGMP,r->cf);
2395 poly h = pNext(ph);
2396 p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2397 while (h != NULL)
2398 {
2399 p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2400 pIter(h);
2401 }
2402// assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2403// if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2404 }
2405 n_Delete(&k,r->cf);
2406 }
2407 return;
2408 }
2409#endif
2410 number h,d;
2411 poly p;
2412
2413 if(pNext(ph)==NULL)
2414 {
2415 p_SetCoeff(ph,n_Init(1,r->cf),r);
2416 }
2417 else
2418 {
2419 assume( pNext(ph) != NULL );
2420#if CLEARENUMERATORS
2421 if( nCoeff_is_Q(r->cf) )
2422 {
2423 // experimentall (recursive enumerator treatment) of alg. Ext!
2425 n_ClearContent(itr, r->cf);
2426
2427 p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2428 assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2429
2430 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2431 return;
2432 }
2433#endif
2434
2435 n_Normalize(pGetCoeff(ph),r->cf);
2436 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2437 if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2438 {
2439 h=p_InitContent(ph,r);
2440 p=ph;
2441 }
2442 else
2443 {
2444 h=n_Copy(pGetCoeff(ph),r->cf);
2445 p = pNext(ph);
2446 }
2447 while (p!=NULL)
2448 {
2449 n_Normalize(pGetCoeff(p),r->cf);
2450 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2451 n_Delete(&h,r->cf);
2452 h = d;
2453 if(n_IsOne(h,r->cf))
2454 {
2455 break;
2456 }
2457 pIter(p);
2458 }
2459 //number tmp;
2460 if(!n_IsOne(h,r->cf))
2461 {
2462 p = ph;
2463 while (p!=NULL)
2464 {
2465 //d = nDiv(pGetCoeff(p),h);
2466 //tmp = nExactDiv(pGetCoeff(p),h);
2467 //if (!nEqual(d,tmp))
2468 //{
2469 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2470 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2471 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2472 //}
2473 //nDelete(&tmp);
2474 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2475 p_SetCoeff(p,d,r);
2476 pIter(p);
2477 }
2478 }
2479 n_Delete(&h,r->cf);
2480 if (rField_is_Q_a(r))
2481 {
2482 // special handling for alg. ext.:
2483 if (getCoeffType(r->cf)==n_algExt)
2484 {
2485 h = n_Init(1, r->cf->extRing->cf);
2486 p=ph;
2487 while (p!=NULL)
2488 { // each monom: coeff in Q_a
2489 poly c_n_n=(poly)pGetCoeff(p);
2490 poly c_n=c_n_n;
2491 while (c_n!=NULL)
2492 { // each monom: coeff in Q
2493 d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2494 n_Delete(&h,r->cf->extRing->cf);
2495 h=d;
2496 pIter(c_n);
2497 }
2498 pIter(p);
2499 }
2500 /* h contains the 1/lcm of all denominators in c_n_n*/
2501 //n_Normalize(h,r->cf->extRing->cf);
2502 if(!n_IsOne(h,r->cf->extRing->cf))
2503 {
2504 p=ph;
2505 while (p!=NULL)
2506 { // each monom: coeff in Q_a
2507 poly c_n=(poly)pGetCoeff(p);
2508 while (c_n!=NULL)
2509 { // each monom: coeff in Q
2510 d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2511 n_Normalize(d,r->cf->extRing->cf);
2512 n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2513 pGetCoeff(c_n)=d;
2514 pIter(c_n);
2515 }
2516 pIter(p);
2517 }
2518 }
2519 n_Delete(&h,r->cf->extRing->cf);
2520 }
2521 /*else
2522 {
2523 // special handling for rat. functions.:
2524 number hzz =NULL;
2525 p=ph;
2526 while (p!=NULL)
2527 { // each monom: coeff in Q_a (Z_a)
2528 fraction f=(fraction)pGetCoeff(p);
2529 poly c_n=NUM(f);
2530 if (hzz==NULL)
2531 {
2532 hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2533 pIter(c_n);
2534 }
2535 while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2536 { // each monom: coeff in Q (Z)
2537 d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2538 n_Delete(&hzz,r->cf->extRing->cf);
2539 hzz=d;
2540 pIter(c_n);
2541 }
2542 pIter(p);
2543 }
2544 // hzz contains the gcd of all numerators in f
2545 h=n_Invers(hzz,r->cf->extRing->cf);
2546 n_Delete(&hzz,r->cf->extRing->cf);
2547 n_Normalize(h,r->cf->extRing->cf);
2548 if(!n_IsOne(h,r->cf->extRing->cf))
2549 {
2550 p=ph;
2551 while (p!=NULL)
2552 { // each monom: coeff in Q_a (Z_a)
2553 fraction f=(fraction)pGetCoeff(p);
2554 NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2555 p_Normalize(NUM(f),r->cf->extRing);
2556 pIter(p);
2557 }
2558 }
2559 n_Delete(&h,r->cf->extRing->cf);
2560 }*/
2561 }
2562 }
2563 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2564}
2565
2566// Not yet?
2567#if 1 // currently only used by Singular/janet
2568void p_SimpleContent(poly ph, int smax, const ring r)
2569{
2570 if(TEST_OPT_CONTENTSB) return;
2571 if (ph==NULL) return;
2572 if (pNext(ph)==NULL)
2573 {
2574 p_SetCoeff(ph,n_Init(1,r->cf),r);
2575 return;
2576 }
2577 if (pNext(pNext(ph))==NULL)
2578 {
2579 return;
2580 }
2581 if (!(rField_is_Q(r))
2582 && (!rField_is_Q_a(r))
2583 && (!rField_is_Zp_a(r))
2584 && (!rField_is_Z(r))
2585 )
2586 {
2587 return;
2588 }
2589 number d=p_InitContent(ph,r);
2590 number h=d;
2591 if (n_Size(d,r->cf)<=smax)
2592 {
2593 n_Delete(&h,r->cf);
2594 //if (TEST_OPT_PROT) PrintS("G");
2595 return;
2596 }
2597
2598 poly p=ph;
2599 if (smax==1) smax=2;
2600 while (p!=NULL)
2601 {
2602#if 1
2603 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2604 n_Delete(&h,r->cf);
2605 h = d;
2606#else
2607 n_InpGcd(h,pGetCoeff(p),r->cf);
2608#endif
2609 if(n_Size(h,r->cf)<smax)
2610 {
2611 //if (TEST_OPT_PROT) PrintS("g");
2612 n_Delete(&h,r->cf);
2613 return;
2614 }
2615 pIter(p);
2616 }
2617 p = ph;
2618 if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2619 if(n_IsOne(h,r->cf))
2620 {
2621 n_Delete(&h,r->cf);
2622 return;
2623 }
2624 if (TEST_OPT_PROT) PrintS("c");
2625 while (p!=NULL)
2626 {
2627#if 1
2628 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2629 p_SetCoeff(p,d,r);
2630#else
2631 STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2632#endif
2633 pIter(p);
2634 }
2635 n_Delete(&h,r->cf);
2636}
2637#endif
2638
2640// only for coefficients in Q and rational functions
2641#if 0
2642{
2644 assume(ph!=NULL);
2645 assume(pNext(ph)!=NULL);
2646 assume(rField_is_Q(r));
2647 if (pNext(pNext(ph))==NULL)
2648 {
2649 return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2650 }
2651 poly p=ph;
2653 pIter(p);
2655 pIter(p);
2656 number d;
2657 number t;
2658 loop
2659 {
2660 nlNormalize(pGetCoeff(p),r->cf);
2661 t=n_GetNumerator(pGetCoeff(p),r->cf);
2662 if (nlGreaterZero(t,r->cf))
2663 d=nlAdd(n1,t,r->cf);
2664 else
2665 d=nlSub(n1,t,r->cf);
2666 nlDelete(&t,r->cf);
2667 nlDelete(&n1,r->cf);
2668 n1=d;
2669 pIter(p);
2670 if (p==NULL) break;
2671 nlNormalize(pGetCoeff(p),r->cf);
2672 t=n_GetNumerator(pGetCoeff(p),r->cf);
2673 if (nlGreaterZero(t,r->cf))
2674 d=nlAdd(n2,t,r->cf);
2675 else
2676 d=nlSub(n2,t,r->cf);
2677 nlDelete(&t,r->cf);
2678 nlDelete(&n2,r->cf);
2679 n2=d;
2680 pIter(p);
2681 if (p==NULL) break;
2682 }
2683 d=nlGcd(n1,n2,r->cf);
2684 nlDelete(&n1,r->cf);
2685 nlDelete(&n2,r->cf);
2686 return d;
2687}
2688#else
2689{
2690 /* ph has al least 2 terms */
2691 number d=pGetCoeff(ph);
2692 int s=n_Size(d,r->cf);
2693 pIter(ph);
2695 int s2=n_Size(d2,r->cf);
2696 pIter(ph);
2697 if (ph==NULL)
2698 {
2699 if (s<s2) return n_Copy(d,r->cf);
2700 else return n_Copy(d2,r->cf);
2701 }
2702 do
2703 {
2705 int ns=n_Size(nd,r->cf);
2706 if (ns<=2)
2707 {
2708 s2=s;
2709 d2=d;
2710 d=nd;
2711 s=ns;
2712 break;
2713 }
2714 else if (ns<s)
2715 {
2716 s2=s;
2717 d2=d;
2718 d=nd;
2719 s=ns;
2720 }
2721 pIter(ph);
2722 }
2723 while(ph!=NULL);
2724 return n_SubringGcd(d,d2,r->cf);
2725}
2726#endif
2727
2728//void pContent(poly ph)
2729//{
2730// number h,d;
2731// poly p;
2732//
2733// p = ph;
2734// if(pNext(p)==NULL)
2735// {
2736// pSetCoeff(p,nInit(1));
2737// }
2738// else
2739// {
2740//#ifdef PDEBUG
2741// if (!pTest(p)) return;
2742//#endif
2743// nNormalize(pGetCoeff(p));
2744// if(!nGreaterZero(pGetCoeff(ph)))
2745// {
2746// ph = pNeg(ph);
2747// nNormalize(pGetCoeff(p));
2748// }
2749// h=pGetCoeff(p);
2750// pIter(p);
2751// while (p!=NULL)
2752// {
2753// nNormalize(pGetCoeff(p));
2754// if (nGreater(h,pGetCoeff(p))) h=pGetCoeff(p);
2755// pIter(p);
2756// }
2757// h=nCopy(h);
2758// p=ph;
2759// while (p!=NULL)
2760// {
2761// d=n_Gcd(h,pGetCoeff(p));
2762// nDelete(&h);
2763// h = d;
2764// if(nIsOne(h))
2765// {
2766// break;
2767// }
2768// pIter(p);
2769// }
2770// p = ph;
2771// //number tmp;
2772// if(!nIsOne(h))
2773// {
2774// while (p!=NULL)
2775// {
2776// d = nExactDiv(pGetCoeff(p),h);
2777// pSetCoeff(p,d);
2778// pIter(p);
2779// }
2780// }
2781// nDelete(&h);
2782// if ( (nGetChar() == 1) || (nGetChar() < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */
2783// {
2784// pTest(ph);
2785// singclap_divide_content(ph);
2786// pTest(ph);
2787// }
2788// }
2789//}
2790#if 0
2791void p_Content(poly ph, const ring r)
2792{
2793 number h,d;
2794 poly p;
2795
2796 if(pNext(ph)==NULL)
2797 {
2798 p_SetCoeff(ph,n_Init(1,r->cf),r);
2799 }
2800 else
2801 {
2802 n_Normalize(pGetCoeff(ph),r->cf);
2803 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2804 h=n_Copy(pGetCoeff(ph),r->cf);
2805 p = pNext(ph);
2806 while (p!=NULL)
2807 {
2808 n_Normalize(pGetCoeff(p),r->cf);
2809 d=n_Gcd(h,pGetCoeff(p),r->cf);
2810 n_Delete(&h,r->cf);
2811 h = d;
2812 if(n_IsOne(h,r->cf))
2813 {
2814 break;
2815 }
2816 pIter(p);
2817 }
2818 p = ph;
2819 //number tmp;
2820 if(!n_IsOne(h,r->cf))
2821 {
2822 while (p!=NULL)
2823 {
2824 //d = nDiv(pGetCoeff(p),h);
2825 //tmp = nExactDiv(pGetCoeff(p),h);
2826 //if (!nEqual(d,tmp))
2827 //{
2828 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2829 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2830 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2831 //}
2832 //nDelete(&tmp);
2833 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2834 p_SetCoeff(p,d,r->cf);
2835 pIter(p);
2836 }
2837 }
2838 n_Delete(&h,r->cf);
2839 //if ( (n_GetChar(r) == 1) || (n_GetChar(r) < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */
2840 //{
2841 // singclap_divide_content(ph);
2842 // if(!n_GreaterZero(pGetCoeff(ph),r)) ph = p_Neg(ph,r);
2843 //}
2844 }
2845}
2846#endif
2847/* ---------------------------------------------------------------------------*/
2848/* cleardenom suff */
2849poly p_Cleardenom(poly p, const ring r)
2850{
2851 if( p == NULL )
2852 return NULL;
2853
2854 assume( r != NULL );
2855 assume( r->cf != NULL );
2856 const coeffs C = r->cf;
2857
2858#if CLEARENUMERATORS
2859 if( 0 )
2860 {
2863 n_ClearContent(itr, C); // divide out the content
2864 p_Test(p, r); n_Test(pGetCoeff(p), C);
2865 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2866// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2867 return p;
2868 }
2869#endif
2870
2871 number d, h;
2872
2873 if (rField_is_Ring(r))
2874 {
2875 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2876 return p;
2877 }
2878
2880 {
2881 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2882 return p;
2883 }
2884
2885 assume(p != NULL);
2886
2887 if(pNext(p)==NULL)
2888 {
2889 if (!TEST_OPT_CONTENTSB)
2890 p_SetCoeff(p,n_Init(1,C),r);
2891 else if(!n_GreaterZero(pGetCoeff(p),C))
2892 p = p_Neg(p,r);
2893 return p;
2894 }
2895
2896 assume(pNext(p)!=NULL);
2897 poly start=p;
2898
2899#if 0 && CLEARENUMERATORS
2900//CF: does not seem to work that well..
