User’s Guide for ParU, an unsymmetric multifrontal
multithreaded sparse LU factorization package

Mohsen Aznaveh? Timothy A. Davis!
VERSION 1.0.0, Sept 5, 2024

Abstract

ParU is an implementation of the multifrontal sparse LU factorization method.
Parallelism is exploited both in the BLAS and across different frontal matrices using
OpenMP tasking, a shared-memory programming model for modern multicore archi-
tectures. The package is written in C++ and real sparse matrices are supported.

ParU, Copyright (c) 2022-2024, Mohsen Aznaveh and Timothy A. Davis, All Rights
Reserved. SPDX-License-Identifier: GPL-3.0-or-later

*email: aznaveh@tamu.edu.
femail: DrTimothyAldenDavis@gmail.com, http://www.suitesparse.com.

Contents

(1 Introduction|

2

Using ParU in C and CH4+|

2.1 Installing the C/C++ library on any system|.

2.2 TInstalling the C/C++ library on Linux/Unix|

2.3 C/C++ Exampld

|2,4 | a U_III Q; Is:! !1111 !2!1!15:{; Szt f:i!s:ll I ilI [1 Ills:! Ilszsll ----------------------

C++ Syntax|

4

13.1 ParU_Version: version of the ParU package|

13.2 ParU_Control: parameters that control ParU|

[3.3 ParU_Set: set parameters in the Control object|

13.4 ParU_Get: get information from a ParU opaque object|

[3.5 ParU_Analyze: symbolic analysis|.

[3.7 ParU_Solve: solve a linear system, Ax =0

[3.8 ParU_LSolve: solve a linear system, Lo =0/.

13.9 ParU_USolve: solve a linear system, Uz =86

[3.10 ParU_Perm: permute and scale a dense vector or matrix|

13.11 ParU_InvPerm: permute and scale a dense vector or matrix|.

[3.12 ParU_Residual: compute the residuall

13.14 ParU_FreeSymbolic: free a symbolic analysis|

13.15 ParU_FreeControl: free a Control object|.

nta

4.1 ParU_C_Version: version of the ParU package|.

4.2 ParU_C_Control: parameters that control ParU|.

4.3 ParU_C_Get_*: get information from a ParU opaque object|

4.4 ParU_C_Set_Control_*: set Control parameters|

4.5 ParU_C_Analyze: symbolic analysis|

4.6 ParU C Factorize: numeric factorizationl

4.7 ParU_C_Solve_A*: solve a linear system, Az =0

4.8 ParU_C_Solve_L*: solve a linear system, Lo =&

4.9 ParU_C_Solve_U*: solve a linear system, Uz =8

[4.10 ParU_C_Perm: permute and scale a dense vector or matrix|

4.11 ParU_C_InvPerm: permute and scale a dense vector or matrix|

[4.12 ParU_C_Residual_*: compute the residual|

4.13 ParU C FreeNumeric: free a numeric factorizationl

|4.14 ParU_C_FreeSymbolic: free a symbolic analysis structure|

[4.15 ParU_C_FreeControl: free a Control object|

[6 Thread safety of malloc, calloc, realloc, and free|

6

sSing 'ar 1mn

6.1 Compiling ParU for MATLAB|

6.2 Using ParU in MATLAB|

21
21
21
22
23
23
23
24
25
25
26
27
27
28
28
28

28

[7 Requirements and Availability| 31

1 Introduction

The algorithms used in ParU are discussed in [3], a copy of which is in the ParU/Doc folder.
This document gives detailed information on the installation and use of ParU. ParU is a par-
allel sparse direct solver that uses OpenMP tasking for parallelism. ParU calls UMFPACK
for the symbolic analysis phase, after that, some symbolic analysis is done by ParU itself,
and then the numeric phase starts. The numeric computation is a task parallel phase using
OpenMP, and each task calls parallel BLAS; i.e. nested parallelism. The performance of
BLAS has a heavy impact on the performance of ParU. Moreover, the way parallel BLAS
can be called in a nested environment can also be very important for ParU’s performance.

2 Using ParU in C and C++

ParU relies on CHOLMOD for its basic sparse matrix data structure, a compressed sparse
column format. CHOLMOD provides interfaces to the AMD, COLAMD, and METIS or-
dering methods and many other functions. ParU also relies on UMFPACK for its symbolic
analysis.

2.1 Installing the C/C++ library on any system

All of SuiteSparse can be built by cmake with a single top-level CMakeLists.txt file. In
addition, each package (including ParU) has its own CMakeLists.txt file to build that
package individually. This is the simplest method for building ParU and its dependent
pacakges on all systems.

2.2 Installing the C/C++ library on Linux/Unix

In Linux/MacOs, type make at the command line in either the SuiteSparse directory (which
compiles all of SuiteSparse) or in the SuiteSparse/ParU directory (which just compiles
ParU). ParU will be compiled; you can type make demos to run a set of simple demos.

The use of make is optional. The top-level ParU/Makefile is a simple wrapper that uses
cmake to do the actual build.

To fully test the coverage of the lines ParU, go to the Tcov directory and type make. This
test requires Linux.

To install the shared library (by default, into /usr/local/lib and /usr/local/include),
domake install. To uninstall, domake uninstall. For more options, see the ParU/README .md

file.

2.3 C/CH++ Example

Below is a simple C++ program that illustrates the use of ParU. The program reads in
a problem from stdin in MatrixMarket format [4], solves it, and prints the norm of A

3

and the residual. Some error testing code is omited to simplify the program, but a robust
user application should check the return values from ParU. The full program can be found in
ParU/Demo/paru_simple.cpp. Note that ParU supports only real double-precision matrices.

Refer to the CHOLMOD User guide for the CHOLMOD methods used below.

#include <tostream>
#include <iomanip>
#include <708>
#include <cmath>
#include "ParU.h"

int main(int argc, char **argv)
{
cholmod_common Common, *cc;
cholmod_sparse *A = NULL;
ParU_Symbolic Sym = NULL;
ParU_Numeric Num = NULL;

ParU_Control Control = NULL;
double *b = NULL, *x = NULL;
VAt Reading the input matrig ~~TTTTTTTTTTTTTTmmssssss s s s s s s s e e

// start CHOLMOD
cc = &Common;
int mtype;
cholmod_1_start(cc);
A = (cholmod_sparse *)cholmod_l_read_matrix(stdin, 1, &mtype, cc);
/T Starting computation™~~TTTTTTTTTTTmmmmmmsmamms s e
std::cout << " ParU, a simple demo: =\n";
ParU_Info info;
ParU_Analyze(A, &Sym, Control);
int64_t n, anz;
ParU_Get (Sym, Num, PARU_GET_N, &n, Control));
ParU_Get (Sym, Num, PARU_GET_ANZ, &anz, Control));
std::cout << "Input matrix is " << n << "x" << n <<
"nnz = " << anz << std::endl;
ParU_Factorize(A, Sym, &Num, Control);
std::cout << "ParU: factorization was successful." << std::endl;

V2iiiiiataiaiaiaiatatata it Computing the residual, norm(b-Az)
b = (double *)malloc(n * sizeof (double));

x = (double *)malloc(n * sizeof (double));

for (int64_t i = 0; i < n; ++i) bl[i] = 1 + 1;
ParU_Solve(Sym, Num, b, x, Control));

double resid, anorm, xnorm, rcond;

ParU_Residual(A, x, b, resid, anorm, xnorm, Control));
ParU_Get (Sym, Num, PARU_GET_RCOND_ESTIMATE, &rcond, Control);

double rresid = (anorm == || xnorm == 0) ? 0 : (resid/(anorm*xnorm));
std: :cout << std::scientific << std::setprecision(2)

<< "Relative residual is |" << rresid << "| anorm is " << anorm

<< ", xnorm is " << xnorm << " and rcond is " << rcond << "."

