
t-SNE Notes

Pavlin Poličar

1 t-SNE

t-SNE was presented in [Maaten and Hinton, 2008] and aims to preserve local structure of high
dimensional spaces X with some low dimensional embedding Y . First for each point i, we find
its nearest nearest neighbours and compute the probability of this point pj based on the PDF
of a Gaussian centred on the point i:

pj|i =
exp

(
−||xi − xj ||2/2σ2i

)∑
k 6=i exp

(
−||xi − xk||2/2σ2i

) (1)

where σi is the bandwidth of the Gaussian density. These bandwidths are controlled by the
“perplexity” parameter. Perplexity can be thought of as a continuous analogue to the number
k-nearest neighbours:

Perp(Pi) = 2H(Pi) (2)

where H(Pi) is the Shannon entropy of the distribution Pi.

t-SNE actually doesn’t use Equation 1 directly, but symmetrizes this conditional probability, so
the actual pijs used by t-SNE are

pij =
pj|i + pi|j

2
(3)

In their experiments, van der Maaten et al. found that this doesn’t affect embedding quality
and simplifies the gradient expression.

Similarly, we represent the embedding Y as a probability distribution. In the original SNE
paper [Hinton and Roweis, 2003], a Gaussian was used, however this often led to the crowding
problem, where all the points were clumped into a single ball in a single point in space. t-SNE,
as the name would suggest, uses a Student-t distribution, therefore the probability density of Y
is

qij =

(
1 + ||yi − yj ||2

)−1∑
k 6=l (1 + ||yk − yl||2)−1

(4)

We now have two probability distributions over the local point affinities. Now we’d like some
way to match these two distributions, so the local structure of X is reflected in Y . A natural
way of doing this is to use Kullback-Leibler divergence (from here on referred to as the KL
divergence), which is defined as

1

KL(P || Q) =
∑
ij

pij log
pij
qij

(5)

Our goal is to minimize this error C, so we can take the derivative and obtain

∂C

∂yi
= 4

∑
j 6=i

(pij − qij) (yi − yj)
(
1 + ||yi − yj ||2

)−1
(6)

This is t-SNE in essence. In practice various tricks are used to speed up convergence e.g. using
a momentum term helps a lot. The embedding Y is typically initialized using an isotropic
Gaussian with small variance (e.g. 0.01). Often times, PCA is used for initialization. This can
sometimes be problematic if the PCA embedding provides very scattered embeddings (sometimes
most points are clumped to one side with very long stretched out tails). In these cases, using a
random initialization produces better embeddings.

2 Performance improvements

It quickly became apparent that t-SNE, while nice, was infeasible to run for larger data sets,
because of its quadratic time complexity O(n2) (due to the normalization term in qij).

For convenience, we will write the gradient in a different form seen in many papers, that makes
the attractive and repulsive forces clearer.

∂C

∂yi
= 4

∑
j 6=i

(pij − qij) (yi − yj)
(
1 + ||yi − yj ||2

)−1
(7)

Notice that the right most term is just the unnormalized qij

= 4
∑
j 6=i

(pij − qij) (yi − yj)
(
1 + ||yi − yj ||2

)−1 Z
Z

(8)

Where Z is the normalization term of Q: Z =
∑

k 6=l
(
1 + ||yk − yl||2

)−1
= 4

∑
j 6=i

(pij − qij) qijZ (yi − yj) (9)

= 4

∑
j 6=i

pijqijZ (yi − yj)−
∑
j 6=i

q2ijZ (yi − yj)

 (10)

which can in turn be throught of as attractive and repulsive forces

= 4 (Fattr + Frep) (11)

2.1 Landmark points

In fact, van der Maaten and Hinton provide a solution to this in their original paper: instead of
visualizing all the points, embed only a sample of carefully chosen landmark points. The points
must be carefully chosen because a random subset may not properly describe the manifold.
First, we construct the k-neighbourhood graph on all the points. Next, they approximate the P
of the landmark points using random walks across the neighbourhood graph. Then, we proceed
with t-SNE on the landmark points.

2

2.2 Approximating P

An observation made in [Van Der Maaten, 2014] was that since we use a Gaussian kernel for P ,
points further than 3 standard deviations from the mean have almost zero probabilities, and as
such, do not affect the KL divergence term. Therefore, no harm would come if we simply ignored
these terms. In practice, this means that we only compute the pij terms for b3uc neighbours,
where u is the perplexity.

In [Van Der Maaten, 2014], exact nearest neighbours are used. These can be efficiently computed
in O(n log n) using tree structures, thus reducing the complexity from O(n2) needed for pairwise
distances.