2901
2902 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2903 {
2906 n_ClearContent(itr, C); // divide out the content
2907 p_Test(p, r); n_Test(pGetCoeff(p), C);
2908 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2909// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2910 return start;
2911 }
2912#endif
2913
2914 if(1)
2915 {
2916 // get lcm of all denominators ----------------------------------
2917 h = n_Init(1,C);
2918 while (p!=NULL)
2919 {
2922 n_Delete(&h,C);
2923 h=d;
2924 pIter(p);
2925 }
2926 /* h now contains the 1/lcm of all denominators */
2927 if(!n_IsOne(h,C))
2928 {
2929 // multiply by the lcm of all denominators
2930 p = start;
2931 while (p!=NULL)
2932 {
2933 d=n_Mult(h,pGetCoeff(p),C);
2934 n_Normalize(d,C);
2935 p_SetCoeff(p,d,r);
2936 pIter(p);
2937 }
2938 }
2939 n_Delete(&h,C);
2940 p=start;
2941
2942 p_ContentForGB(p,r);
2943#ifdef HAVE_RATGRING
2944 if (rIsRatGRing(r))
2945 {
2946 /* quick unit detection in the rational case is done in gr_nc_bba */
2947 p_ContentRat(p, r);
2948 start=p;
2949 }
2950#endif
2951 }
2952
2953 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2954
2955 return start;
2956}
2957
2958void p_Cleardenom_n(poly ph,const ring r,number &c)
2959{
2960 const coeffs C = r->cf;
2961 number d, h;
2962
2963 assume( ph != NULL );
2964
2965 poly p = ph;
2966
2967#if CLEARENUMERATORS
2968 if( 0 )
2969 {
2971
2972 n_ClearDenominators(itr, d, C); // multiply with common denom. d
2973 n_ClearContent(itr, h, C); // divide by the content h
2974
2975 c = n_Div(d, h, C); // d/h
2976
2977 n_Delete(&d, C);
2978 n_Delete(&h, C);
2979
2980 n_Test(c, C);
2981
2982 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2983 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2984/*
2985 if(!n_GreaterZero(pGetCoeff(ph),C))
2986 {
2987 ph = p_Neg(ph,r);
2988 c = n_InpNeg(c, C);
2989 }
2990*/
2991 return;
2992 }
2993#endif
2994
2995
2996 if( pNext(p) == NULL )
2997 {
2999 {
3000 c=n_Invers(pGetCoeff(p), C);
3001 p_SetCoeff(p, n_Init(1, C), r);
3002 }
3003 else
3004 {
3005 c=n_Init(1,C);
3006 }
3007
3008 if(!n_GreaterZero(pGetCoeff(ph),C))
3009 {
3010 ph = p_Neg(ph,r);
3011 c = n_InpNeg(c, C);
3012 }
3013
3014 return;
3015 }
3016 if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3017
3018 assume( pNext(p) != NULL );
3019
3020#if CLEARENUMERATORS
3021 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3022 {
3024
3025 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3026 n_ClearContent(itr, h, C); // divide by the content h
3027
3028 c = n_Div(d, h, C); // d/h
3029
3030 n_Delete(&d, C);
3031 n_Delete(&h, C);
3032
3033 n_Test(c, C);
3034
3035 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3036 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3037/*
3038 if(!n_GreaterZero(pGetCoeff(ph),C))
3039 {
3040 ph = p_Neg(ph,r);
3041 c = n_InpNeg(c, C);
3042 }
3043*/
3044 return;
3045 }
3046#endif
3047
3048
3049
3050
3051 if(1)
3052 {
3053 h = n_Init(1,C);
3054 while (p!=NULL)
3055 {
3058 n_Delete(&h,C);
3059 h=d;
3060 pIter(p);
3061 }
3062 c=h;
3063 /* contains the 1/lcm of all denominators */
3064 if(!n_IsOne(h,C))
3065 {
3066 p = ph;
3067 while (p!=NULL)
3068 {
3069 /* should be: // NOTE: don't use ->coef!!!!
3070 * number hh;
3071 * nGetDenom(p->coef,&hh);
3072 * nMult(&h,&hh,&d);
3073 * nNormalize(d);
3074 * nDelete(&hh);
3075 * nMult(d,p->coef,&hh);
3076 * nDelete(&d);
3077 * nDelete(&(p->coef));
3078 * p->coef =hh;
3079 */
3080 d=n_Mult(h,pGetCoeff(p),C);
3081 n_Normalize(d,C);
3082 p_SetCoeff(p,d,r);
3083 pIter(p);
3084 }
3085 if (rField_is_Q_a(r))
3086 {
3087 loop
3088 {
3089 h = n_Init(1,C);
3090 p=ph;
3091 while (p!=NULL)
3092 {
3094 n_Delete(&h,C);
3095 h=d;
3096 pIter(p);
3097 }
3098 /* contains the 1/lcm of all denominators */
3099 if(!n_IsOne(h,C))
3100 {
3101 p = ph;
3102 while (p!=NULL)
3103 {
3104 /* should be: // NOTE: don't use ->coef!!!!
3105 * number hh;
3106 * nGetDenom(p->coef,&hh);
3107 * nMult(&h,&hh,&d);
3108 * nNormalize(d);
3109 * nDelete(&hh);
3110 * nMult(d,p->coef,&hh);
3111 * nDelete(&d);
3112 * nDelete(&(p->coef));
3113 * p->coef =hh;
3114 */
3115 d=n_Mult(h,pGetCoeff(p),C);
3116 n_Normalize(d,C);
3117 p_SetCoeff(p,d,r);
3118 pIter(p);
3119 }
3120 number t=n_Mult(c,h,C);
3121 n_Delete(&c,C);
3122 c=t;
3123 }
3124 else
3125 {
3126 break;
3127 }
3128 n_Delete(&h,C);
3129 }
3130 }
3131 }
3132 }
3133
3134 if(!n_GreaterZero(pGetCoeff(ph),C))
3135 {
3136 ph = p_Neg(ph,r);
3137 c = n_InpNeg(c, C);
3138 }
3139
3140}
3141
3142 // normalization: for poly over Q: make poly primitive, integral
3143 // Qa make poly integral with leading
3144 // coefficient minimal in N
3145 // Q(t) make poly primitive, integral
3146
3147void p_ProjectiveUnique(poly ph, const ring r)
3148{
3149 if( ph == NULL )
3150 return;
3151
3152 const coeffs C = r->cf;
3153
3154 number h;
3155 poly p;
3156
3157 if (nCoeff_is_Ring(C))
3158 {
3159 p_ContentForGB(ph,r);
3160 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3162 return;
3163 }
3164
3166 {
3167 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3168 return;
3169 }
3170 p = ph;
3171
3172 assume(p != NULL);
3173
3174 if(pNext(p)==NULL) // a monomial
3175 {
3176 p_SetCoeff(p, n_Init(1, C), r);
3177 return;
3178 }
3179
3180 assume(pNext(p)!=NULL);
3181
3182 if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3183 {
3184 h = p_GetCoeff(p, C);
3185 number hInv = n_Invers(h, C);
3186 pIter(p);
3187 while (p!=NULL)
3188 {
3189 p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3190 pIter(p);
3191 }
3192 n_Delete(&hInv, C);
3193 p = ph;
3194 p_SetCoeff(p, n_Init(1, C), r);
3195 }
3196
3197 p_Cleardenom(ph, r); //removes also Content
3198
3199
3200 /* normalize ph over a transcendental extension s.t.