<< std::endl;
V2N End computation™ "~ T TTT T T T T mmmm s s s s m e
free(b);
free(x);
ParU_FreeNumeric (&Num, Control);
ParU_FreeSymbolic(&Sym, Control);
ParU_FreeControl (&Control) ;
cholmod_1_free_sparse(&A, cc);
cholmod_1_finish(cc);
return (info);

A simple demo for the C interface is shown next. You can see the complete demo in
ParU/Demo/paru_simplec.c.

#include "ParU.h"

int main(int argc, char **argv)

{
cholmod_common Common, *cc = NULL;
cholmod_sparse *A = NULL;
ParU_C_Symbolic Sym = NULL;
ParU_C_Numeric Num = NULL;
ParU_C_Control Control = NULL;
double *b = NULL, *x = NULL;
S/ Reading the input matrig ~~TTTTTTTTTTTTTmmossmssss s s s mssssemmmm e

// start CHOLMOD

cc = &Common;

int mtype;

cholmod_1_start(cc);

// read in the sparse matriz A from stdin

A = (cholmod_sparse *)cholmod_l_read_matrix(stdin, 1, &mtype, cc);

ST Starting computation™ " TTTTTTTTTImmmmmmmmmasa s a s

ParU_C_Analyze(A, &Sym, Control);

int64_t n, anz;

ParU_C_Get_INT64 (Sym, Num, PARU_GET_N, &n, Control);

ParU_C_Get_INT64 (Sym, Num, PARU_GET_ANZ, &anz, Control);

printf ("Input matrix is %" PRId64 "xJ" PRId64 " nnz = 7" PRId64 " \n",
n, n, anz);
ParU_C_Factorize(A, Sym, &Num, Control);
/T Computing the residual, morm(b-Ax) ~~~~~ " rrwmmmmmmTEs
b = (double *)malloc(n * sizeof (double));
x = (double *)malloc(n * sizeof(double));
for (int64_t 1 = 0; 1 < n; ++i) b[i] =1 + 1;
ParU_C_Solve_Axb(Sym, Num, b, x, Control);
double resid, anorm, xnorm;
ParU_C_Residual_bAx(A, x, b, &resid, &anorm, &xnorm, Control);
double rresid = (anorm == || xnorm == 0) ? 0 : (resid/(anorm*xnorm)) ;
double rcond;
ParU_C_Get_FP64(Sym, Num, PARU_GET_RCOND_ESTIMATE, &rcond, Control);
printf("Relative residual is |%.2el|, anorm is %.2e, xnorm is %.2e, "
" and rcond is %.2e.\n",
rresid, anorm, xnorm, rcond);
V2N End computation™ "~ T TTT T T T T T mmmmm s s s s
if (b != NULL) free(b);
if (x != NULL) free(x);
ParU_C_FreeNumeric(&Num, Control);
ParU_C_FreeSymbolic(&Sym, Control);
ParU_C_FreeControl (&Control) ;
cholmod_1_free_sparse(&A, cc);
cholmod_1_finish(cc);
return (info);

2.4 ParU_Info: return values of each ParU method

All ParU C and C++ routines return an enum of type ParU_Info. The user application
should check this return value before continuing.

typedef enum ParU_Info

{
PARU_SUCCESS = 0, // everying is fine
PARU_OUT_OF_MEMORY = -1, // ParU ran out of memory
PARU_INVALID = -2, // inputs are invalid (NULL, for example)
PARU_SINGULAR = -3, // matrix is numerically singular
PARU_TOO_LARGE = -4 // problem too large for the BLAS

} ParU_Info ;

3 CH+ Syntax

3.1 ParU_Version: version of the ParU package

ParU has two mechanisms for informing the user application of its date and version: macros
that are #defined in ParU.h, and a ParU_Version function. Both methods are provided
since it’s possible that the ParU.h header found when a user application was compiled might
not match the same version found when the same user application was linked with the
compiled ParU library.

#define PARU_DATE "Sept 5, 2024"

#define PARU_VERSION_MAJOR 1

#define PARU_VERSION_MINOR O

#define PARU_VERSION_UPDATE O

ParU_Info ParU_Version (int ver [3], char date [128]) ;

ParU_Version returns the version in ver array (major, minor, and update, in that order),
and the date in the date array provided by the user application.

3.2 ParU_Control: parameters that control ParU

The ParU_Control structure contains parameters that control various ParU options. The ob-
ject is created by ParU_InitControl, modified by ParU_Set, and deleted by ParU_FreeControl.
Its contents can be queried with ParU_Get.

Any ParU function can be passed a NULL pointer for its Control parameter. In that
case, defaults are used. To use non-default parameters, create a Control object and then
set 1ts parameters.

ParU_Info ParU_InitControl
(

// output:

ParU_Control *Control_handle // Control object to create
)

ParU_Info ParU_FreeControl

(
// input/output:
ParU_Control *Control_handle // Control object to free

3.3 ParU_Set: set parameters in the Control object

There are four variants of ParU_Set for setting control parameters, two for integers (int64_t
and int32_t) and two for floating-point (double and float) which are the valid options for
type in the signature below.

ParU_Info ParU_Set
(
// input

ParU_Control_enum parameter, // parameter to set
type c, // value to set it to
// control:
ParU_Control Control

)

The ParU_Control_enum parameter defines which parameter to set, described below.
These are also used for ParU_Get, to read back these parameters from the Control object.

// enum for ParU_Set/ParU_Get for Control object
typedef enum

{
// int64_t parameters for ParU_Set and ParU_Get:
PARU_CONTROL_MAX_THREADS = 1001, // max number of threads
PARU_CONTROL_STRATEGY = 1002, // ParU strategy
PARU_CONTROL_UMFPACK_STRATEGY = 1003, // UMFPACK strategy
PARU_CONTROL_ORDERING = 1004, // UMFPACK ordering
PARU_CONTROL_RELAXED_AMALGAMATION = 1005, // goal for # pivots in fronts
PARU_CONTROL_PANEL_WIDTH = 1006, // # of pivots in a panel
PARU_CONTROL_DGEMM_TINY = 1007, // dimension of tiny dgemm's
PARU_CONTROL_DGEMM_TASKED = 1008, // dimension of tasked dgemm's
PARU_CONTROL_DTRSM_TASKED = 1009, // dimension of tasked dtrsm's
PARU_CONTROL_PRESCALE = 1010, // prescale input matrix
PARU_CONTROL_SINGLETONS = 1011, // filter singletons, or not
PARU_CONTROL_MEM_CHUNK = 1012, // chunk size of memset and memcpy
// int64_t parameter, for ParU_Get only:
PARU_CONTROL_OPENMP = 1013, // if ParU compiled with OpenMP;
// (for ParU_Get only, not set)
PARU_CONTROL_NUM_THREADS = 1014, // actual number of threads used
// double parameters for ParU_Set and ParU_Get:
PARU_CONTROL_PIVOT_TOLERANCE = 2001, // pivot tolerance
PARU_CONTROL_DIAG_PIVOT_TOLERANCE = 2002, // diagonal pivot tolerance
// pointer to const string (const char **), for ParU_Get only:
PARU_CONTROL_BLAS_LIBRARY_NAME = 3001, // BLAS library used
PARU_CONTROL_FRONT_TREE_TASKING = 3002, // parallel or sequential
}

ParU_Control_enum ;
For integer parameters:

e PARU_CONTROL_MAX_THREADS: number of OpenMP threads to use. If zero or negative,
the value is obtained from omp_get_max_threads.

e PARU_CONTROL_STRATEGY: Ordering and factorization strategy to use.