The preferred exact nearest neighbour method are vantage point trees (also referred to as VP
trees). [Yianilos, 1993] presented VP trees and compared their performance to another popular
tree based nearest neighbour search method – KD trees. VP trees were shown to require far
fewer queries when dealing with high dimensions, as t-SNE often does.[Van Der Maaten, 2014]
also provide a comparison with dual-trees, where VP trees, again, perform favourably.

More recently, it was shown in [Linderman et al., 2017] that approximate nearest neighbours
perform just as well. Approximate nearest neighbour algorithms are often orders of magnitude
faster than exact nearest neighbour search, allowing us to scale this step to much larger data
than before.

2.3 Barnes-Hut

Having drastically improved the complexity of Fattr, we are still left with quadratic O(n2)
complexity for Frep, required by the normalization term Z.

[Van Der Maaten, 2014] notice that computing Frep can be posed as an N-body simulation prob-
lem. This problem has been addressed physics simulation community and can be efficiently
solved in O(n log n) time using Barnes-Hut trees. The main idea behind this approximation is
that clusters of points far away for the current point i will have similar contribution, therefore
we can summarize entire regions of space (denoted cells in the following) by computing the
center of mass of the region ycell, computing the interaction between i and ycell and adding this
interaction up Ncell times, where Ncell is the number of points in the given region, given they
are far enough from our query point i. The space is split into square regions and represented
by a space splitting tree (a quad-tree in 2D and an oct-tree in 3D) which can be built in linear
time.

The “far enough” is determined by a parameter θ, which controls how accurate our estimations
are. If the following relation holds, then the cell is summarized

rcell
||yi − ycell||2

< θ (12)

where rcell represents the length of the diagonal of the cell. Larger values of θ produce more
accurate estimates. Setting θ to 0 computes all the pairwise interactions as the condition can
never be met. Scikit-learn recommends values between 0.2 and 0.8, as anything above and below
that quickly result in long computation time and large error, respectively.

It is worth noting that this approach scales fairly well for 1, 2 and 3 dimensions, but further
than that, the complexity becomes prohibitively expensive. This is not really an issue, since we
humans can only perceive 3 dimensions, and most visualizations are 2D.

3

2.4 FFT Accelerated Interpolation

We can write an equivalent expression for the repulsive forces

Frep =
∑
j 6=i

q2ijZ (yi − yj) (13)

Plugging in the expressions for qij and Z

=
∑
j 6=i

(
1 + ||yi − yj ||2

)−2∑
k 6=l (1 + ||yk − yl||2)−2

(yi − yj)∑
k 6=l (1 + ||yk − yl||2)

(14)

Putting the top and bottom terms together

=

∑
j 6=i

yi − yj

(1 + ||yi − yj ||2)2

/∑
k 6=l

1 + ||yk − yl||2

(1 + ||yk − yl||2)2

 (15)

=

∑
j 6=i

yi − yj

(1 + ||yi − yj ||2)2

/∑
k 6=l

1

(1 + ||yk − yl||2)

 (16)

We can also write an expression for each term of yi individually:

Frep,i(m) =

∑
j 6=i

yi(m)− yj(m)

(1 + ||yi − yj ||2)2

/∑
k 6=l

1

(1 + ||yk − yl||2)

 (17)

where yi(m) denotes the mth component of y i.e. m ∈ {1, 2} in the 2D case.

[Linderman et al., 2017] make the acute observation that the repulsive forces Frep can be written
as s+ 2 sums of the form

φ(yi) =
∑
j

K(yi,yj)qij (18)

where K(y, z) is either the Cauchy kernel or the squared Cauchy kernel and s is the dimension-
ality of Y

K1(y, z) =
1

(1 + ||y − z||2)
, or K2(y, z) =

1

(1 + ||y − z||2)2
(19)

To make the sums concrete, consider the 2D case:

φ1,i =
∑
j 6=i

1

(1 + ||yj − yi||2)

φ2,i =
∑
j 6=i

yj(1)

(1 + ||yj − yi||2)2

φ3,i =
∑
j 6=i

yj(2)

(1 + ||yj − yi||2)2

φ4,i =
∑
j 6=i

1

(1 + ||yj − yi||2)2

4

the the repulsive forces can be expressed in terms of these 4 sums as follows:

Frep,i(1) =

∑
j 6=i

yi(1)− yj(1)

(1 + ||yi − yj ||2)2

/∑
k 6=l

1

(1 + ||yk − yl||2)


= (φ2,i − yi(1)φ4,i)/Z, (20)

Frep,i(2) =

∑
j 6=i

yi(2)− yj(2)

(1 + ||yi − yj ||2)2

/∑
k 6=l

1

(1 + ||yk − yl||2)


= (φ3,i − yi(2)φ4,i)/Z, (21)

where

Z =
∑
j

φ1,j (22)

The key idea in this approach is that since we have smooth kernels K1 and K2, we can approxi-
mate them using polynomial interpolation. Of course, the choice of interpolants is entirely up to
us, but we we evaluate our kernel functions at these points and interpolate our true data using
these. To make things computationally efficient, we can set the interpolants to be equispaced
points on the space spanned by the data.