3201 lead (ph) is > 0 if extRing->cf == Q
3202 or lead (ph) is monic if extRing->cf == Zp*/
3203 if (nCoeff_is_transExt(C))
3204 {
3205 p= ph;
3206 h= p_GetCoeff (p, C);
3207 fraction f = (fraction) h;
3208 number n=p_GetCoeff (NUM (f),C->extRing->cf);
3209 if (rField_is_Q (C->extRing))
3210 {
3211 if (!n_GreaterZero(n,C->extRing->cf))
3212 {
3213 p=p_Neg (p,r);
3214 }
3215 }
3216 else if (rField_is_Zp(C->extRing))
3217 {
3218 if (!n_IsOne (n, C->extRing->cf))
3219 {
3220 n=n_Invers (n,C->extRing->cf);
3221 nMapFunc nMap;
3222 nMap= n_SetMap (C->extRing->cf, C);
3223 number ninv= nMap (n,C->extRing->cf, C);
3224 p=__p_Mult_nn (p, ninv, r);
3225 n_Delete (&ninv, C);
3226 n_Delete (&n, C->extRing->cf);
3227 }
3228 }
3229 p= ph;
3230 }
3231
3232 return;
3233}
3234
3235#if 0 /*unused*/
3236number p_GetAllDenom(poly ph, const ring r)
3237{
3238 number d=n_Init(1,r->cf);
3239 poly p = ph;
3240
3241 while (p!=NULL)
3242 {
3243 number h=n_GetDenom(pGetCoeff(p),r->cf);
3244 if (!n_IsOne(h,r->cf))
3245 {
3246 number dd=n_Mult(d,h,r->cf);
3247 n_Delete(&d,r->cf);
3248 d=dd;
3249 }
3250 n_Delete(&h,r->cf);
3251 pIter(p);
3252 }
3253 return d;
3254}
3255#endif
3256
3257int p_Size(poly p, const ring r)
3258{
3259 int count = 0;
3260 if (r->cf->has_simple_Alloc)
3261 return pLength(p);
3262 while ( p != NULL )
3263 {
3264 count+= n_Size( pGetCoeff( p ), r->cf );
3265 pIter( p );
3266 }
3267 return count;
3268}
3269
3270/*2
3271*make p homogeneous by multiplying the monomials by powers of x_varnum
3272*assume: deg(var(varnum))==1
3273*/
3274poly p_Homogen (poly p, int varnum, const ring r)
3275{
3276 pFDegProc deg;
3277 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3278 deg=p_Totaldegree;
3279 else
3280 deg=r->pFDeg;
3281
3282 poly q=NULL, qn;
3283 int o,ii;
3284 sBucket_pt bp;
3285
3286 if (p!=NULL)
3287 {
3288 if ((varnum < 1) || (varnum > rVar(r)))
3289 {
3290 return NULL;
3291 }
3292 o=deg(p,r);
3293 q=pNext(p);
3294 while (q != NULL)
3295 {
3296 ii=deg(q,r);
3297 if (ii>o) o=ii;
3298 pIter(q);
3299 }
3300 q = p_Copy(p,r);
3301 bp = sBucketCreate(r);
3302 while (q != NULL)
3303 {
3304 ii = o-deg(q,r);
3305 if (ii!=0)
3306 {
3307 p_AddExp(q,varnum, (long)ii,r);
3308 p_Setm(q,r);
3309 }
3310 qn = pNext(q);
3311 pNext(q) = NULL;
3312 sBucket_Add_m(bp, q);
3313 q = qn;
3314 }
3315 sBucketDestroyAdd(bp, &q, &ii);
3316 }
3317 return q;
3318}
3319
3320/*2
3321*tests if p is homogeneous with respect to the actual weights
3322*/
3324{
3325 poly qp=p;
3326 int o;
3327
3328 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3329 pFDegProc d;
3330 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3331 d=p_Totaldegree;
3332 else
3333 d=r->pFDeg;
3334 o = d(p,r);
3335 do
3336 {
3337 if (d(qp,r) != o) return FALSE;
3338 pIter(qp);
3339 }
3340 while (qp != NULL);
3341 return TRUE;
3342}
3343
3344/*2
3345*tests if p is homogeneous with respect to totaldegree
3346*/
3348{
3349 poly qp=p;
3350 int o;
3351
3352 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3353 o = p_Totaldegree(p,r);
3354 do
3355 {
3356 if (p_Totaldegree(qp,r) != o) return FALSE;
3357 pIter(qp);
3358 }
3359 while (qp != NULL);
3360 return TRUE;
3361}
3362
3363/*2
3364*tests if p is homogeneous with respect to the given weights
3365*/
3366BOOLEAN p_IsHomogeneousW (poly p, const intvec *w, const ring r)
3367{
3368 poly qp=p;
3369 long o;
3370
3371 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3372 pIter(qp);
3373 o = totaldegreeWecart_IV(p,r,w->ivGetVec());
3374 do
3375 {
3376 if (totaldegreeWecart_IV(qp,r,w->ivGetVec()) != o) return FALSE;
3377 pIter(qp);
3378 }
3379 while (qp != NULL);
3380 return TRUE;
3381}
3382
3383BOOLEAN p_IsHomogeneousW (poly p, const intvec *w, const intvec *module_w, const ring r)
3384{
3385 poly qp=p;
3386 long o;
3387
3388 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3389 pIter(qp);
3390 o = totaldegreeWecart_IV(p,r,w->ivGetVec())+(*module_w)[p_GetComp(p,r)];
3391 do
3392 {
3393 long oo=totaldegreeWecart_IV(qp,r,w->ivGetVec())+(*module_w)[p_GetComp(qp,r)];
3394 if (oo != o) return FALSE;
3395 pIter(qp);
3396 }
3397 while (qp != NULL);
3398 return TRUE;
3399}
3400
3401/*----------utilities for syzygies--------------*/
3402BOOLEAN p_VectorHasUnitB(poly p, int * k, const ring r)
3403{
3404 poly q=p,qq;
3405 long unsigned i;
3406
3407 while (q!=NULL)
3408 {
3409 if (p_LmIsConstantComp(q,r))
3410 {
3411 i = __p_GetComp(q,r);
3412 qq = p;
3413 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3414 if (qq == q)
3415 {
3416 *k = i;
3417 return TRUE;
3418 }
3419 }
3420 pIter(q);
3421 }
3422 return FALSE;
3423}
3424
3425void p_VectorHasUnit(poly p, int * k, int * len, const ring r)
3426{
3427 poly q=p,qq;
3428 int j=0;
3429 long unsigned i;
3430
3431 *len = 0;
3432 while (q!=NULL)
3433 {
3434 if (p_LmIsConstantComp(q,r))
3435 {
3436 i = __p_GetComp(q,r);
3437 qq = p;
3438 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3439 if (qq == q)
3440 {
3441 j = 0;
3442 while (qq!=NULL)
3443 {
3444 if (__p_GetComp(qq,r)==i) j++;
3445 pIter(qq);
3446 }
3447 if ((*len == 0) || (j<*len))
3448 {
3449 *len = j;
3450 *k = i;
3451 }
3452 }
3453 }
3454 pIter(q);
3455 }
3456}
3457
3458poly p_TakeOutComp(poly * p, int k, const ring r)
3459{
3460 poly q = *p,qq=NULL,result = NULL;
3461 unsigned long kk=(unsigned long)k;
3462
3463 if (q==NULL) return NULL;
3465 if (__p_GetComp(q,r)==kk)
3466 {
3467 result = q;
3469 {
3470 do
3471 {
3472 p_SetComp(q,0,r);
3473 p_SetmComp(q,r);
3474 qq = q;
3475 pIter(q);
3476 }
3477 while ((q!=NULL) && (__p_GetComp(q,r)==kk));
3478 }
3479 else
3480 {
3481 do
3482 {
3483 p_SetComp(q,0,r);
3484 qq = q;
3485 pIter(q);
3486 }
3487 while ((q!=NULL) && (__p_GetComp(q,r)==kk));
3488 }
3489
3490 *p = q;
3491 pNext(qq) = NULL;
3492 }
3493 if (q==NULL) return result;
3494 if (__p_GetComp(q,r) > kk)
3495 {
3496 p_SubComp(q,1,r);
3497 if (use_setmcomp) p_SetmComp(q,r);
3498 }
3499 poly pNext_q;
3500 while ((pNext_q=pNext(q))!=NULL)
3501 {
3502 unsigned long c=__p_GetComp(pNext_q,r);
3503 if (/*__p_GetComp(pNext_q,r)*/c==kk)
3504 {
3505 if (result==NULL)
3506 {
3507 result = pNext_q;
3508 qq = result;
3509 }
3510 else
3511 {
3512 pNext(qq) = pNext_q;
3513 pIter(qq);
3514 }
3515 pNext(q) = pNext(pNext_q);
3516 pNext(qq) =NULL;
3517 p_SetComp(qq,0,r);
3518 if (use_setmcomp) p_SetmComp(qq,r);
3519 }
3520 else
3521 {
3522 /*pIter(q);*/ q=pNext_q;
3523 if (/*__p_GetComp(q,r)*/c > kk)
3524 {
3525 p_SubComp(q,1,r);
3526 if (use_setmcomp) p_SetmComp(q,r);
3527 }
3528 }
3529 }
3530 return result;
3531}
3532
3533// Splits *p into two polys: *q which consists of all monoms with
3534// component == comp and *p of all other monoms *lq == pLength(*q)
3535void p_TakeOutComp(poly *r_p, long comp, poly *r_q, int *lq, const ring r)
3536{
3537 spolyrec pp, qq;
3538 poly p, q, p_prev;
3539 int l = 0;
3540
3541#ifndef SING_NDEBUG
3542 int lp = pLength(*r_p);
3543#endif
3544
3545 pNext(&pp) = *r_p;
3546 p = *r_p;
3547 p_prev = &pp;
3548 q = &qq;
3549
3550 while(p != NULL)
3551 {
3552 while (__p_GetComp(p,r) == comp)
3553 {
3554 pNext(q) = p;
3555 pIter(q);
3556 p_SetComp(p, 0,r);
3557 p_SetmComp(p,r);
3558 pIter(p);
3559 l++;
3560 if (p == NULL)
3561 {
3562 pNext(p_prev) = NULL;
3563 goto Finish;
3564 }
3565 }
3566 pNext(p_prev) = p;
3567 p_prev = p;
3568 pIter(p);
3569 }
3570
3571 Finish:
3572 pNext(q) = NULL;
3573 *r_p = pNext(&pp);
3574 *r_q = pNext(&qq);
3575 *lq = l;
3576#ifndef SING_NDEBUG
3577 assume(pLength(*r_p) + pLength(*r_q) == lp);
3578#endif
3579 p_Test(*r_p,r);
3580 p_Test(*r_q,r);
3581}
3582
3583void p_DeleteComp(poly * p,int k, const ring r)
3584{
3585 poly q;
3586 long unsigned kk=k;
3587
3588 while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3589 if (*p==NULL) return;
3590 q = *p;
3591 if (__p_GetComp(q,r)>kk)
3592 {
3593 p_SubComp(q,1,r);
3594 p_SetmComp(q,r);
3595 }
3596 while (pNext(q)!=NULL)
3597 {
3598 unsigned long c=__p_GetComp(pNext(q),r);
3599 if (/*__p_GetComp(pNext(q),r)*/c==kk)
3600 p_LmDelete(&(pNext(q)),r);
3601 else
3602 {
3603 pIter(q);
3604 if (/*__p_GetComp(q,r)*/c>kk)
3605 {
3606 p_SubComp(q,1,r);
3607 p_SetmComp(q,r);
3608 }
3609 }
3610 }
3611}
3612
3613poly p_Vec2Poly(poly v, int k, const ring r)
3614{
3615 poly h;
3616 poly res=NULL;
3617 long unsigned kk=k;
3618
3619 while (v!=NULL)
3620 {
3621 if (__p_GetComp(v,r)==kk)
3622 {
3623 h=p_Head(v,r);
3624 p_SetComp(h,0,r);
3625 pNext(h)=res;res=h;
3626 }
3627 pIter(v);
3628 }
3629 if (res!=NULL) res=pReverse(res);
3630 return res;
3631}
3632
3633/// vector to already allocated array (len>=p_MaxComp(v,r))
3634// also used for p_Vec2Polys
3635void p_Vec2Array(poly v, poly *p, int len, const ring r)
3636{
3637 poly h;
3638 int k;
3639
3640 for(int i=len-1;i>=0;i--) p[i]=NULL;
3641 while (v!=NULL)
3642 {
3643 h=p_Head(v,r);
3644 k=__p_GetComp(h,r);
3645 if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3646 else
3647 {
3648 p_SetComp(h,0,r);
3649 p_Setm(h,r);
3650 pNext(h)=p[k-1];p[k-1]=h;
3651 }
3652 pIter(v);
3653 }
3654 for(int i=len-1;i>=0;i--)
3655 {
3656 if (p[i]!=NULL) p[i]=pReverse(p[i]);
3657 }
3658}
3659
3660/*2
3661* convert a vector to a set of polys,
3662* allocates the polyset, (entries 0..(*len)-1)
3663* the vector will not be changed
3664*/
3665void p_Vec2Polys(poly v, poly* *p, int *len, const ring r)
3666{
3667 *len=p_MaxComp(v,r);
3668 if (*len==0) *len=1;
3669 *p=(poly*)omAlloc((*len)*sizeof(poly));
3670 p_Vec2Array(v,*p,*len,r);
3671}
3672
3673//
3674// resets the pFDeg and pLDeg: if pLDeg is not given, it is
3675// set to currRing->pLDegOrig, i.e. to the respective LDegProc which
3676// only uses pFDeg (and not p_Deg, or pTotalDegree, etc)
3678{
3679 assume(new_FDeg != NULL);
3680 r->pFDeg = new_FDeg;
3681
3682 if (new_lDeg == NULL)
3683 new_lDeg = r->pLDegOrig;
3684
3685 r->pLDeg = new_lDeg;
3686}
3687
3688// restores pFDeg and pLDeg:
3690{
3691 assume(old_FDeg != NULL && old_lDeg != NULL);
3692 r->pFDeg = old_FDeg;
3693 r->pLDeg = old_lDeg;
3694}
3695