— PARU_STRATEGY_AUTO: ParU selects its strategy automatically, based on the sym-
bolic analysis of the input matrix, by selecting whichever strategy that UMF-
PACK selects.

— PARU_STRATEGY_UNSYMMETRIC: During numerical factorization, no preference is
given for diagonal entries when looking for pivots.

— PARU_STRATEGY_SYMMETRIC: During numerical factorization, diagonal entries are
given preference when looking for pivots. This strategy works well when the
nonzero pattern of the matrix is mostly symmetric, and when the diagonal of the
matrix is mostly zero-free.

e PARU_CONTROL_UMFPACK_STRATEGY: The ordering strategy used by UMFPACK. ParU
uses UMFPACK for its ordering and symbolic analysis phases. The ParU and UMF-
PACK strategies are normally the same, but there are cases where best performance
is obtained with different strategies.

— UMFPACK_STRATEGY_AUTO: UMFPACK selects its strategy automatically, based
on the symbolic analysis of the input matrix. Let S be the matrix found by
UMFPACK after it removes the row and column singletons (defined below). If
the singleton removal preserves the diagonal of A, the nonzero pattern of S has
a symmetry o > 0.3, and the diagonal of S is at least 90% nonzero, then the
symmetric strategy is chosen. Otherwise, the unsymmetric strategy is chosen.

The symmetry o of S is defined as the number of matched off-diagonal entries,
divided by the total number of off-diagonal entries. An entry s;; is matched if s;
is also an entry. They need not be numerically equal. An entry is a value in A
which is present in the input data structure. All nonzeros are entries, but some
entries may be numerically zero.

A row singleton is an entry a;; with a single entry in the ith row of the matrix
A. A column singleton is an entry a,; with a single entry in the jth column of
the matrix A. When a singleton a,; is found, row 7 and column j are removed
and the process repeats. In the final pruned matrix, all rows and columns have
at least two entries.

— UMFPACK_STRATEGY_UNSYMMETRIC: UMFPACK will order columns of the matrix
A’A via COLAMD or METIS.

— UMFPACK_STRATEGY_SYMMETRIC: UMFPACK will order the columns of the matrix
A+ A’ via AMD or METIS.

e PARU_CONTROL_ORDERING:

The default ordering is PARU_ORDERING_METIS_GUARD, which provides low fill-in. How-
ever, this ordering can be costly to compute. It is best suited to the case when multi-
ple matrices with the same nonzero pattern are being factorized, where the symbolic
analysis is just performed once, and reused for each of the subsequent numerical fac-
torizations.

For a one-off factorization of a single matrix, PARU_ORDERING_AMD can be faster; the
ordering is much faster to compute than METIS, and the quality of the ordering
(which determines the fill-in and flop count in the numerical factorization) can often
be acceptable. This ordering option uses AMD when using the symmetric strategy, or
COLAMD when using the unsymmetric strateg.

— PARU_ORDERING_AMD: use AMD on A + A’ (symmetric strategy) or COLAMD
(unsymmetric strategy), which orders A’A without forming it explicitly.

— PARU_ORDERING_METIS: use METIS on A + A’ (symmetric strategy) or A’A (un-
symmetric strategy), where A’A is explicitly formed.

— PARU_ORDERING_METIS_GUARD: use METIS, AMD, or COLAMD. This is the de-
fault. Symmetric strategy: always use METIS on A+ A’. Unsymmetric strategy:

use METIS on A’A, unless A has one or more rows with 3.2y/n or more entries.
In that case, A’A is very costly to form, and COLAMD is used instead of METIS.

— PARU_ORDERING_CHOLMOD: use CHOLMOD (AMD/COLAMD then METIS, see
above).

— PARU_ORDERING_BEST: try many orderings and pick the best one found.

— PARU_ORDERING_NONE: natural ordering. The permutations P and () are identity,
unless singletons are removed prior to factorization.

PARU_CONTROL_RELAXED_AMALGAMATION: threshold for relaxed amalgamation. When
constructing its frontal matrices, ParU attempts to ensure that all frontal matrices
contain at least this many pivot columns. Values less than zero are treated as the
default (32), and values greater than 512 are treated as 512.

PARU_CONTROL_PANEL_WIDTH: Width of panel for dense factorization of each frontal
matrix.

PARU_CONTROL_DGEMM_TINY: Do not call the BLAS dgemm routine if all dimenions of
its dense matrices are small than this threshold.

PARU_CONTROL_DGEMM_TASKED: When calling dgemm, if any dimension of its matriices
are at or above this threshold, then a tasked variant of dgemm is used. For the Intel MKL
BLAS library, this is a standard call to dgemm, controlled by mk1l_set_num_threads_local.
For other BLAS library, ParU makes multiple calls to dgemm using a single thread each.

PARU_CONTROL_DTRSM_TASKED: When calling dtrsm, if any dimension of its matriices
are at or above this threshold, then a tasked variant of dtrsmis used. For the Intel MKL
BLAS library, this is a standard call to dtrsm, controlled by mk1_set_num_threads_local.
For other BLAS library, ParU makes multiple calls to dtrsm using a single thread each.

PARU_CONTROL_PRESCALE:

— PARU_PRESCALE_MAX: each row is scaled by the maximum absolute value in the
row.

— PARU_PRESCALE_SUM: each row is scaled by the sum of absolute values in the row.
— PARU_PRESCALE_NONE: no scaling is performed.

PARU_CONTROL_SINGLETONS: If nonzero, singletons are permuted to the front of the
matrix before factorization. If zero, singletons are left as-is and not treated specially.

10

e PARU_CONTROL_MEM_CHUNK: chunk size for parallel memset and memcpy.
For double parameters:

e PARU_CONTROL_PIVOT_TOLERANCE: Pivot tolerance for off-diagonal pivots, or for all
pivots when using the unsymmetric strategy. A pivot is chosen if it is at least as
large as 0.1 (default) times the maximum absolute value in its column. This threshold
allows for the selection of sparse pivot rows. Standard partial pivoting is used with the
tolerance is 1.0.

e PARU_CONTROL_DIAG_PIVOT_TOLERANCE: Pivot tolerance for diagonal pivots when us-
ing the symmetric strategy.

Default values of Control parameters are defined below:

#define PARU_DEFAULT_MAX_THREADS (0)

#define PARU_DEFAULT_STRATEGY PARU_STRATEGY_AUTO
#define PARU_DEFAULT_UMFPACK_STRATEGY UMFPACK_STRATEGY_AUTO
#define PARU_DEFAULT_ORDERING PARU_ORDERING_METIS_GUARD
#define PARU_DEFAULT_RELAXED_AMALGAMATION (32)

#define PARU_DEFAULT_PANEL_WIDTH (32)

#define PARU_DEFAULT_DGEMM_TINY 4

#define PARU_DEFAULT_DGEMM_TASKED (512)

#define PARU_DEFAULT_DTRSM_TASKED (4096)

#define PARU_DEFAULT_PRESCALE PARU_PRESCALE_MAX
#define PARU_DEFAULT_SINGLETONS (¢D)

#define PARU_DEFAULT_MEM_CHUNK (1024%1024)

#define PARU_DEFAULT_PIVOT_TOLERANCE (0.1)

#define PARU_DEFAULT_DIAG_PIVOT_TOLERANCE (0.001)

Refer to the next section for how to use ParU_Get to query the current settings of pa-
rameters in the Control object.