This is very convenient, because the kernels in question are all translation invariant and when
we evaluate them at the interpolants, then the kernel matrix K will be Toeplitz. This means
that it is enough to evaluate the Kernel for the left-most point in space in 1D. In 2d, our K is
actually a 3D tensor, but is again, Toeplitz.

Linear algebra tells us we can embed any Toeplitz matrix into a circulant matrix. This is
desirable, because now we can perform matrix-vector multiplication in the frequency domain in
linear time, with the slowest part being the FFT and IFFT transforms in O(n log n) time.

Finally, having evaluated the repulsive forces at the interpolants, we just need to interpolate the
forces on our true data. This can be done in linear time O(n).

Doing this, we have successfully made the overall complexity independent of N , and have shifted
the brunt of the work onto the number of chosen interpolation points, so the time complexity will
rely heavily on that. In practice, we split the input space into equally sized intervals, and then
have 3 interpolation points in each interval. While we could increase the number of interpolation
points, it is preferable to increase the number of intervals (due to the Runge phenomenon in
interpolation). Increasing the number of interpolation points also increases the accuracy of the
approximation, but comes at a computation cost.

Like the Barnes-Hut variant, this method becomes very inefficient for higher dimensions, as the
number of interpolation points needed scales exponentially with d. In practice, this isn’t an
issue because most often, we want to inspect 2D embeddings.

3 Implementation details

3.1 Perplexity

The following section explains how perplexity is formulated so the code can run efficiently.
Perplexity is defined as

5

Perplexity(Pi) = 2H(Pi) (23)

where H is the Shannon entropy of a discrete distribution

H(Pi) = −
∑
i

pj|i log2(pj|i) (24)

In code, the following is more practical to avoid computing 2x whereas perplexity stays fixed:

log(Perplexity(Pi)) = −
∑
i

pj|i log(pj|i) (25)

Remember that Pi is just a Gaussian distribution centered on point i, given by

pi(di) =
1√
2πσ

exp

(
−
d2ij
2σ2

)
(26)

however, since we’ll be performing row-normalization by hand, something proportional is suffi-
cient

∼ exp

(
−
d2ij
2σ2

)
(27)

In most implementations this Gaussian is parameterized with β = 1/2σ2 and therefore we

compute exp
(
−d2ijβ

)
in practice. In our case, we actually compute 1

σ exp
(
−d2ijβ

)
because we

allow a multiscale approach, which mixes several Gaussians together. We also reparameterize
our distribution to use the more interpretable precision τ = 1/σ2 instead of β. Therefore our
probability density is given by

pi(di) ∼
√
τ exp

(
−
d2ijτ

2

)
(28)

We now plug in our parametrization into the entropy and arrive at a convenient form which can
be coded efficiently.

Hi = −
∑
j

√
τ exp

(
−d2ijτ/2

)
∑

k

√
τ exp

(
−d2ikτ/2

) log

 √
τ exp

(
−d2ijτ/2

)
∑

k

√
τ exp

(
−d2ikτ/2

)
 (29)

The first term is just pj|i and we can split up the log into two parts

= −
∑
j

pj|i

[
log
(√
τ exp

(
−d2ijτ/2

))
− log

(∑
k

√
τ exp

(
−d2ikτ/2

))]
(30)

Notice now that the first term in the square brackets almost has the form log(exp(x)). For
clarity, we will also denote the normalization sum as Z.

= −
∑
j

[
pj|i

(
1

2
log τ − d2ijτ/2

)]
+
∑
j

pj|i logZ (31)

= −1

2
log τ

∑
j

pj|i +
τ

2

∑
j

pj|id
2
ij +

∑
j

pj|i logZ (32)

6

We move the first term to the end to make the sign unmissable. Since pi is a proper probability
distribution, its elements sum up to 1, leaving us with

=
τ

2

∑
j

pj|id
2
ij + logZ − 1

2
log τ (33)

This can be computed in two passes over the data. The first pass computes the unnormalized
probabilities p̃j|i and accumulate the normalization constant Z. In the second pass, the first
term can be computed.