3696/*-------- several access procedures to monomials -------------------- */
3697/*
3698* the module weights for std
3699*/
3703
3704static long pModDeg(poly p, ring r)
3705{
3706 long d=pOldFDeg(p, r);
3707 int c=__p_GetComp(p, r);
3708 if ((c>0) && ((r->pModW)->range(c-1))) d+= (*(r->pModW))[c-1];
3709 return d;
3710 //return pOldFDeg(p, r)+(*pModW)[p_GetComp(p, r)-1];
3711}
3712
3714{
3715 if (w!=NULL)
3716 {
3717 r->pModW = w;
3718 pOldFDeg = r->pFDeg;
3719 pOldLDeg = r->pLDeg;
3720 pOldLexOrder = r->pLexOrder;
3722 r->pLexOrder = TRUE;
3723 }
3724 else
3725 {
3726 r->pModW = NULL;
3728 r->pLexOrder = pOldLexOrder;
3729 }
3730}
3731
3732/*2
3733* handle memory request for sets of polynomials (ideals)
3734* l is the length of *p, increment is the difference (may be negative)
3735*/
3736void pEnlargeSet(poly* *p, int l, int increment)
3737{
3738 poly* h;
3739
3740 if (increment==0) return;
3741 if (*p==NULL)
3742 {
3743 h=(poly*)omAlloc0(increment*sizeof(poly));
3744 }
3745 else
3746 {
3747 h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3748 if (increment>0)
3749 {
3750 memset(&(h[l]),0,increment*sizeof(poly));
3751 }
3752 }
3753 *p=h;
3754}
3755
3756/*2
3757*divides p1 by its leading coefficient
3758*/
3759void p_Norm(poly p1, const ring r)
3760{
3761 if (UNLIKELY(p1==NULL)) return;
3762 if (rField_is_Ring(r))
3763 {
3764 if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3765 if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3766 // Werror("p_Norm not possible in the case of coefficient rings.");
3767 }
3768 else //(p1!=NULL)
3769 {
3770 if (!n_IsOne(pGetCoeff(p1),r->cf))
3771 {
3772 if (UNLIKELY(pNext(p1)==NULL))
3773 {
3774 p_SetCoeff(p1,n_Init(1,r->cf),r);
3775 return;
3776 }
3777 number k = pGetCoeff(p1);
3778 pSetCoeff0(p1,n_Init(1,r->cf));
3779 poly h = pNext(p1);
3780 if (LIKELY(rField_is_Zp(r)))
3781 {
3782 if (r->cf->ch>32003)
3783 {
3784 number inv=n_Invers(k,r->cf);
3785 while (h!=NULL)
3786 {
3787 number c=n_Mult(pGetCoeff(h),inv,r->cf);
3788 // no need to normalize
3789 p_SetCoeff(h,c,r);
3790 pIter(h);
3791 }
3792 // no need for n_Delete for Zp: n_Delete(&inv,r->cf);
3793 }
3794 else
3795 {
3796 while (h!=NULL)
3797 {
3798 number c=n_Div(pGetCoeff(h),k,r->cf);
3799 // no need to normalize
3800 p_SetCoeff(h,c,r);
3801 pIter(h);
3802 }
3803 }
3804 }
3805 else if(getCoeffType(r->cf)==n_algExt)
3806 {
3807 n_Normalize(k,r->cf);
3808 number inv=n_Invers(k,r->cf);
3809 while (h!=NULL)
3810 {
3811 number c=n_Mult(pGetCoeff(h),inv,r->cf);
3812 // no need to normalize
3813 // normalize already in nMult: Zp_a, Q_a
3814 p_SetCoeff(h,c,r);
3815 pIter(h);
3816 }
3817 n_Delete(&inv,r->cf);
3818 n_Delete(&k,r->cf);
3819 }
3820 else
3821 {
3822 n_Normalize(k,r->cf);
3823 while (h!=NULL)
3824 {
3825 number c=n_Div(pGetCoeff(h),k,r->cf);
3826 // no need to normalize: Z/p, R
3827 // remains: Q
3828 if (rField_is_Q(r)) n_Normalize(c,r->cf);
3829 p_SetCoeff(h,c,r);
3830 pIter(h);
3831 }
3832 n_Delete(&k,r->cf);
3833 }
3834 }
3835 else
3836 {
3837 //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3838 if (rField_is_Q(r))
3839 {
3840 poly h = pNext(p1);
3841 while (h!=NULL)
3842 {
3843 n_Normalize(pGetCoeff(h),r->cf);
3844 pIter(h);
3845 }
3846 }
3847 }
3848 }
3849}
3850
3851/*2
3852*normalize all coefficients
3853*/
3854void p_Normalize(poly p,const ring r)
3855{
3856 const coeffs cf=r->cf;
3857 /* Z/p, GF(p,n), R, long R/C, Nemo rings */
3858 if (cf->cfNormalize==ndNormalize)
3859 return;
3860 while (p!=NULL)
3861 {
3862 // no test before n_Normalize: n_Normalize should fix problems
3864 pIter(p);
3865 }
3866}
3867
3868// splits p into polys with Exp(n) == 0 and Exp(n) != 0
3869// Poly with Exp(n) != 0 is reversed
3870static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r)
3871{
3872 if (p == NULL)
3873 {
3874 *non_zero = NULL;
3875 *zero = NULL;
3876 return;
3877 }
3878 spolyrec sz;
3879 poly z, n_z, next;
3880 z = &sz;
3881 n_z = NULL;
3882
3883 while(p != NULL)
3884 {
3885 next = pNext(p);
3886 if (p_GetExp(p, n,r) == 0)
3887 {
3888 pNext(z) = p;
3889 pIter(z);
3890 }
3891 else
3892 {
3893 pNext(p) = n_z;
3894 n_z = p;
3895 }
3896 p = next;
3897 }
3898 pNext(z) = NULL;
3899 *zero = pNext(&sz);
3900 *non_zero = n_z;
3901}
3902/*3
3903* substitute the n-th variable by 1 in p
3904* destroy p
3905*/
3906static poly p_Subst1 (poly p,int n, const ring r)
3907{
3908 poly qq=NULL, result = NULL;
3909 poly zero=NULL, non_zero=NULL;
3910
3911 // reverse, so that add is likely to be linear
3912 p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3913
3914 while (non_zero != NULL)
3915 {
3916 assume(p_GetExp(non_zero, n,r) != 0);
3917 qq = non_zero;
3918 pIter(non_zero);
3919 qq->next = NULL;
3920 p_SetExp(qq,n,0,r);
3921 p_Setm(qq,r);
3922 result = p_Add_q(result,qq,r);
3923 }
3924 p = p_Add_q(result, zero,r);
3925 p_Test(p,r);
3926 return p;
3927}
3928
3929/*3
3930* substitute the n-th variable by number e in p
3931* destroy p
3932*/
3933static poly p_Subst2 (poly p,int n, number e, const ring r)
3934{
3935 assume( ! n_IsZero(e,r->cf) );
3936 poly qq,result = NULL;
3937 number nn, nm;
3938 poly zero, non_zero;
3939
3940 // reverse, so that add is likely to be linear
3941 p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3942
3943 while (non_zero != NULL)
3944 {
3945 assume(p_GetExp(non_zero, n, r) != 0);
3946 qq = non_zero;
3947 pIter(non_zero);
3948 qq->next = NULL;
3949 n_Power(e, p_GetExp(qq, n, r), &nn,r->cf);
3950 nm = n_Mult(nn, pGetCoeff(qq),r->cf);
3951#ifdef HAVE_RINGS
3952 if (n_IsZero(nm,r->cf))
3953 {
3954 p_LmFree(&qq,r);
3955 n_Delete(&nm,r->cf);
3956 }
3957 else
3958#endif
3959 {
3960 p_SetCoeff(qq, nm,r);
3961 p_SetExp(qq, n, 0,r);
3962 p_Setm(qq,r);
3963 result = p_Add_q(result,qq,r);
3964 }
3965 n_Delete(&nn,r->cf);
3966 }
3967 p = p_Add_q(result, zero,r);
3968 p_Test(p,r);
3969 return p;
3970}
3971
3972
3973/* delete monoms whose n-th exponent is different from zero */
3974static poly p_Subst0(poly p, int n, const ring r)
3975{
3976 spolyrec res;
3977 poly h = &res;
3978 pNext(h) = p;
3979
3980 while (pNext(h)!=NULL)
3981 {
3982 if (p_GetExp(pNext(h),n,r)!=0)
3983 {
3984 p_LmDelete(&pNext(h),r);
3985 }
3986 else
3987 {
3988 pIter(h);
3989 }
3990 }
3991 p_Test(pNext(&res),r);
3992 return pNext(&res);
3993}
3994
3995/*2
3996* substitute the n-th variable by e in p
3997* destroy p
3998*/
3999poly p_Subst(poly p, int n, poly e, const ring r)
4000{
4001#ifdef HAVE_SHIFTBBA
4002 // also don't even use p_Subst0 for Letterplace
4003 if (rIsLPRing(r))
4004 {
4005 poly subst = p_LPSubst(p, n, e, r);
4006 p_Delete(&p, r);
4007 return subst;
4008 }
4009#endif
4010
4011 if (e == NULL) return p_Subst0(p, n,r);
4012
4013 if (p_IsConstant(e,r))
4014 {
4015 if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
4016 else return p_Subst2(p, n, pGetCoeff(e),r);
4017 }
4018
4019#ifdef HAVE_PLURAL
4020 if (rIsPluralRing(r))
4021 {
4022 return nc_pSubst(p,n,e,r);
4023 }
4024#endif
4025
4026 int exponent,i;
4027 poly h, res, m;
4028 int *me,*ee;
4029 number nu,nu1;
4030
4031 me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4032 ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4033 if (e!=NULL) p_GetExpV(e,ee,r);
4034 res=NULL;
4035 h=p;
4036 while (h!=NULL)
4037 {
4038 if ((e!=NULL) || (p_GetExp(h,n,r)==0))
4039 {
4040 m=p_Head(h,r);
4041 p_GetExpV(m,me,r);
4042 exponent=me[n];
4043 me[n]=0;
4044 for(i=rVar(r);i>0;i--)
4045 me[i]+=exponent*ee[i];
4046 p_SetExpV(m,me,r);
4047 if (e!=NULL)
4048 {
4049 n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4050 nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4051 n_Delete(&nu,r->cf);
4052 p_SetCoeff(m,nu1,r);
4053 }
4054 res=p_Add_q(res,m,r);
4055 }
4056 p_LmDelete(&h,r);
4057 }
4058 omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4059 omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4060 return res;
4061}
4062
4063/*2
4064 * returns a re-ordered conversion of a number as a polynomial,
4065 * with permutation of parameters
4066 * NOTE: this only works for Frank's alg. & trans. fields
4067 */
4068poly n_PermNumber(const number z, const int *par_perm, const int , const ring src, const ring dst)
4069{
4070#if 0
4071 PrintS("\nSource Ring: \n");
4072 rWrite(src);
4073
4074 if(0)
4075 {
4076 number zz = n_Copy(z, src->cf);
4077 PrintS("z: "); n_Write(zz, src);
4078 n_Delete(&zz, src->cf);
4079 }
4080
4081 PrintS("\nDestination Ring: \n");
4082 rWrite(dst);
4083
4084 /*Print("\nOldPar: %d\n", OldPar);
4085 for( int i = 1; i <= OldPar; i++ )
4086 {
4087 Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4088 }*/
4089#endif
4090 if( z == NULL )
4091 return NULL;
4092
4093 const coeffs srcCf = src->cf;
4094 assume( srcCf != NULL );
4095
4097 assume( src->cf->extRing!=NULL );
4098
4099 poly zz = NULL;
4100
4101 const ring srcExtRing = srcCf->extRing;
4102 assume( srcExtRing != NULL );
4103
4104 const coeffs dstCf = dst->cf;
4105 assume( dstCf != NULL );
4106
4107 if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4108 {
4109 zz = (poly) z;
4110 if( zz == NULL ) return NULL;
4111 }
4112 else if (nCoeff_is_transExt(srcCf))
4113 {
4114 assume( !IS0(z) );
4115
4116 zz = NUM((fraction)z);
4117 p_Test (zz, srcExtRing);
4118
4119 if( zz == NULL ) return NULL;
4120 if( !DENIS1((fraction)z) )
4121 {
4123 WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4124 }
4125 }
4126 else
4127 {
4128 assume (FALSE);
4129 WerrorS("Number permutation is not implemented for this data yet!");
4130 return NULL;
4131 }
4132
4133 assume( zz != NULL );
4134 p_Test (zz, srcExtRing);
4135
4137
4138 assume( nMap != NULL );
4139
4140 poly qq;
4141 if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4142 {
4143 int* perm;
4144 perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4145 for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4146 perm[i]=-i;
4148 omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4149 }
4150 else
4152
4154 && (!DENIS1((fraction)z))
4156 {
4158 qq=p_Div_nn(qq,n,dst);