3.4 ParU _Get: get information from a ParU opaque object

The ParU_Get method returns properties fron any of the three opaque ParU data structures:
the ParU_Control object, the ParU_Symbolic object containing a symbolic analysis, and the
ParU_Numeric object containing a numeric factorization.

There are several signatures for ParU_Get depending on which object is being queried.
To query the ParU_Control object, the ParU_Control_enum is used (see Section . To
query the other two objects (ParU_Symbolic and ParU_Numeric), the ParU_Get_enum is
used, described below.

// enum for ParU_Get for Symbolic/Numeric objects
typedef enum

{
// int64_t scalars:
PARU_GET_N = 0, // # of rows/columns of A and its factors
PARU_GET_ANZ = 1, // # of entries in input matrix
PARU_GET_LNZ_BOUND = 2, // # of entries held in L

11

PARU_GET_UNZ_BOUND = 3, // # of entries held in U

PARU_GET_NROW_SINGLETONS = 4, // # of row singletons
PARU_GET_NCOL_SINGLETONS = 5, // # of column singletons
PARU_GET_STRATEGY = 6, // strategy used by ParU
PARU_GET_UMFPACK_STRATEGY = 7, // strategy used by UMFPACK
PARU_GET_ORDERING = 8, // ordering used by UMFPACK

// int64_t arrays of size n:
PARU_GET_P = 101, // partial pivoting row ordering
PARU_GET_Q = 102, // fill-reducing column ordering

// double scalars:

PARU_GET_FLOPS_BOUND = 201, // flop count for factorization (bound)
PARU_GET_RCOND_ESTIMATE = 202, // rcond estimate

PARU_GET_MIN_UDIAG = 203, // min (abs (diag (U)))
PARU_GET_MAX_UDIAG = 204, // max (abs (diag (U)))

// double array of size n:
PARU_GET_ROW_SCALE_FACTORS = 301, // row scaling factors
}

ParU_Get_enum ;

Use the following signatures to query the symbolic or numeric factorization:

ParU_Info ParU_Get // get int64_t from the symbolic/numeric objects
(
// input:
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
ParU_Get_enum field, // field to get
// output:
int64_t *result, // int64_t result: a scalar or an array
// control:
ParU_Control Control
)
ParU_Info ParU_Get // get double from the symbolic/numeric objects
(
// input:
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
ParU_Get_enum field, // field to get
// output:
double *result, // double result: a scalar or an array
// control:
ParU_Control Control
)

These fields are described below.

e PARU_GET_N: the number of rows and columns of the matrices A, L, and U.

e PARU_GET_ANZ: the number of entries in the input matrix A.

12

e PARU_GET_LNZ_BOUND: the number of entries held in the data structure for L. This is
an upper bound on the number of nonzeros in L, because it includes extra zeros due
to amalgamation.

e PARU_GET_UNZ_BOUND: the number of entries held in the data structure for U. This is
an upper bound on the number of nonzeros in U, because it includes extra zeros due
to amalgamation.

e PARU_GET_NROW_SINGLETONS: number of row singletons, which are rows of A with just a
single entry (or become so when other singletons are removed). These become diagonal
pivot entries, where the corresponding row of U has just a single entry.

e PARU_GET_NCOL_SINGLETONS: number of column singletons, which are columns of A
with just a single entry (or become so when other singletons are removed). These
become diagonal pivot entries, where the corresponding column of L has just a single
entry.

e PARU_GET_STRATEGY: the strategy selected by ParU, either PARU_STRATEGY_UNSYMMETRIC
or PARU_STRATEGY_SYMMETRIC.

e PARU_GET_UMFPACK_STRATEGY: the strategy selected by UMFPACK for the symbolic
analysis phase of ParU, either UMFPACK_STRATEGY_UNSYMMETRIC or
UMFPACK_STRATEGY_SYMMETRIC.

e PARU_GET_ORDERING: The ordering used during the symbolic analysis phase of ParU.
See the list in Section under the description of PARU_CONTROL_ORDERING.

e PARU_GET_P: partial pivoting row ordering, an int64_t array of size n where A is
n-by-n.

e PARU_GET_Q: fill-reducing column ordering, an int64_t array of size n where A is
n-by-n.

e PARU_GET_FLOPS_BOUND: an upper bound on the number of floating-operations per-
formed to compute the LU factorization. This includes extra flops due to amalga-
mation of frontal matrices. It does not include the prescaling of A, which takes an
additional anz flops (see PARU_GET_ANZ).

e PARU_GET_RCOND_ESTIMATE: a rough estimate of the reciprical of the condition number
of A, equal to the minimum absolute value on the diagonal of U, divided by the
maximum absolute value on the diagonal of U.

e PARU_GET_MIN_UDIAG: the minimum absolute value on the diagonal of U.
e PARU_GET_MAX_UDIAG: the maximum absolute value on the diagonal of U.
e PARU_GET_ROW_SCALE_FACTORS: The row scaling factors, a double array of size n.

For example, to get a copy of the size-n column permutation vector from the Symbolic
object:

13

int64_t Q [n] ;
ParU_Get (Sym, Num, PARU_GET_Q, Q, Control) ;

Most of the int64_t results can be obtained with a NULL numeric object, with the
exception of the row permutation P, and the count of the number of entries in the L and U
factors. All of the double results require both the Sym and Num objects to be valid.

The following three signatures are available for querying contents of the Control object:

ParU_Info ParU_Get // get int64_t parameter from Control
(

// input

ParU_Control_enum field, // field to get

// output:

int64_t *c, // value of field

// control:

ParU_Control Control

ParU_Info ParU_Get // get double parameter from Control
(

// input

ParU_Control_enum field, // field to get

// output:

double *c, // value of field

// control:

ParU_Control Control

ParU_Info ParU_Get // get string from Control
(

// input:

ParU_Control_enum field, // field to get

// output:

const char **result, // string result

// control:

ParU_Control Control

The parameters that can be returned are the same as those described in Section [3.3] with
four additional parameters that can be queried by ParU_Get but not set with ParU_Set. Two
cases return string that is owned by the library and must not be modified:

char *blas_libary_name, *front_tasking ;
ParU_Get (PARU_CONTROL_BLAS_LIBRARY_NAME, &blas_name, Control)) ;
ParU_Get (PARU_CONTROL_FRONT_TREE_TASKING, &front_tasking, Control)) ;

This case returns true if ParU was compiled with OpenMP, or false otherwise:

int64_t openmp_used ;
ParU_Get (PARU_CONTROL_OPENMP, &openmp_used, Control)) ;

14

Finally, the number of threads actually to be used by ParU can be queried as follows.
If the Control is set to its default, this will be the value from omp_get_max_threads.
Otherwise, the value is smaller of omp_get_max_threads and PARU_CONTROL_MAX_THREADS.

int64_t nthreads_used ;
ParU_Get (PARU_CONTROL_NUM_THREADS, &nthreads_used, Control)) ;

3.5 ParU_Analyze: symbolic analysis

ParU_Info ParU_Analyze
(

// input:

cholmod_sparse *A, // input matrix to analyze of size n-by-n
// output:

ParU_Symbolic *Sym_handle, // output, symbolic analysis

// control:

ParU_Control Control
)

ParU_Analyze takes as input a sparse matrix in the CHOLMOD data structure, A. The
matrix must be square, double precision, not complex, and not held in the CHOLMOD
symmetric storage format. Refer to the CHOLMOD documentation for details. On output,
the symbolic analysis structure Sym is created, passed in as &Sym. The symbolic analysis
can be used for different calls to ParU_Factorize for matrices that have the same sparsity
pattern but different numerical values. The symbolic analysis structure must be freed by
ParU_FreeSymbolic.