In other implementation e.g. scikit-learn, the expression is computed without
√
τ . It’s easy

to see that the result will be similar (and indeed, this is used in their code), but without the
−1/2 log τ term and parameterized with β = τ/2.

3.2 Fast KL Divergence

During computation of negative gradients, we do not know the value of the normalization term Z
during intermediate steps. Therefore, in order to compute the KL divergence of the embedding,
we would need at least two passes over the data points, first to compute the unnormalized
qijs, and secondly to normalize them and compute the KL divergence. By rewriting the KL
divergence in terms of unnormalized qijs, we can compute the entire error with a single pass
over the data points by accumulating the

∑
ij pij and

∑
ij qij in the first pass.

KL(P || Q) =
∑
ij

pij log
pij
qij

(34)

=
∑
ij

pij log

(
pij

Z

q̂ij

)
(35)

where q̂ij denotes the unnormalized values qij

=
∑
ij

pij log
pij
q̂ij

+
∑
ij

pij logZ (36)

Therefore the first term requires a single pass over all i, js and the second term can be computed
in constant time if we accumulate the sums of P and Q.

This is already included in most software packages e.g. scikit-learn.

3.3 KL Divergence with exaggeration

The implemented optimization methods don’t have a notion of exaggeration, they simply take
an affinity matrix P containing the probabilities of points j appearing close to i. Exaggeration
is used to scale P by some constant factor α (this means that entries in the affinity matrix P are
not proper probabilities) to help separate clusters in the beginning of the optimization. These
methods also compute the KL divergence during optimization (for efficiency), and, as such, the
error is incorrect because we don’t account for the scaling α.

This section derives a simple correction for the KL divergence error term so we can get the true
error of the embedding even when P is exaggerated.

KL(P || Q) =
∑
ij

pij log
pij
qij

(37)

7

We need to introduce the scaling i.e. exaggeration factor α to every pij term, so we multiply
some terms by 1 = α/α.

=
∑
ij

α

α
pij log

αpij
αqij

(38)

Exaggeration means that the pij terms get multiplied by α, so we need to find an expression for
the KL divergence that includes only αpij and qij and some other factor that will correct for α.

=
1

α

∑
ij

αpij

(
log

αpij
qij
− logα

)
(39)

=
1

α

∑
ij

αpij log
αpij
qij

− 1

α

∑
ij

αpij logα

 (40)

We notice in the first term is exactly the KL divergence where pijs are scaled by α. We also
notice in the second term that

∑
ij Pij = 1 and that α cancels out, leaving us with

=
1

α

∑
ij

αpij log
αpij
qij

− logα (41)

The first term is computed by the gradient method (since it only knows about the scaled P),
the second term can easily be computed post-optimization, allowing us to get the correct KL
divergence.

3.4 Variable Degrees of Freedom

Kobak et al. [Kobak et al., 2019] suggest that using variable degrees of freedom can be used to
improve embeddings.

Standard t-SNE uses the t-distribution with a single degree of freedom. This is defined as

qij ∝
(
1 + ||yi − yj ||2/α

)−α
=

1

(1 + ||yi − yj ||2/α)α
. (42)

In standard t-SNE α = 1 so this simplifies to the standard formulation

qij ∝
(
1 + ||yi − yj ||2

)−1
=

1

1 + ||yi − yj ||2
(43)

where we have omitted the normalization constant.

The gradient of the t-SNE loss function then becomes

∂C

∂yi
= 4

∑
j 6=i

(pij − qij) q1/αij (yi − yj) (44)

where qij is, again, the unnormalized kernel between points i and j.

Decomposing this into the attractive and repulsive forces gives us

Fattr = 4
∑
j

pijq
1/α
ij (yi − yj), (45)

Frep = −4
∑
j

q
α+1
α

ij /Z(yi − yj). (46)

See the original publication for more details.

8

3.4.1 Implementation

Adapting the implementation for computing the attractive forces and the Barnes-Hut repulsive
forces is straightforward. Adapting the interpolation based computation of repulsive forces is a
bit more involved.

The direct implementation of the approach described in the paper leads to a solution requiring
two different kernels. We describe the 1D case, but the extension to the 2D case is straightfor-
ward.