4159 n_Delete(&n,dstCf);
4161 }
4162 p_Test (qq, dst);
4163
4164 return qq;
4165}
4166
4167
4168/*2
4169*returns a re-ordered copy of a polynomial, with permutation of the variables
4170*/
4171poly p_PermPoly (poly p, const int * perm, const ring oldRing, const ring dst,
4172 nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
4173{
4174#if 0
4175 p_Test(p, oldRing);
4176 PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4177#endif
4178 const int OldpVariables = rVar(oldRing);
4179 poly result = NULL;
4180 poly result_last = NULL;
4181 poly aq = NULL; /* the map coefficient */
4182 poly qq; /* the mapped monomial */
4183 assume(dst != NULL);
4184 assume(dst->cf != NULL);
4185 #ifdef HAVE_PLURAL
4186 poly tmp_mm=p_One(dst);
4187 #endif
4188 while (p != NULL)
4189 {
4190 // map the coefficient
4191 if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4192 && (nMap != NULL) )
4193 {
4194 qq = p_Init(dst);
4195 assume( nMap != NULL );
4196 number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4197 n_Test (n,dst->cf);
4198 if ( nCoeff_is_algExt(dst->cf) )
4199 n_Normalize(n, dst->cf);
4200 p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4201 }
4202 else
4203 {
4204 qq = p_One(dst);
4205// aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4206// poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4208 p_Test(aq, dst);
4209 if ( nCoeff_is_algExt(dst->cf) )
4211 if (aq == NULL)
4212 p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4213 p_Test(aq, dst);
4214 }
4215 if (rRing_has_Comp(dst))
4217 if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4218 {
4219 p_LmDelete(&qq,dst);
4220 qq = NULL;
4221 }
4222 else
4223 {
4224 // map pars:
4225 int mapped_to_par = 0;
4226 for(int i = 1; i <= OldpVariables; i++)
4227 {
4228 int e = p_GetExp(p, i, oldRing);
4229 if (e != 0)
4230 {
4231 if (perm==NULL)
4232 p_SetExp(qq, i, e, dst);
4233 else if (perm[i]>0)
4234 {
4235 #ifdef HAVE_PLURAL
4236 if(use_mult)
4237 {
4238 p_SetExp(tmp_mm,perm[i],e,dst);
4239 p_Setm(tmp_mm,dst);
4241 p_SetExp(tmp_mm,perm[i],0,dst);
4242
4243 }
4244 else
4245 #endif
4246 p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4247 }
4248 else if (perm[i]<0)
4249 {
4250 number c = p_GetCoeff(qq, dst);
4251 if (rField_is_GF(dst))
4252 {
4253 assume( dst->cf->extRing == NULL );
4254 number ee = n_Param(1, dst);
4255 number eee;
4256 n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4257 ee = n_Mult(c, eee, dst->cf);
4258 //nfDelete(c,dst);nfDelete(eee,dst);
4259 pSetCoeff0(qq,ee);
4260 }
4261 else if (nCoeff_is_Extension(dst->cf))
4262 {
4263 const int par = -perm[i];
4264 assume( par > 0 );
4265// WarnS("longalg missing 3");
4266#if 1
4267 const coeffs C = dst->cf;
4268 assume( C != NULL );
4269 const ring R = C->extRing;
4270 assume( R != NULL );
4271 assume( par <= rVar(R) );
4272 poly pcn; // = (number)c
4273 assume( !n_IsZero(c, C) );
4274 if( nCoeff_is_algExt(C) )
4275 pcn = (poly) c;
4276 else // nCoeff_is_transExt(C)
4277 pcn = NUM((fraction)c);
4278 if (pNext(pcn) == NULL) // c->z
4279 p_AddExp(pcn, -perm[i], e, R);
4280 else /* more difficult: we have really to multiply: */
4281 {
4282 poly mmc = p_ISet(1, R);
4283 p_SetExp(mmc, -perm[i], e, R);
4284 p_Setm(mmc, R);
4285 number nnc;
4286 // convert back to a number: number nnc = mmc;
4287 if( nCoeff_is_algExt(C) )
4288 nnc = (number) mmc;
4289 else // nCoeff_is_transExt(C)
4290 nnc = ntInit(mmc, C);
4291 p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4292 n_Delete((number *)&c, C);
4293 n_Delete((number *)&nnc, C);
4294 }
4295 mapped_to_par=1;
4296#endif
4297 }
4298 }
4299 else
4300 {
4301 /* this variable maps to 0 !*/
4302 p_LmDelete(&qq, dst);
4303 break;
4304 }
4305 }
4306 }
4307 if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4308 {
4309 number n = p_GetCoeff(qq, dst);
4310 n_Normalize(n, dst->cf);
4311 p_GetCoeff(qq, dst) = n;
4312 }
4313 }
4314 pIter(p);
4315
4316#if 0
4317 p_Test(aq,dst);
4318 PrintS("aq: "); p_Write(aq, dst, dst);
4319#endif
4320
4321
4322#if 1
4323 if (qq!=NULL)
4324 {
4325 p_Setm(qq,dst);
4326
4327 p_Test(aq,dst);
4328 p_Test(qq,dst);
4329
4330#if 0
4331 PrintS("qq: "); p_Write(qq, dst, dst);
4332#endif
4333
4334 if (aq!=NULL)
4335 qq=p_Mult_q(aq,qq,dst);
4336 aq = qq;
4337 while (pNext(aq) != NULL) pIter(aq);
4338 if (result_last==NULL)
4339 {
4340 result=qq;
4341 }
4342 else
4343 {
4345 }
4347 aq = NULL;
4348 }
4349 else if (aq!=NULL)
4350 {
4351 p_Delete(&aq,dst);
4352 }
4353 }
4355#else
4356 // if (qq!=NULL)
4357 // {
4358 // pSetm(qq);
4359 // pTest(qq);
4360 // pTest(aq);
4361 // if (aq!=NULL) qq=pMult(aq,qq);
4362 // aq = qq;
4363 // while (pNext(aq) != NULL) pIter(aq);
4364 // pNext(aq) = result;
4365 // aq = NULL;
4366 // result = qq;
4367 // }
4368 // else if (aq!=NULL)
4369 // {
4370 // pDelete(&aq);
4371 // }
4372 //}
4373 //p = result;
4374 //result = NULL;
4375 //while (p != NULL)
4376 //{
4377 // qq = p;
4378 // pIter(p);
4379 // qq->next = NULL;
4380 // result = pAdd(result, qq);
4381 //}
4382#endif
4383 p_Test(result,dst);
4384#if 0
4385 p_Test(result,dst);
4386 PrintS("result: "); p_Write(result,dst,dst);
4387#endif
4388 #ifdef HAVE_PLURAL
4390 #endif
4391 return result;
4392}
4393/**************************************************************
4394 *
4395 * Jet
4396 *
4397 **************************************************************/
4398
4399poly pp_Jet(poly p, int m, const ring R)
4400{
4401 poly r=NULL;
4402 poly t=NULL;
4403
4404 while (p!=NULL)
4405 {
4406 if (p_Totaldegree(p,R)<=m)
4407 {
4408 if (r==NULL)
4409 r=p_Head(p,R);
4410 else
4411 if (t==NULL)
4412 {
4413 pNext(r)=p_Head(p,R);
4414 t=pNext(r);
4415 }
4416 else
4417 {
4418 pNext(t)=p_Head(p,R);
4419 pIter(t);
4420 }
4421 }
4422 pIter(p);
4423 }
4424 return r;
4425}
4426
4427poly pp_Jet0(poly p, const ring R)
4428{
4429 poly r=NULL;
4430 poly t=NULL;
4431
4432 while (p!=NULL)
4433 {
4434 if (p_LmIsConstantComp(p,R))
4435 {
4436 if (r==NULL)
4437 r=p_Head(p,R);
4438 else
4439 if (t==NULL)
4440 {
4441 pNext(r)=p_Head(p,R);
4442 t=pNext(r);
4443 }
4444 else
4445 {
4446 pNext(t)=p_Head(p,R);
4447 pIter(t);
4448 }
4449 }
4450 pIter(p);
4451 }
4452 return r;
4453}
4454
4455poly p_Jet(poly p, int m,const ring R)
4456{
4457 while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4458 if (p==NULL) return NULL;
4459 poly r=p;
4460 while (pNext(p)!=NULL)
4461 {
4462 if (p_Totaldegree(pNext(p),R)>m)
4463 {
4464 p_LmDelete(&pNext(p),R);
4465 }
4466 else
4467 pIter(p);
4468 }
4469 return r;
4470}
4471
4472poly pp_JetW(poly p, int m, int *w, const ring R)
4473{
4474 poly r=NULL;
4475 poly t=NULL;
4476 while (p!=NULL)
4477 {
4478 if (totaldegreeWecart_IV(p,R,w)<=m)
4479 {
4480 if (r==NULL)
4481 r=p_Head(p,R);
4482 else
4483 if (t==NULL)
4484 {
4485 pNext(r)=p_Head(p,R);
4486 t=pNext(r);
4487 }
4488 else
4489 {
4490 pNext(t)=p_Head(p,R);
4491 pIter(t);
4492 }
4493 }
4494 pIter(p);
4495 }
4496 return r;
4497}
4498
4499poly p_JetW(poly p, int m, int *w, const ring R)
4500{
4501 while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4502 if (p==NULL) return NULL;
4503 poly r=p;
4504 while (pNext(p)!=NULL)
4505 {
4507 {
4508 p_LmDelete(&pNext(p),R);
4509 }
4510 else
4511 pIter(p);
4512 }
4513 return r;
4514}
4515
4516/*************************************************************/
4517int p_MinDeg(poly p,intvec *w, const ring R)
4518{
4519 if(p==NULL)
4520 return -1;
4521 int d=-1;
4522 while(p!=NULL)
4523 {
4524 int d0=0;
4525 for(int j=0;j<rVar(R);j++)
4526 if(w==NULL||j>=w->length())
4527 d0+=p_GetExp(p,j+1,R);
4528 else
4529 d0+=(*w)[j]*p_GetExp(p,j+1,R);
4530 if(d0<d||d==-1)
4531 d=d0;
4532 pIter(p);
4533 }
4534 return d;
4535}
4536
4537/***************************************************************/
4538static poly p_Invers(int n,poly u,intvec *w, const ring R)
4539{
4540 if(n<0)
4541 return NULL;
4542 number u0=n_Invers(pGetCoeff(u),R->cf);
4543 poly v=p_NSet(u0,R);
4544 if(n==0)
4545 return v;
4546 int *ww=iv2array(w,R);
4547 poly u1=p_JetW(p_Sub(p_One(R),__p_Mult_nn(u,u0,R),R),n,ww,R);
4548 if(u1==NULL)
4549 {
4550 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4551 return v;
4552 }
4553 poly v1=__p_Mult_nn(p_Copy(u1,R),u0,R);
4554 v=p_Add_q(v,p_Copy(v1,R),R);
4555 for(int i=n/p_MinDeg(u1,w,R);i>1;i--)
4556 {
4557 v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R);
4558 v=p_Add_q(v,p_Copy(v1,R),R);
4559 }
4560 p_Delete(&u1,R);
4561 p_Delete(&v1,R);
4562 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4563 return v;
4564}
4565
4566
4567poly p_Series(int n,poly p,poly u, intvec *w, const ring R)
4568{
4569 int *ww=iv2array(w,R);
4570 if(p!=NULL)
4571 {
4572 if(u==NULL)
4573 p=p_JetW(p,n,ww,R);
4574 else
4575 p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4576 }
4577 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4578 return p;
4579}
4580
4581BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r)
4582{
4583 while ((p1 != NULL) && (p2 != NULL))
4584 {
4585 if (! p_LmEqual(p1, p2,r))
4586 return FALSE;
4587 if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4588 return FALSE;
4589 pIter(p1);
4590 pIter(p2);
4591 }
4592 return (p1==p2);
4593}
4594
4595static inline BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
4596{
4597 assume( r1 == r2 || rSamePolyRep(r1, r2) );
4598
4601
4602 int i = r1->ExpL_Size;
4603
4604 assume( r1->ExpL_Size == r2->ExpL_Size );
4605
4606 unsigned long *ep = p1->exp;
4607 unsigned long *eq = p2->exp;
4608
4609 do
4610 {
4611 i--;
4612 if (ep[i] != eq[i]) return FALSE;
4613 }
4614 while (i);
4615
4616 return TRUE;
4617}
4618
4619BOOLEAN p_EqualPolys(poly p1,poly p2, const ring r1, const ring r2)
4620{
4621 assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4622 assume( r1->cf == r2->cf );
4623
4624 while ((p1 != NULL) && (p2 != NULL))
4625 {
4626 // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4627 // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4628
4629 if (! p_ExpVectorEqual(p1, p2, r1, r2))