3.6 ParU_Factorize: numerical factorization

ParU_Info ParU_Factorize
(
// input:
cholmod_sparse *A, // input matrix to factorize
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
// output:
ParU_Numeric *Num_handle,
// control:
ParU_Control Control

)

ParU_Factorize performs the numerical factorization of its input sparse matrix A. The
symbolic analsys Sym must have been created by a prior call to ParU_Analyze with the same
matrix A, or one with the same sparsity pattern as the one passed to ParU_Factorize. On
output, the &Num structure is created. The numeric factorization structure must be freed by
ParU_FreeNumeric.

15

3.7 ParU_Solve: solve a linear system, Ax = b

ParU_Solve solves a sparse linear system Az = b for a sparse matrix A and vectors x and b,
or matrices X and B. The matrix A must have been factorized by ParU_Factorize, and the
Sym and Num structures from that call must be passed to this method.

The method has four overloaded signatures, so that it can handle a single right-hand-side
vector or a matrix with multiple right-hand-sides, and it provides the option of overwriting
the input right-hand-side(s) with the solution(s).

ParU_Info ParU_Solve // solve Ax=b, overwriting b with solution x
(
// input:
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
// input/output:
double *x, // vector of size n-by-1; right-hand on input,
// solution on output
// control:
ParU_Control Control
)
ParU_Info ParU_Solve // solve Ax=b
(
// input:
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
double *b, // vector of size n-by-1
// output
double *x, // vector of size n-by-1
// control:
ParU_Control Control
)
ParU_Info ParU_Solve // solve AX=B, overwriting B with solution X
(
// input
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
int64_t nrhs, // # of right-hand sides
// input/output:
double *X, // X is n-by-nrhs, where A is n-by-n;
// holds B on input, solution X on input
// control:
ParU_Control Control
)
ParU_Info ParU_Solve // solve AX=B
(
// input
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
int64_t nrhs, // # of right-hand sides
double *B, // n-by-nrhs, in column-major storage

16

// output:
double *X, // n-by-nrhs, in column-major storage

// control:
ParU_Control Control

3.8 ParU_LSolve: solve a linear system, Lx =b

ParU_LSolve solves a lower triangular system, Lx = b with vectors x and b, or LX = B
with matrices X and B, using the lower triangular factor computed by ParU_Factorize.
No scaling or permutations are used.

ParU_Info ParU_LSolve // solve Lx=b

(
// input
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
// input/output:
double *x, // n-by-1, in column-major storage;

// holds b on input, solution x on input

// control:
ParU_Control Control

)

ParU_Info ParU_LSolve // solve LX=B

(
// input
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
int64_t nrhs, // # of right-hand-sides (# columns of X)
// input/output:
double *X, // X is n-by-nrhs, where A is n-by-n;

// holds B on input, solution X on input

// control:
ParU_Control Control

)

3.9 ParU_USolve: solve a linear system, Ux = b

ParU_USolve solves an upper triangular system, Ux = b with vectors x and b, or UX = B
with matrices X and B, using the upper triangular factor computed by ParU_Factorize.
No scaling or permutations are used.

ParU_Info ParU_USolve // solve Ux=b
(
// input
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
// input/output
double *x, // n-by-1, in column-major storage;

// holds b on input, solution x on input
// control:

17

ParU_Control Control

)

ParU_Info ParU_USolve // solve UX=B

(
// input
const ParU_Symbolic Sym, // symbolic analysis from ParU_Analyze
const ParU_Numeric Num, // numeric factorization from ParU_Factorize
int64_t nrhs, // # of right-hand-sides (# columns of X)
// input/output:
double *X, // X is n-by-nrhs, where A is n-by-n;

// holds B on input, solution X on input

// control:
ParU_Control Control

)

3.10 ParU_Perm: permute and scale a dense vector or matrix

ParU_Perm permutes and optionally scales a vector b or matrix B. If the input s is NULL, no
scaling is applied. The permutation vector P has size n. If the kth index in the permutation
is row ¢, then i = P[k].

For the vector case, the output is x(k) = b(P(k))/s(P(k)), or x(k) = b(P(k)), or if s is
NULL, for all £ in the range 0 to n — 1.

For the matrix case, the output is X (k,j) = B(P(k),7)/s(P(k)) for all rows k and all
columns j of X and B. If s is NULL, then the output is X (k,j) = B(P(k), J).

ParU_Info ParU_Perm

(
// inputs
const int64_t *P, // permutation vector of size n
const double *s, // vector of size n (optional)
const double *b, // vector of size n
int64_t n, // length of P, s, B, and X
// output
double *x, // vector of size n
// control:
ParU_Control Control

)

ParU_Info ParU_Perm

(
// inputs
const int64_t *P, // permutation vector of size nrows
const double *s, // vector of size nrows (optional)
const double *B, // array of size nrows-by-ncols
int64_t nrows, // # of rows of X and B
int64_t ncols, // # of columns of X and B
// output
double *X, // array of size nrows-by-ncols
// control:
ParU_Control Control

)

18

3.11 ParU_InvPerm: permute and scale a dense vector or matrix

ParU_InvPerm permutes and optionally scales a vector b or matrix B. If the input s is NULL,
no scaling is applied. The permutation vector P has size n, and its inverse is implicitly used
by this method. If the kth index in the permutation is row ¢, then i = P[k].

For the vector case, the output is x(P(k)) = b(k)/s(P(k)), or x(P(k)) = b(k), or if s is
NULL, for all k£ in the range 0 to n — 1.

For the matrix case, the output is X (P(k),j) = B(k,7)/s(P(k)) for all rows k and all
columns j of X and B. If s is NULL, then the output is X (P(k),j) = B(k, j).

ParU_Info ParU_InvPerm

(

// inputs

const int64_t *P, //
const double *s, //
const double *b, //
int64_t n, //
// output

double *x, //
// control:

ParU_Control Control

ParU_Info ParU_InvPerm

(

// inputs

const int64_t *P, //
const double *s, //
const double *B, //
int64_t nrows, //
int64_t ncols, //
// output

double *X, //
// control:

ParU_Control Control

permutation vector of size n
vector of size n (optional)
vector of size n

length of P, s, B, and X

vector of size n

permutation vector of size nrows
vector of size nrows (optional)
array of size nrows-by-ncols

of rows of X and B

of columns of X and B

array of size nrows-by-ncols

The ParU_LSolve, ParU_USolve, ParU_Perm, and ParU_InvPerm can be used together

to solve Az = b or AX = B.

For example, if t is a temporary vector of size n, and A is

an n-by-n matrix, calling ParU_Solve to solve Ax = b is identical to the following (ignoring

any tests for error conditions):

int64_t P [n], Q [n] ;
double t [n], R [n] ;

ParU_Get (Sym, Num, PARU_GET_P, P, Control) ;

ParU_Get (Sym, Num, PARU_GET_Q, Q, Control) ;

ParU_Get (Sym, Num, PARU_GET_ROW_SCALE_FACTORS, R, Control) ;
ParU_Perm (P, R, b, n, t, Control) ;

ParU_LSolve (Sym, Num, t, Control) ;

ParU_USolve (Sym, Num, t, Control) ;

ParU_InvPerm (Q, NULL, t, n, x, Control) ;

19

The numeric factorization Num contains the row permutation vector P from partial piv-
oting, and the row scaling vector R. The symbolic analysis structure Sym contains the fill-
reducing column preordering, Q.