Frep =
∑
j 6=i

q
α+1
α

ij Z (yi − yj) (47)

=
∑
j 6=i

((
1 + ||yi − yj ||2/α

)−α∑
k 6=l (1 + ||yk − yl||2/α)−α

)α+1
α yi − yj∑

k 6=l (1 + ||yk − yl||2/α)α
(48)

=
∑
j 6=i

yi − yj

(1 + ||yi − yj ||2/α)α(α+1
α)

/∑
k 6=l

(
1 + ||yk − yl||2/α

)α
(1 + ||yk − yl||2/α)α(α+1

α)

 (49)

=
∑
j 6=i

yi − yj

(1 + ||yi − yj ||2/α)α+1

/∑
k 6=l

1

(1 + ||yk − yl||2/α)

 (50)

Evaluating this sum using the interpolation scheme would require two separate kernels with
three terms

φ1,j =
∑
j 6=i

1

(1 + ||yj − yi||2/α)α+1 , (51)

φ2,j =
∑
j 6=i

yj

(1 + ||yj − yi||2/α)α+1 , (52)

φ3,j =
∑
j 6=i

1

(1 + ||yj − yi||2/α)
. (53)

Then, we can calculate the necessary quantities

Ni = yiφ1,j − φ2,j (54)

Z =
∑
j

φ3,j (55)

where Ni is the unnormalized numerator of the repulsive forces.

4 Transform

4.1 Direct optimization

4.2 General framework of cost functions

[Bunte et al., 2012]

4.3 MDS interpolation

MDS Interpolation [Bae et al., 2010]. A similar approach might be able to be applied to t-SNE.
In essence, they run MDS on a sample of points. Then for each new point, we compute the
k-nearest neighbours and optimize the stress function w.r.t. only those points. In their paper,
they derive equations that can be used for efficient optimization via majorization.

9

4.4 Kernel t-SNE

[Gisbrecht et al., 2012] claim to outperform direct mapping t-SNE using a direct kernel mapping.
This paper is not very useful. The graph is misleading and the table at the end is informative,
but run only on small datasets. Their subsequent paper is much better and throughout.

In [Gisbrecht et al., 2015], kernel t-SNE is described in more detail and parameters are chosen
in a more principled manner.

Describes how to integrate class labels into embedding using Fischer information.

The issue of kernel t-SNE is that we have to compute the inverse of the interaction matrix K.
We can use P as the interaction matrix, and P is sparse, but the inverse of that is very dense,
and for any reasonably sized data set, this is unfeasable.

References

[Bae et al., 2010] Bae, S.-H., Choi, J. Y., Qiu, J., and Fox, G. C. (2010). Dimension reduction
and visualization of large high-dimensional data via interpolation. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing, pages 203–214.
ACM.

[Bunte et al., 2012] Bunte, K., Biehl, M., and Hammer, B. (2012). A general framework for
dimensionality-reducing data visualization mapping. Neural Computation, 24(3):771–804.

[Gisbrecht et al., 2012] Gisbrecht, A., Lueks, W., Mokbel, B., and Hammer, B. (2012). Out-
of-sample kernel extensions for nonparametric dimensionality reduction. In ESANN, volume
2012, pages 531–536.

[Gisbrecht et al., 2015] Gisbrecht, A., Schulz, A., and Hammer, B. (2015). Parametric nonlinear
dimensionality reduction using kernel t-sne. Neurocomputing, 147:71–82.

[Hinton and Roweis, 2003] Hinton, G. E. and Roweis, S. T. (2003). Stochastic neighbor embed-
ding. In Advances in neural information processing systems, pages 857–864.

[Kobak et al., 2019] Kobak, D., Linderman, G., Steinerberger, S., Kluger, Y., and Berens, P.
(2019). Heavy-tailed kernels reveal a finer cluster structure in t-sne visualisations. arXiv
preprint arXiv:1902.05804.

[Linderman et al., 2017] Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S., and
Kluger, Y. (2017). Efficient algorithms for t-distributed stochastic neighborhood embedding.
arXiv preprint arXiv:1712.09005.

[Maaten and Hinton, 2008] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605.

[Van Der Maaten, 2014] Van Der Maaten, L. (2014). Accelerating t-sne using tree-based algo-
rithms. Journal of machine learning research, 15(1):3221–3245.

[Yianilos, 1993] Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA, volume 93, pages 311–321.

10

	t-SNE
	Performance improvements
	Landmark points
	Approximating P
	Barnes-Hut
	FFT Accelerated Interpolation

	Implementation details
	Perplexity
	Fast KL Divergence
	KL Divergence with exaggeration
	Variable Degrees of Freedom
	Implementation

	Transform
	Direct optimization
	General framework of cost functions
	MDS interpolation
	Kernel t-SNE