4630 return FALSE;
4631
4632 if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4633 return FALSE;
4634
4635 pIter(p1);
4636 pIter(p2);
4637 }
4638 return (p1==p2);
4639}
4640
4641/*2
4642*returns TRUE if p1 is a skalar multiple of p2
4643*assume p1 != NULL and p2 != NULL
4644*/
4645BOOLEAN p_ComparePolys(poly p1,poly p2, const ring r)
4646{
4647 number n,nn;
4648 pAssume(p1 != NULL && p2 != NULL);
4649
4650 if (!p_LmEqual(p1,p2,r)) //compare leading mons
4651 return FALSE;
4652 if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4653 return FALSE;
4654 if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4655 return FALSE;
4656 if (pLength(p1) != pLength(p2))
4657 return FALSE;
4658 #ifdef HAVE_RINGS
4659 if (rField_is_Ring(r))
4660 {
4661 if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4662 }
4663 #endif
4664 n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4665 while ((p1 != NULL) /*&& (p2 != NULL)*/)
4666 {
4667 if ( ! p_LmEqual(p1, p2,r))
4668 {
4669 n_Delete(&n, r->cf);
4670 return FALSE;
4671 }
4672 if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4673 {
4674 n_Delete(&n, r->cf);
4675 n_Delete(&nn, r->cf);
4676 return FALSE;
4677 }
4678 n_Delete(&nn, r->cf);
4679 pIter(p1);
4680 pIter(p2);
4681 }
4682 n_Delete(&n, r->cf);
4683 return TRUE;
4684}
4685
4686/*2
4687* returns the length of a (numbers of monomials)
4688* respect syzComp
4689*/
4690poly p_Last(const poly p, int &l, const ring r)
4691{
4692 if (p == NULL)
4693 {
4694 l = 0;
4695 return NULL;
4696 }
4697 l = 1;
4698 poly a = p;
4699 if (! rIsSyzIndexRing(r))
4700 {
4701 poly next = pNext(a);
4702 while (next!=NULL)
4703 {
4704 a = next;
4705 next = pNext(a);
4706 l++;
4707 }
4708 }
4709 else
4710 {
4711 long unsigned curr_limit = rGetCurrSyzLimit(r);
4712 poly pp = a;
4713 while ((a=pNext(a))!=NULL)
4714 {
4715 if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4716 l++;
4717 else break;
4718 pp = a;
4719 }
4720 a=pp;
4721 }
4722 return a;
4723}
4724
4725int p_Var(poly m,const ring r)
4726{
4727 if (m==NULL) return 0;
4728 if (pNext(m)!=NULL) return 0;
4729 int i,e=0;
4730 for (i=rVar(r); i>0; i--)
4731 {
4732 int exp=p_GetExp(m,i,r);
4733 if (exp==1)
4734 {
4735 if (e==0) e=i;
4736 else return 0;
4737 }
4738 else if (exp!=0)
4739 {
4740 return 0;
4741 }
4742 }
4743 return e;
4744}
4745
4746/*2
4747*the minimal index of used variables - 1
4748*/
4749int p_LowVar (poly p, const ring r)
4750{
4751 int k,l,lex;
4752
4753 if (p == NULL) return -1;
4754
4755 k = 32000;/*a very large dummy value*/
4756 while (p != NULL)
4757 {
4758 l = 1;
4759 lex = p_GetExp(p,l,r);
4760 while ((l < (rVar(r))) && (lex == 0))
4761 {
4762 l++;
4763 lex = p_GetExp(p,l,r);
4764 }
4765 l--;
4766 if (l < k) k = l;
4767 pIter(p);
4768 }
4769 return k;
4770}
4771
4772/*2
4773* verschiebt die Indizees der Modulerzeugenden um i
4774*/
4775void p_Shift (poly * p,int i, const ring r)
4776{
4777 poly qp1 = *p,qp2 = *p;/*working pointers*/
4778 int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4779
4780 if (j+i < 0) return ;
4781 BOOLEAN toPoly= ((j == -i) && (j == k));
4782 while (qp1 != NULL)
4783 {
4784 if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4785 {
4786 p_AddComp(qp1,i,r);
4787 p_SetmComp(qp1,r);
4788 qp2 = qp1;
4789 pIter(qp1);
4790 }
4791 else
4792 {
4793 if (qp2 == *p)
4794 {
4795 pIter(*p);
4796 p_LmDelete(&qp2,r);
4797 qp2 = *p;
4798 qp1 = *p;
4799 }
4800 else
4801 {
4802 qp2->next = qp1->next;
4803 if (qp1!=NULL) p_LmDelete(&qp1,r);
4804 qp1 = qp2->next;
4805 }
4806 }
4807 }
4808}
4809
4810/***************************************************************
4811 *
4812 * Storage Management Routines
4813 *
4814 ***************************************************************/
4815
4816
4817static inline unsigned long GetBitFields(const long e,
4818 const unsigned int s, const unsigned int n)
4819{
4820 unsigned int i = 0;
4821 unsigned long ev = 0L;
4822 assume(n > 0 && s < BIT_SIZEOF_LONG);
4823 do
4824 {
4826 if (e > (long) i) ev |= Sy_bitL(s+i);
4827 else break;
4828 i++;
4829 }
4830 while (i < n);
4831 return ev;
4832}
4833
4834// Short Exponent Vectors are used for fast divisibility tests
4835// ShortExpVectors "squeeze" an exponent vector into one word as follows:
4836// Let n = BIT_SIZEOF_LONG / pVariables.
4837// If n == 0 (i.e. pVariables > BIT_SIZE_OF_LONG), let m == the number
4838// of non-zero exponents. If (m>BIT_SIZEOF_LONG), then sev = ~0, else
4839// first m bits of sev are set to 1.
4840// Otherwise (i.e. pVariables <= BIT_SIZE_OF_LONG)
4841// represented by a bit-field of length n (resp. n+1 for some
4842// exponents). If the value of an exponent is greater or equal to n, then
4843// all of its respective n bits are set to 1. If the value of an exponent
4844// is smaller than n, say m, then only the first m bits of the respective
4845// n bits are set to 1, the others are set to 0.
4846// This way, we have:
4847// exp1 / exp2 ==> (ev1 & ~ev2) == 0, i.e.,
4848// if (ev1 & ~ev2) then exp1 does not divide exp2
4849unsigned long p_GetShortExpVector(const poly p, const ring r)
4850{
4851 assume(p != NULL);
4852 unsigned long ev = 0; // short exponent vector
4853 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4854 unsigned int m1; // highest bit which is filled with (n+1)
4855 unsigned int i=0;
4856 int j=1;
4857
4858 if (n == 0)
4859 {
4860 if (r->N <2*BIT_SIZEOF_LONG)
4861 {
4862 n=1;
4863 m1=0;
4864 }
4865 else
4866 {
4867 for (; j<=r->N; j++)
4868 {
4869 if (p_GetExp(p,j,r) > 0) i++;
4870 if (i == BIT_SIZEOF_LONG) break;
4871 }
4872 if (i>0)
4873 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4874 return ev;
4875 }
4876 }
4877 else
4878 {
4879 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4880 }
4881
4882 n++;
4883 while (i<m1)
4884 {
4885 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4886 i += n;
4887 j++;
4888 }
4889
4890 n--;
4891 while (i<BIT_SIZEOF_LONG)
4892 {
4893 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4894 i += n;
4895 j++;
4896 }
4897 return ev;
4898}
4899// 1 bit per exp
4900unsigned long p_GetShortExpVector0(const poly p, const ring r)
4901{
4902 assume(p != NULL);
4903 assume(r->N >=BIT_SIZEOF_LONG);
4904 unsigned long ev = 0; // short exponent vector
4905
4906 for (int j=BIT_SIZEOF_LONG; j>0; j--)
4907 {
4908 if (p_GetExp(p, j,r)>0)
4909 ev |= Sy_bitL(j-1);
4910 }
4911 return ev;
4912}
4913
4914//1..2 bits per exp
4915unsigned long p_GetShortExpVector1(const poly p, const ring r)
4916{
4917 assume(p != NULL);
4918 assume(r->N <BIT_SIZEOF_LONG);
4919 assume(2*r->N >=BIT_SIZEOF_LONG);
4920 unsigned long ev = 0; // short exponent vector
4921 int rest=r->N;
4922 int e;
4923 // 2 bits per exp
4924 int j=r->N;
4925 for (; j>BIT_SIZEOF_LONG-r->N; j--)
4926 {
4927 if ((e=p_GetExp(p, j,r))>0)
4928 {
4929 ev |= Sy_bitL(j-1);
4930 if (e>1)
4931 {
4932 ev|=Sy_bitL(rest+j-1);
4933 }
4934 }
4935 }
4936 // 1 bit per exp
4937 for (; j>0; j--)
4938 {
4939 if (p_GetExp(p, j,r)>0)
4940 {
4941 ev |= Sy_bitL(j-1);
4942 }
4943 }
4944 return ev;
4945}
4946
4947/***************************************************************
4948 *
4949 * p_ShallowDelete
4950 *
4951 ***************************************************************/
4952#undef LINKAGE
4953#define LINKAGE
4954#undef p_Delete__T
4955#define p_Delete__T p_ShallowDelete
4956#undef n_Delete__T
4957#define n_Delete__T(n, r) do {} while (0)
4958
4960
4961/***************************************************************/
4962/*
4963* compare a and b
4964*/
4965int p_Compare(const poly a, const poly b, const ring R)
4966{
4967 int r=p_Cmp(a,b,R);
4968 if ((r==0)&&(a!=NULL))
4969 {
4970 number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4971 /* compare lead coeffs */
4972 r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4973 n_Delete(&h,R->cf);
4974 }
4975 else if (a==NULL)
4976 {
4977 if (b==NULL)
4978 {
4979 /* compare 0, 0 */
4980 r=0;
4981 }
4982 else if(p_IsConstant(b,R))
4983 {
4984 /* compare 0, const */
4985 r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4986 }
4987 }
4988 else if (b==NULL)
4989 {
4990 if (p_IsConstant(a,R))
4991 {
4992 /* compare const, 0 */
4993 r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
4994 }
4995 }
4996 return(r);
4997}
4998
4999poly p_GcdMon(poly f, poly g, const ring r)
5000{
5001 assume(f!=NULL);
5002 assume(g!=NULL);
5003 assume(pNext(f)==NULL);
5004 poly G=p_Head(f,r);
5005 poly h=g;
5006 int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
5007 p_GetExpV(f,mf,r);
5008 int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
5011 loop
5012 {
5013 if (h==NULL) break;
5014 if(!one_coeff)
5015 {
5017 one_coeff=n_IsOne(n,r->cf);
5018 p_SetCoeff(G,n,r);
5019 }
5020 p_GetExpV(h,mh,r);
5022 for(unsigned j=r->N;j!=0;j--)
5023 {
5024 if (mh[j]<mf[j]) mf[j]=mh[j];
5025 if (mf[j]>0) const_mon=FALSE;
5026 }
5027 if (one_coeff && const_mon) break;
5028 pIter(h);
5029 }
5030 mf[0]=0;
5031 p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
5032 omFreeSize(mf,(r->N+1)*sizeof(int));
5033 omFreeSize(mh,(r->N+1)*sizeof(int));
5034 return G;
5035}
5036
5037poly p_CopyPowerProduct0(const poly p, number n, const ring r)
5038{
5040 poly np;
5041 omTypeAllocBin(poly, np, r->PolyBin);
5042 p_SetRingOfLm(np, r);
5043 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
5044 pNext(np) = NULL;
5045 pSetCoeff0(np, n);
5046 return np;
5047}
5048
5049poly p_CopyPowerProduct(const poly p, const ring r)
5050{
5051 if (p == NULL) return NULL;
5052 return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
5053}
5054
5055poly p_Head0(const poly p, const ring r)
5056{
5057 if (p==NULL) return NULL;
5058 if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
5059 return p_Head(p,r);
5060}
5061int p_MaxExpPerVar(poly p, int i, const ring r)
5062{
5063 int m=0;
5064 while(p!=NULL)
5065 {
5066 int mm=p_GetExp(p,i,r);
5067 if (mm>m) m=mm;
5068 pIter(p);
5069 }
5070 return m;
5071}
5072
Concrete implementation of enumerators over polynomials.