3.12 ParU_Residual: compute the residual

The ParU_Residual function computes the relative residual of Az = b or AX = B, in the
l-norm. It also computes the 1-norm of A and the solution X or x.

ParU_Info ParU_Residual

(
// inputs:
cholmod_sparse *A, // an n-by-n sparse matrix
double *x, // vector of size n, solution to Ax=b
double *b, // vector of size n
// output:
double &resid, // residual: norml(b-A*x) / (normi1(A) * norml (x))
double &anorm, // 1-norm of A
double &xnorm, // 1-norm of x
// control:
ParU_Control Control
)
ParU_Info ParU_Residual
(
// inputs:
cholmod_sparse *A, // an n-by-n sparse matrix
double *X, // array of size n-by-nrhs, solution to AX=B
double *B, // array of size n-by-nrhs
int64_t nrhs,
// output:
double &resid, // residual: norml(B-A*X) / (norml1(A) * norml (X))
double &anorm, // 1l-norm of A
double &xnorm, // 1-norm of X
// control:
ParU_Control Control
)

3.13 ParU_FreeNumeric: free a numeric factorization

ParU_Info ParU_FreeNumeric

(
// input/output:
ParU_Numeric *Num_handle, // numeric object to free
// control:
ParU_Control Control
)

3.14 ParU_FreeSymbolic: free a symbolic analysis

ParU_Info ParU_FreeSymbolic

20

// input/output:

ParU_Symbolic *Sym_handle, // symbolic object to free
// control:

ParU_Control Control

3.15 ParU_FreeControl: free a Control object

ParU_Info ParU_FreeControl
(
// input/output:
ParU_Control *Control_handle // Control object to free

4 C Syntax

The C interface is quite similar to the C++ interface. The next sections describe the user-
callable C functions, their prototypes, and what they can do.

4.1 ParU_C Version: version of the ParU package

ParU_Info ParU_C_Version (int ver [3], char date [128]) ;

4.2 ParU_C_Control: parameters that control ParU

Any C ParU function can be passed a NULL pointer for its Control parameter. In that
case, defaults are used. To use non-default parameters, create a Control object and then
set its parameters. The object is freed by ParU_C_FreeControl.

The ParU_C_Control structure contains parameters that control various ParU options.
The object is created by ParU_C_InitControl, modified by ParU_C_Set_Control_x, and
deleted by ParU_C_FreeControl. Its contents can be queried with ParU_C_Get_Control_INT64.
and ParU_C_Get_Control_FP64.

Any ParU function can be passed a NULL pointer for its Control parameter. In that
case, defaults are used. To use non-default parameters, create a Control object and then
set its parameters.

ParU_Info ParU_C_InitControl
(

ParU_C_Control *Control_C_handle // Control object to create
)

ParU_Info ParU_C_FreeControl
(

ParU_C_Control *Control_handle_C // Control object to free
)

21

4.3 ParU_C_Get_*: get information from a ParU opaque object

The ParU_C_Get_* methods retrieve scalars or arrays from the C versions of the Control,
Symbolic, or Numeric objects. See Section for details.

ParU_Info ParU_C_Get_INT64 // get int64_t contents of Sym_C and Num_C
(
// input:
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize

ParU_Get_enum field, // field to get
// output:
int64_t *result, // int64_t result: a scalar or an array
// control:
ParU_C_Control Control_C
)
ParU_Info ParU_C_Get_FP64 // get double contents of Sym_C and Num_C
(
// input:
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
ParU_Get_enum field, // field to get
// output:
double *result, // double result: a scalar or an array
// control:
ParU_C_Control Control_C
)

ParU_Info ParU_C_Get_Control_INT64 // get int64_t contents of Control
(

// input:

ParU_Control_enum field, // field to get

// output:

int64_t *result, // int64_t result: a scalar or an array
// control:

ParU_C_Control Control_C

ParU_Info ParU_C_Get_Control_FP64 // get double contents of Control
(

// input:

ParU_Control_enum field, // field to get

// output:

double *result, // int64_t result: a scalar or an array
// control:

ParU_C_Control Control_C

ParU_Info ParU_C_Get_Control_CONSTCHAR // get string from Control
(

// input:

ParU_Control_enum field, // field to get

22

// output:

const char **result, // string result
// control:

ParU_C_Control Control_C

4.4 ParU_C_Set_Control_*: set Control parameters

The ParU_C_Set_Control_* methods set parameters in the C version of the Control object.
See Section [3.2] for details.

ParU_Info ParU_C_Set_Control_INT64 // set int64_t parameter in Control
(

// input

ParU_Control_enum field, // field to set

int64_t c, // value to set it to

// control:

ParU_C_Control Control_C
)

ParU_Info ParU_C_Set_Control_FP64 // set double parameter in Control
(

// input

ParU_Control_enum field, // field to set

double c, // value to set it to

// control:

ParU_C_Control Control_C

4.5 ParU_C_Analyze: symbolic analysis

ParU_C_Analyze performs the symbolic analysis of a sparse matrix, based solely on its
nonzero pattern. ParU_C_Analyze is called once and can be used for different ParU_C_Factorize
calls for the matrices that have the same pattern but different numerical values. The symbolic
analysis structure must be freed by ParU_C_FreeSymbolic.

ParU_Info ParU_C_Analyze

(
// input:
cholmod_sparse *A, // input matrix to analyze of size n-by-n
// output:
ParU_C_Symbolic *Sym_handle_C, // output, symbolic analysis
// control:

ParU_C_Control Control_C

4.6 ParU_C_Factorize: numeric factorization

ParU_C_Factorize computes the numeric factorization. The ParU_C_Symbolic structure
computed in ParU_C_Analyze is an input to this routine. The numeric factorization structure
must be freed by ParU_C_FreeNumeric.

23

ParU_Info ParU_C_Factorize

(
// input:
cholmod_sparse *A, // input matrix to factorize of size n-by-n
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_Analyze

// output:
ParU_C_Numeric *Num_handle_C, // output numerical factorization

// control:
ParU_C_Control Control_C

4.7 ParU_C_Solve_A*: solve a linear system, Az =0

The ParU_C_Solve_Axx, ParU_C_Solve_Axb, ParU_C_Solve_AXX and ParU_C_Solve_AXB
methods solve a sparse linear system Az = b for a sparse matrix A and vectors x and b, or
matrices X and B. The matrix A must have been factorized by ParU_C_Factorize, and the
Sym_C and Num_C structures from that call must be passed to this method.

ParU_Info ParU_C_Solve_Axx // solve Ax=b, overwriting b with solution x
(
// input:
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
// input/output:
double *x, // vector of size n-by-1; right-hand on input,
// solution on output

// control:
ParU_C_Control Control_C
)
ParU_Info ParU_C_Solve_Axb // solve Ax=b
(
// input:
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
double *b, // vector of size n-by-1
// output
double *x, // vector of size n-by-1
// control:
ParU_C_Control Control_C
)
ParU_Info ParU_C_Solve_AXX // solve AX=B, overwriting B with solution X
(
// input
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
int64_t nrhs,
// input/output:
double *X, // array of size n-by-nrhs in column-major storage,
// right-hand-side on input, solution on output.
// control:
ParU_C_Control Control_C
)

24

ParU_Info ParU_C_Solve_AXB // solve AX=B, overwriting B with solution X
(
// input
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
int64_t nrhs,

double *B, // array of size n-by-nrhs in column-major storage
// output:

double *X, // array of size n-by-nrhs in column-major storage
// control:

ParU_C_Control Control_C

4.8 ParU_C_Solve_L*: solve a linear system, Lz = b

The ParU_C_Solve_Lxx and ParU_C_Solve_LXX methods solve lower triangular systems,
Lz = b with vectors x and b, or LX = B with matrices X and B, using the lower triangular
factor computed by ParU_C_Factorize. No scaling or permutations are used.

ParU_Info ParU_C_Solve_Lxx // solve Lx=b, overwriting b with solution x
(
// input:
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
// input/output:
double *x, // vector of size n-by-1; right-hand on input,
// solution on output

// control:
ParU_C_Control Control_C
)
ParU_Info ParU_C_Solve_LXX // solve LX=B, overwriting B with solution X
(
// input
const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
int64_t nrhs,
// input/output:
double *X, // array of size n-by-nrhs in column-major storage,
// right-hand-side on input, solution on output.
// control:
ParU_C_Control Control_C
)

4.9 ParU_C_Solve_U*: solve a linear system, Ux = b

The ParU_C_Solve_Uxx and ParU_C_Solve_UXX methods solve an upper triangular system,
Ux =bor UX = B. No scaling or permutation is performed.

ParU_Info ParU_C_Solve_Uxx // solve Ux=b, overwriting b with solution x

(
// input:

25

const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze
const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize
// input/output:
double *x, // vector of size n-by-1; right-hand on input,
// solution on output
// control:
ParU_C_Control Control_C

ParU_Info ParU_C_Solve_UXX // solve UX=B, overwriting B with solution X

(

// input

const ParU_C_Symbolic Sym_C, // symbolic analysis from ParU_C_Analyze

const ParU_C_Numeric Num_C, // numeric factorization from ParU_C_Factorize

int64_t nrhs,

// input/output:

double *X, // array of size n-by-nrhs in column-major storage,
// right-hand-side on input, solution on output.

// control:

ParU_C_Control Control_C

4.10 ParU_C_Perm: permute and scale a dense vector or matrix

ParU_C_Perm and ParU_C_Perm_X permutes and optionally scale a dense vector or matrix.
Refer to Section [3.10 for details.

ParU_Info ParU_C_Perm

(

// inputs

const int64_t *P, // permutation vector of size n
const double *s, // vector of size n (optional)
const double *b, // vector of size n

int64_t n, // length of P, s, B, and X

// output

double *x, // vector of size n

// control:

ParU_C_Control Control_C

ParU_Info ParU_C_Perm_X

(

// inputs

const int64_t *P, // permutation vector of size nrows
const double *s, // vector of size nrows (optional)
const double *B, // array of size nrows-by-ncols
int64_t nrows, // # of rows of X and B

int64_t ncols, // # of columns of X and B

// output

double *X, // array of size nrows-by-ncols

// control:

ParU_C_Control Control_C

26

4.11 ParU_C_InvPerm: permute and scale a dense vector or matrix

ParU_C_InvPerm and ParU_C_InvPerm_X and permutes and optionally scale a dense vector
or matrix. Refer to Section for details.

ParU_Info ParU_C_InvPerm

(
// inputs
const int64_t *P, // permutation vector of size n
const double *s, // vector of size n (optional)
const double *b, // vector of size n
int64_t n, // length of P, s, B, and X
// output
double *x, // vector of size n
// control
ParU_C_Control Control_C

)

ParU_Info ParU_C_InvPerm_X

(
// inputs
const int64_t *P, // permutation vector of size nrows
const double *s, // vector of size nrows (optional)
const double *B, // array of size nrows-by-ncols
int64_t nrows, // # of rows of X and B
int64_t ncols, // # of columns of X and B
// output
double *X, // array of size nrows-by-ncols
// control
ParU_C_Control Control_C

)

4.12 ParU_C_Residual_*: compute the residual

ParU_C_Residual_bAx and ParU_C_Residual_BAX compute the relative residual of Az = b
or AX = B, in the 1-norm, and the 1-norm of A and the solution X or z.

ParU_Info ParU_C_Residual_bAx

(
// inputs:
cholmod_sparse *A, // an n-by-n sparse matrix
double *x, // vector of size n
double *b, // vector of size n
// output:
double *residc, // residual: norml(b-A*x) / (norml1(A) * norml (x))
double *anormc, // l-norm of A
double *xnormc, // l-norm of x
// control:
ParU_C_Control Control_C
)

ParU_Info ParU_C_Residual_BAX
(

27

// inputs:
cholmod_sparse *A, // an n-by-n sparse matrix

double *X, // array of size n-by-nrhs

double *B, // array of size n-by-nrhs

int64_t nrhs,

// output:

double *residc, // residual: norml(B-A*X) / (norml1(A) * norml (X))
double *anormc, // 1-norm of A

double *xnormc, // 1-norm of X

// control:

ParU_C_Control Control_C

4.13 ParU_C_FreeNumeric: free a numeric factorization

ParU_Info ParU_C_FreeNumeric

(
ParU_C_Numeric *Num_handle_C, // numeric object to free
// control:
ParU_C_Control *Control_C

)

4.14 ParU_C_FreeSymbolic: free a symbolic analysis structure

ParU_Info ParU_C_FreeSymbolic

(
ParU_C_Symbolic *Sym_handle_C, // symbolic object to free
// control:
ParU_C_Control *Control_C

)

4.15 ParU_C_FreeControl: free a Control object

ParU_Info ParU_C_FreeControl

(
ParU_C_Control *Control_handle_C // Control object to free

)

5 Thread safety of malloc, calloc, realloc, and free

ParU is a C++ library but uses the C memory manager for all of its memory alloca-
tions, for compatibility with the other packages in SuiteSparse. It makes limited use of
the C++ new and delete, but overrides those functions to use SuiteSparse_malloc and
SuiteSparse_free. ParU relies on the memory manager routines defined by the
SuiteSparse_config library (SuiteSparse_malloc, SuiteSparse_calloc,
SuiteSparse_realloc, and SuiteSparse_free). By default, those routines relies on the C
malloc, calloc, realloc, and free methods, respectively. They can be redefined; refer to
the documentation of SuiteSparse_config on how to do this.

28

The malloc, calloc, realloc, and free methods must be thread-safe, since ParU calls
those methods from within its parallel tasks. All of their implementations in the standard
C libraries that we are aware of are thread-safe. However, if your memory manager routines
are not thread-safe, ParU will fail catastrophically.

6 Using ParU in MATLAB

6.1 Compiling ParU for MATLAB

To use ParU in MATLAB, you must first compile the paru mexFunction. In MATLAB, go
to the ParU/MATLAB directory and type paru_make. Then add the ParU/MATLAB directory
to your MATLAB path for future use.

For best performance, the paru mexFunction relies on functions unique to the Intel MKL
BLAS. An optional input, paru_make (try_intel), is true by default. paru_make detects
the BLAS library used by MATLAB and then attempts to use functions unique to the Intel
MKL BLAS library (mkl*set_num_threads_local). This may fail when paru is compiled,
in which case compilation is reattempted with try_intel false). If paru fails when it runs,
with a link error reporting that an an mk1l_x* routine is not found, use paru_make (false) to
disable the Intel MKL functions.

Limitations: The built-in compiler used by the MATLAB mex command on Windows
does not support OpenMP, so only parallelism within the BLAS can be used on Windows
when using MATLAB.