All the auxiliary stuff.
long int64
Definition auxiliary.h:68
static int si_max(const int a, const int b)
Definition auxiliary.h:125
#define BIT_SIZEOF_LONG
Definition auxiliary.h:80
#define UNLIKELY(X)
Definition auxiliary.h:405
int BOOLEAN
Definition auxiliary.h:88
#define TRUE
Definition auxiliary.h:101
#define FALSE
Definition auxiliary.h:97
#define LIKELY(X)
Definition auxiliary.h:404
static int si_min(const int a, const int b)
Definition auxiliary.h:126
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
const CanonicalForm CFMap CFMap & N
Definition cfEzgcd.cc:56
int l
Definition cfEzgcd.cc:100
int m
Definition cfEzgcd.cc:128
int i
Definition cfEzgcd.cc:132
int k
Definition cfEzgcd.cc:99
return
Variable x
Definition cfModGcd.cc:4090
int p
Definition cfModGcd.cc:4086
g
Definition cfModGcd.cc:4098
CanonicalForm cf
Definition cfModGcd.cc:4091
CanonicalForm b
Definition cfModGcd.cc:4111
FILE * f
Definition checklibs.c:9
poly singclap_pdivide(poly f, poly g, const ring r)
Definition clapsing.cc:624
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition coeffs.h:637
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition coeffs.h:776
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition coeffs.h:455
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition coeffs.h:696
static FORCE_INLINE number n_GetDenom(number &n, const coeffs r)
return the denominator of n (if elements of r are by nature not fractional, result is 1)
Definition coeffs.h:604
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition coeffs.h:832
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition coeffs.h:839
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition numbers.cc:287
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition coeffs.h:713
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition coeffs.h:38
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
Definition coeffs.h:665
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition coeffs.h:565
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition coeffs.h:623
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition coeffs.h:498
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition coeffs.h:701
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition coeffs.h:558
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition coeffs.h:633
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition coeffs.h:760
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition coeffs.h:616
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition coeffs.h:799
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition coeffs.h:468
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition coeffs.h:571
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition coeffs.h:535
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition coeffs.h:656
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition coeffs.h:932
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition coeffs.h:730
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition coeffs.h:429
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition coeffs.h:757
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition coeffs.h:459
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition coeffs.h:592
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition coeffs.h:793
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition coeffs.h:878
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition coeffs.h:539
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition coeffs.h:925
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition coeffs.h:748
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition coeffs.h:903
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition coeffs.h:599
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition coeffs.h:464
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition coeffs.h:609
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition coeffs.h:667
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition coeffs.h:80
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition coeffs.h:579
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition coeffs.h:472
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition coeffs.h:911
#define Print
Definition emacs.cc:80
#define WarnS
Definition emacs.cc:78
return result
const CanonicalForm int s
Definition facAbsFact.cc:51
const CanonicalForm int const CFList const Variable & y
Definition facAbsFact.cc:53
CanonicalForm res
Definition facAbsFact.cc:60
const CanonicalForm & w
Definition facAbsFact.cc:51
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
const Variable & v
< [in] a sqrfree bivariate poly
Definition facBivar.h:39
int j
Definition facHensel.cc:110
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
static int max(int a, int b)
Definition fast_mult.cc:264
VAR short errorreported
Definition feFopen.cc:23
void WerrorS(const char *s)
Definition feFopen.cc:24
const char * eati(const char *s, int *i)
Definition reporter.cc:373
#define D(A)
Definition gentable.cc:128
#define STATIC_VAR
Definition globaldefs.h:7
#define VAR
Definition globaldefs.h:5
STATIC_VAR poly last
Definition hdegree.cc:1137
#define exponent
STATIC_VAR int offset
Definition janet.cc:29
STATIC_VAR TreeM * G
Definition janet.cc:31
STATIC_VAR Poly * h
Definition janet.cc:971
ListNode * next
Definition janet.h:31
static bool rIsSCA(const ring r)
Definition nc.h:190
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition longrat.cc:2692
LINLINE number nlSub(number la, number li, const coeffs r)
Definition longrat.cc:2758
LINLINE void nlDelete(number *a, const coeffs r)
Definition longrat.cc:2657
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition longrat.cc:1303
number nlGcd(number a, number b, const coeffs r)
Definition longrat.cc:1340
void nlNormalize(number &x, const coeffs r)
Definition longrat.cc:1481
#define assume(x)
Definition mod2.h:389
int dReportError(const char *fmt,...)
Definition dError.cc:44
#define p_GetComp(p, r)
Definition monomials.h:64
#define pIter(p)
Definition monomials.h:37
#define pNext(p)
Definition monomials.h:36
#define p_LmCheckPolyRing1(p, r)
Definition monomials.h:177
#define p_LmCheckPolyRing2(p, r)
Definition monomials.h:199
#define pSetCoeff0(p, n)
Definition monomials.h:59
#define p_GetCoeff(p, r)
Definition monomials.h:50
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define POLY_NEGWEIGHT_OFFSET
Definition monomials.h:236
#define __p_GetComp(p, r)
Definition monomials.h:63
#define p_SetRingOfLm(p, r)
Definition monomials.h:144
#define rRing_has_Comp(r)
Definition monomials.h:266
#define pAssume(cond)
Definition monomials.h:90
gmp_float exp(const gmp_float &a)
The main handler for Singular numbers which are suitable for Singular polynomials.
Definition lq.h:40
number ndGcd(number, number, const coeffs r)
Definition numbers.cc:187
void ndNormalize(number &, const coeffs)
Definition numbers.cc:185
#define omFreeSize(addr, size)
#define omAlloc(size)
#define omReallocSize(addr, o_size, size)
#define omTypeAllocBin(type, addr, bin)
#define omFree(addr)
#define omAlloc0(size)
#define NULL
Definition omList.c:12
#define TEST_OPT_INTSTRATEGY
Definition options.h:112
#define Sy_bitL(x)
Definition options.h:32
#define TEST_OPT_PROT
Definition options.h:105
#define TEST_OPT_CONTENTSB
Definition options.h:129
poly p_Diff(poly a, int k, const ring r)
Definition p_polys.cc:1902
poly p_GetMaxExpP(poly p, const ring r)
return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0,...
Definition p_polys.cc:1139
poly p_DivideM(poly a, poly b, const ring r)
Definition p_polys.cc:1582
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1227
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition p_polys.cc:553
poly pp_Jet(poly p, int m, const ring R)
Definition p_polys.cc:4399
STATIC_VAR pLDegProc pOldLDeg
Definition p_polys.cc:3701
void p_Cleardenom_n(poly ph, const ring r, number &c)
Definition p_polys.cc:2958
long pLDegb(poly p, int *l, const ring r)
Definition p_polys.cc:812
long pLDeg1_Totaldegree(poly p, int *l, const ring r)
Definition p_polys.cc:976
long p_WFirstTotalDegree(poly p, const ring r)
Definition p_polys.cc:595
poly p_Farey(poly p, number N, const ring r)
Definition p_polys.cc:54
long pLDeg1_WFirstTotalDegree(poly p, int *l, const ring r)
Definition p_polys.cc:1039
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition p_polys.cc:3689
long pLDeg1c_WFirstTotalDegree(poly p, int *l, const ring r)
Definition p_polys.cc:1069
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition p_polys.cc:4068
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition p_polys.cc:1938
poly p_PolyDiv(poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes div...
Definition p_polys.cc:1874
int p_Size(poly p, const ring r)
Definition p_polys.cc:3257
void p_Setm_Dummy(poly p, const ring r)
Definition p_polys.cc:540
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition p_polys.cc:4538
poly p_GcdMon(poly f, poly g, const ring r)
polynomial gcd for f=mon
Definition p_polys.cc:4999
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition p_polys.cc:4645
int p_LowVar(poly p, const ring r)
the minimal index of used variables - 1
Definition p_polys.cc:4749
BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r)
divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g),...
Definition p_polys.cc:1646
poly p_Homogen(poly p, int varnum, const ring r)
Definition p_polys.cc:3274
poly p_Subst(poly p, int n, poly e, const ring r)
Definition p_polys.cc:3999
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition p_polys.cc:4595
BOOLEAN p_HasNotCF(poly p1, poly p2, const ring r)
Definition p_polys.cc:1330
void p_Content(poly ph, const ring r)
Definition p_polys.cc:2299
int p_Weight(int i, const ring r)
Definition p_polys.cc:706
void p_Setm_TotalDegree(poly p, const ring r)
Definition p_polys.cc:546
poly p_CopyPowerProduct(const poly p, const ring r)
like p_Head, but with coefficient 1
Definition p_polys.cc:5049
poly pp_DivideM(poly a, poly b, const ring r)
Definition p_polys.cc:1637
STATIC_VAR int _componentsExternal
Definition p_polys.cc:148
void p_SimpleContent(poly ph, int smax, const ring r)
Definition p_polys.cc:2568
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition p_polys.cc:1298
STATIC_VAR long * _componentsShifted
Definition p_polys.cc:147
void p_Vec2Polys(poly v, poly **p, int *len, const ring r)
Definition p_polys.cc:3665
static poly p_Subst0(poly p, int n, const ring r)
Definition p_polys.cc:3974
poly p_DiffOp(poly a, poly b, BOOLEAN multiply, const ring r)
Definition p_polys.cc:1977
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition p_polys.cc:1108
poly p_Jet(poly p, int m, const ring R)
Definition p_polys.cc:4455
poly p_TakeOutComp(poly *p, int k, const ring r)
Definition p_polys.cc:3458
long pLDeg1c_Deg(poly p, int *l, const ring r)
Definition p_polys.cc:942
long pLDeg1(poly p, int *l, const ring r)
Definition p_polys.cc:842
static number * pnBin(int exp, const ring r)
Definition p_polys.cc:2062
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition p_polys.cc:4775
static void pnFreeBin(number *bin, int exp, const coeffs r)
Definition p_polys.cc:2093
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4171
poly p_Power(poly p, int i, const ring r)
Definition p_polys.cc:2201
poly p_Div_nn(poly p, const number n, const ring r)
Definition p_polys.cc:1506
void p_Normalize(poly p, const ring r)
Definition p_polys.cc:3854
unsigned long p_GetShortExpVector0(const poly p, const ring r)
Definition p_polys.cc:4900
void p_DeleteComp(poly *p, int k, const ring r)
Definition p_polys.cc:3583
poly p_mInit(const char *st, BOOLEAN &ok, const ring r)
Definition p_polys.cc:1443
poly p_MDivide(poly a, poly b, const ring r)
Definition p_polys.cc:1493
void p_ContentRat(poly &ph, const ring r)
Definition p_polys.cc:1748
void p_Norm(poly p1, const ring r)
Definition p_polys.cc:3759
poly p_Div_mm(poly p, const poly m, const ring r)
divide polynomial by monomial
Definition p_polys.cc:1542
poly pp_Jet0(poly p, const ring R)
Definition p_polys.cc:4427
int p_GetVariables(poly p, int *e, const ring r)
set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)
Definition p_polys.cc:1268
int p_MinDeg(poly p, intvec *w, const ring R)
Definition p_polys.cc:4517
int p_MaxExpPerVar(poly p, int i, const ring r)
max exponent of variable x_i in p
Definition p_polys.cc:5061
STATIC_VAR BOOLEAN pOldLexOrder
Definition p_polys.cc:3702
int p_Compare(const poly a, const poly b, const ring R)
Definition p_polys.cc:4965
void p_Setm_Syz(poly p, ring r, int *Components, long *ShiftedComponents)
Definition p_polys.cc:530
STATIC_VAR pFDegProc pOldFDeg
Definition p_polys.cc:3700
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition p_polys.cc:1704
unsigned long p_GetShortExpVector(const poly p, const ring r)
Definition p_polys.cc:4849
BOOLEAN p_IsHomogeneousW(poly p, const intvec *w, const ring r)
Definition p_polys.cc:3366
VAR BOOLEAN pSetm_error
Definition p_polys.cc:150
long pLDeg1_Deg(poly p, int *l, const ring r)
Definition p_polys.cc:911
poly p_Series(int n, poly p, poly u, intvec *w, const ring R)
Definition p_polys.cc:4567
void p_ProjectiveUnique(poly ph, const ring r)
Definition p_polys.cc:3147
long p_WTotaldegree(poly p, const ring r)
Definition p_polys.cc:612
long p_DegW(poly p, const int *w, const ring R)
Definition p_polys.cc:691
p_SetmProc p_GetSetmProc(const ring r)
Definition p_polys.cc:559
void p_Setm_General(poly p, const ring r)
Definition p_polys.cc:158
BOOLEAN p_OneComp(poly p, const ring r)
return TRUE if all monoms have the same component
Definition p_polys.cc:1209
poly p_Cleardenom(poly p, const ring r)
Definition p_polys.cc:2849
long pLDeg1c(poly p, int *l, const ring r)
Definition p_polys.cc:878
void p_Split(poly p, poly *h)
Definition p_polys.cc:1321
long pLDeg1c_Totaldegree(poly p, int *l, const ring r)
Definition p_polys.cc:1006
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition p_polys.cc:1726
BOOLEAN p_VectorHasUnitB(poly p, int *k, const ring r)
Definition p_polys.cc:3402
long pLDeg0c(poly p, int *l, const ring r)
Definition p_polys.cc:771
poly p_Vec2Poly(poly v, int k, const ring r)
Definition p_polys.cc:3613
poly p_LcmRat(const poly a, const poly b, const long lCompM, const ring r)
Definition p_polys.cc:1681
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max)
return the maximal exponent of p in form of the maximal long var
Definition p_polys.cc:1176
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition p_polys.cc:2110
void p_SetModDeg(intvec *w, ring r)
Definition p_polys.cc:3713
BOOLEAN p_HasNotCFRing(poly p1, poly p2, const ring r)
Definition p_polys.cc:1346
long pLDeg0(poly p, int *l, const ring r)
Definition p_polys.cc:740
int p_Var(poly m, const ring r)
Definition p_polys.cc:4725
poly p_One(const ring r)
Definition p_polys.cc:1314
poly p_Sub(poly p1, poly p2, const ring r)
Definition p_polys.cc:1994
void p_VectorHasUnit(poly p, int *k, int *len, const ring r)
Definition p_polys.cc:3425
static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r)
Definition p_polys.cc:3870
int p_IsUnivariate(poly p, const ring r)
return i, if poly depends only on var(i)
Definition p_polys.cc:1248
STATIC_VAR int * _components
Definition p_polys.cc:146
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition p_polys.cc:1474
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition p_polys.cc:3677
void pEnlargeSet(poly **p, int l, int increment)
Definition p_polys.cc:3736
long p_WDegree(poly p, const ring r)
Definition p_polys.cc:715
static long pModDeg(poly p, ring r)
Definition p_polys.cc:3704
BOOLEAN p_IsHomogeneous(poly p, const ring r)
Definition p_polys.cc:3323
poly p_Head0(const poly p, const ring r)
like p_Head, but allow NULL coeff
Definition p_polys.cc:5055
static poly p_MonMultC(poly p, poly q, const ring rr)
Definition p_polys.cc:2048
unsigned long p_GetShortExpVector1(const poly p, const ring r)
Definition p_polys.cc:4915
static poly p_Pow_charp(poly p, int i, const ring r)
Definition p_polys.cc:2189
poly pp_JetW(poly p, int m, int *w, const ring R)
Definition p_polys.cc:4472
long p_Deg(poly a, const ring r)
Definition p_polys.cc:586
static poly p_Subst1(poly p, int n, const ring r)
Definition p_polys.cc:3906
poly p_Last(const poly p, int &l, const ring r)
Definition p_polys.cc:4690
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition p_polys.cc:5037
static void p_MonMult(poly p, poly q, const ring r)
Definition p_polys.cc:2028
BOOLEAN p_IsHomogeneousDP(poly p, const ring r)
Definition p_polys.cc:3347
number p_InitContent(poly ph, const ring r)
Definition p_polys.cc:2639
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition p_polys.cc:3635
static poly p_MonPower(poly p, int exp, const ring r)
Definition p_polys.cc:2004
void p_ContentForGB(poly ph, const ring r)
Definition p_polys.cc:2359
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition p_polys.cc:3933
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition p_polys.cc:1659
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition p_polys.cc:4817
poly p_ChineseRemainder(poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
Definition p_polys.cc:88
const char * p_Read(const char *st, poly &rc, const ring r)
Definition p_polys.cc:1371
poly p_JetW(poly p, int m, int *w, const ring R)
Definition p_polys.cc:4499
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
Definition p_polys.cc:4581
static poly p_Pow(poly p, int i, const ring r)
Definition p_polys.cc:2175
static poly p_Neg(poly p, const ring r)
Definition p_polys.h:1108
static int pLength(poly a)
Definition p_polys.h:190
static void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r)
Definition p_polys.h:1440
static poly p_Add_q(poly p, poly q, const ring r)
Definition p_polys.h:937
static void p_LmDelete(poly p, const ring r)
Definition p_polys.h:724
static poly p_Mult_q(poly p, poly q, const ring r)
Definition p_polys.h:1119
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition pDebug.cc:123
static void p_ExpVectorAdd(poly p1, poly p2, const ring r)
Definition p_polys.h:1426
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition p_polys.h:454
static long p_AddExp(poly p, int v, long ee, ring r)
Definition p_polys.h:607
static poly p_LmInit(poly p, const ring r)
Definition p_polys.h:1350
#define p_LmEqual(p1, p2, r)
Definition p_polys.h:1738
static int p_Cmp(poly p1, poly p2, ring r)
Definition p_polys.h:1742
void p_Write(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:342
static void p_SetExpV(poly p, int *ev, const ring r)
Definition p_polys.h:1559
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition p_polys.h:641
static void p_SetCompP(poly p, int i, ring r)
Definition p_polys.h:255
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition p_polys.h:489
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:314
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition p_polys.h:248
static long p_IncrExp(poly p, int v, ring r)
Definition p_polys.h:592
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition p_polys.h:1455
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition p_polys.h:448
static void p_Setm(poly p, const ring r)
Definition p_polys.h:234
#define p_SetmComp
Definition p_polys.h:245
static number p_SetCoeff(poly p, number n, ring r)
Definition p_polys.h:413
static poly pReverse(poly p)
Definition p_polys.h:336
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition p_polys.h:1007
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition p_polys.h:861
static int p_LmCmp(poly p, poly q, const ring r)
Definition p_polys.h:1595
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition p_polys.h:470
static long p_MultExp(poly p, int v, long ee, ring r)
Definition p_polys.h:622
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition p_polys.h:1979
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition p_polys.h:1387
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition p_polys.h:1915
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:293
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:902
static long p_DecrExp(poly p, int v, ring r)
Definition p_polys.h:599
static void p_GetExpV(poly p, int *ev, const ring r)
Definition p_polys.h:1535
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition pDebug.cc:115
static long p_GetOrder(poly p, ring r)
Definition p_polys.h:422
static poly p_LmFreeAndNext(poly p, ring)
Definition p_polys.h:712
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition p_polys.h:1052
static void p_LmFree(poly p, ring)
Definition p_polys.h:684
static poly p_Init(const ring r, omBin bin)
Definition p_polys.h:1335
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition p_polys.h:756
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition p_polys.h:1234
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition p_polys.h:847
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1522
#define p_Test(p, r)
Definition p_polys.h:161
#define __p_Mult_nn(p, n, r)
Definition p_polys.h:972
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition polys.cc:382
#define NUM
Definition readcf.cc:180
void PrintS(const char *s)
Definition reporter.cc:284
void Werror(const char *fmt,...)
Definition reporter.cc:189
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition ring.cc:1996
void rWrite(ring r, BOOLEAN details)
Definition ring.cc:227
int r_IsRingVar(const char *n, char **names, int N)
Definition ring.cc:213
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition ring.cc:1802
static BOOLEAN rField_is_Zp_a(const ring r)
Definition ring.h:534
#define ringorder_rp
Definition ring.h:99
static BOOLEAN rField_is_Z(const ring r)
Definition ring.h:514
static BOOLEAN rField_is_Zp(const ring r)
Definition ring.h:505
void(* p_SetmProc)(poly p, const ring r)
Definition ring.h:39
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition ring.h:405
ro_typ ord_typ
Definition ring.h:225
long(* pFDegProc)(poly p, ring r)
Definition ring.h:38
static int rGetCurrSyzLimit(const ring r)
Definition ring.h:728
long(* pLDegProc)(poly p, int *length, ring r)
Definition ring.h:37
static BOOLEAN rIsRatGRing(const ring r)
Definition ring.h:432
static int rPar(const ring r)
(r->cf->P)
Definition ring.h:604
@ ro_wp64
Definition ring.h:55
@ ro_syz
Definition ring.h:60
@ ro_cp
Definition ring.h:58
@ ro_dp
Definition ring.h:52
@ ro_is
Definition ring.h:61
@ ro_wp_neg
Definition ring.h:56
@ ro_wp
Definition ring.h:53
@ ro_isTemp
Definition ring.h:61
@ ro_am
Definition ring.h:54
@ ro_syzcomp
Definition ring.h:59
static int rInternalChar(const ring r)
Definition ring.h:694
static BOOLEAN rIsLPRing(const ring r)
Definition ring.h:416
@ ringorder_lp
Definition ring.h:77
@ ringorder_a
Definition ring.h:70
@ ringorder_am
Definition ring.h:89
@ ringorder_a64
for int64 weights
Definition ring.h:71
@ ringorder_C
Definition ring.h:73
@ ringorder_S
S?
Definition ring.h:75
@ ringorder_ds
Definition ring.h:85
@ ringorder_Dp
Definition ring.h:80
@ ringorder_unspec
Definition ring.h:95
@ ringorder_L
Definition ring.h:90
@ ringorder_Ds
Definition ring.h:86
@ ringorder_dp
Definition ring.h:78
@ ringorder_c
Definition ring.h:72
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition ring.h:92
@ ringorder_no
Definition ring.h:69
@ ringorder_Wp
Definition ring.h:82
@ ringorder_ws
Definition ring.h:87
@ ringorder_Ws
Definition ring.h:88
@ ringorder_IS
Induced (Schreyer) ordering.
Definition ring.h:94
@ ringorder_ls
degree, ip
Definition ring.h:84
@ ringorder_s
s?
Definition ring.h:76
@ ringorder_wp
Definition ring.h:81
@ ringorder_M
Definition ring.h:74
static BOOLEAN rField_is_Q_a(const ring r)
Definition ring.h:544
static BOOLEAN rField_is_Q(const ring r)
Definition ring.h:511
#define ringorder_rs
Definition ring.h:100
static BOOLEAN rField_has_Units(const ring r)
Definition ring.h:495
static BOOLEAN rIsNCRing(const ring r)
Definition ring.h:426
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition ring.h:725
static BOOLEAN rField_is_GF(const ring r)
Definition ring.h:526
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597
union sro_ord::@1 data
#define rField_is_Ring(R)
Definition ring.h:490
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition sbuckets.h:68
static short scaLastAltVar(ring r)
Definition sca.h:25
static short scaFirstAltVar(ring r)
Definition sca.h:18
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition shiftop.cc:912
int status int void size_t count
Definition si_signals.h:69
#define IDELEMS(i)
#define R
Definition sirandom.c:27
#define loop
Definition structs.h:71
number ntInit(long i, const coeffs cf)
Definition transext.cc:704
int * iv2array(intvec *iv, const ring R)
Definition weight.cc:200
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition weight.cc:231