6.2 Using ParU in MATLAB

The basic usage x=paru(A,b) solves the linear system Ax = b, computing x=A\b. The
matrix A must be sparse, square, non-singular, and real.

Additional options are available to change paru’s behavior, and an additonal output
parameter reports statistics on the algorithm:

[x,stats] = paru (A,b,opts)

opts is a struct containing the following fields. Any field that is not recognized is ignored,
and missing fields are treated as their defaults:

e opts.strategy: ordering strategy, as a string (default: 'auto'):

— 'auto': the strategy is selected automatically.

— 'symmetric': ordering of A+A', with preference for diagonal pivoting. Works well
for matrices with mostly symmetric nonzero pattern.

— 'unsymmetric': ordering A'*A, with no preference for diagonal pivoting. Works
well for matrices with unsymmetric nonzero pattern.

e opts.tol: relative pivot tolerance for off-diagonal entries (default: 0.1). Pivot entries
must be 0.1 times the max absolute value in its column.

29

e opts.diagtol: relative pivot tolerance for diagonal pivot entries when using the sym-
metric strategy (default: 0.001). A lower tolerance for diagonal entries tends to reduce
fill-in.

e opts.ordering: fill-reducing ordering option, as a string (default: 'amd'):

— 'amd': AMD for the symmetric strategy, COLAMD for unsymmetric.

— 'cholmod': use CHOLMOD’s ordering strategy: try AMD or COLAMD, and
then try METIS if the fill-in from AMD/COLAMD is high; then selects the best
ordering found.

— 'metis': METIS on A+A' for symmetric strategy, A'*A for the unsymmetric
strategy.

— 'metis_guard': use the 'metis' ordering unless the matrix has one or more
rows with 3.2y/n or more entries, in which case use 'amd'.

— 'none': no fill-reducing ordering.
e opts.prescale: prescaling the input matrix (default 'max"').

— 'none': no prescaling.

— 'sum': scale each row by the sum of the absolute values of the row. The prescaled
matrix is RA where R(i,1i) = 1/sum(abs(A(i,:))).

— 'max': scale each row by the sum of the absolute values of the row. The prescaled
matrix is RA where R(i,1i) = 1/max(abs(A(i,:))).

stats is an optional output that provides information on the ParU analysis and factor-
ization of the matrix:

e stats.analysis_time: symbolic analysis time in seconds.

e stats.factorization_time: numeric factorization time in seconds.

e stats.solve_time: forward/backward solve time in seconds.

e stats.strategy_used: symmetric or unsymmetric.

e stats.ordering_used: amd(A+A'), colamd(A), metis(A+A'), metis(A'*A), or none.
e stats.flops: flop count for LU factorization.

e stats.lnz: number of entries in L.

e stats.unz: number of entries in U.

e stats.rcond: rough estimate of the recripical of the condition number.

e stats.blas: BLAS library used, as a string.

30

e stats.front_tree_tasking: a string stating how the paru mexFunction was com-
piled, whether or not tasking is available for factorizing multiple fronts at the same
time ('sequential' or 'parallel'). Parallel tasking is required for best performance,
and requires OpenMP tasking, which is available in OpenMP 4.0 and later.

7 Requirements and Availability

ParU requires several Collected Algorithms of the ACM: CHOLMOD [5, 8], AMD [1} 2],
COLAMD [6, [7] and UMFPACK [9] for its ordering/analysis phase and for its basic sparse
matrix data structure, and the BLAS [I0] for dense matrix computations on its frontal
matrices. An efficient implementation of the BLAS is strongly recommended, such as the
Intel MKL, the AMD ACML, OpenBLAS, FLAME [I1]. or vendor-provide BLAS. ParU
relies heavily on nested parallelism, by making parallel calls to the BLAS, each of which can
themselves be parallel. This is supported by the Intel MKL BLAS library with an Intel-
specific method (mkl_set_num_threads_local) to tell the BLAS how many threads to use.
As a result, tor best performance, the Intel MKL BLAS is required.

ParU also relies heavily on OpenMP tasking to factorize multiple frontal matrices at the
same time, where each frontal matrix can also be factorized by multiple threads. If tasking
is not available, each frontal matrix is factorized one at a time (but still in parallel). For
best performance, nested parallelism is required. However, when using the gcc compiler on
Windows and Mac, we have found that the OpenMP library can hang. As a result, on those
platforms, nested parallelism is disabled when using gcc. If using gcc, use a recent compiler
(version 7.5.0 fails; 12.2.0 works).

You can query ParU at run time to determine which BLAS library it is using, and whether
or not it is compiled to use parallel or sequential factorization of its frontal matrix tree. See
ParU_Get (Section for details.

SuiteSparse uses a slightly modified version of METIS 5.1.0, distributed along with
SuiteSparse itself. Its use is optional, however. ParU uses AMD as its default ordering.
METIS tends to give orderings that are good for parallelism. However, METIS itself can be
much slower than AMD. As a result, the symbolic analysis using METIS can be slow, but
usually, the factorization is faster. Therefore, depending on your use case, either use METIS,
or you can compile and run your code without using METIS. If you are using METIS on
an unsymmetric case, UMFPACK must form the Matrix AT A. This matrix can have many
entries it takes a lot of memory and time to form it. To avoid such conditions, ParU uses
the ordering strategy PARU_ORDERING_METIS_GUARD by default. This ordering strategy uses
COLAMD instead of METIS in when AT A is too costly to construct.

This modified version of METIS is built into CHOLMOD itself, with all functions re-
named, so it does not conflict with a standard METIS library. The unmodified METIS library
can be safely linked with an application that uses the modified METIS inside CHOLMOD,
without any linking conflicts.

The use of OpenMP tasking is optional, but without it, only parallelism within the BLAS
can be exploited (if available). ParU depends on parallel tasking to factorize multiple fronts
at the same time, and performance will suffer if the compiler and BLAS library are not
suitable for this method.

31

See ParU/LICENSE.txt for the license. Alternative licenses are also available; contact

the authors for details.

References

1]

2]

[5]

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matriz Anal. Appl., 17(4):886-905, 1996.

P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):381-388, 2004.

Mohsen Mahmoudi Aznaveh. ParU: A task based parallel multifrontal and unsymmetric
sparse LU factorization, 2022. PhD thesis, Texas A&M University.

R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The Matrix
Market: A web resource for test matrix collections. In R. F. Boisvert, editor, Quality of
Numerical Software, Assessment and Enhancement, pages 125-137. Chapman & Hall,
London, 1997. (http://math.nist.gov/MatrixMarket).

Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM
Trans. Math. Software, 35(3), 2009.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a
column approximate minimum degree ordering algorithm. ACM Trans. Math. Software,
30(3):377-380, 2004.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):353-376, 2004.

T. A. Davis and W. W. Hager. Dynamic supernodes in sparse Cholesky up-
date/downdate and triangular solves. ACM Trans. Math. Software, 35(4), 2009.

Timothy A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):196199, jun 2004.

J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1-17, 1990.

K. Goto and R. van de Geijn. High performance implementation of the level-3 BLAS.
ACM Trans. Math. Software, 35(1):4, July 2008. Article 4, 14 pages.

32

	Introduction
	Using ParU in C and C++
	Installing the C/C++ library on any system
	Installing the C/C++ library on Linux/Unix
	C/C++ Example
	ParU_Info: return values of each ParU method

	C++ Syntax
	ParU_Version: version of the ParU package
	ParU_Control: parameters that control ParU
	ParU_Set: set parameters in the Control object
	ParU_Get: get information from a ParU opaque object
	ParU_Analyze: symbolic analysis
	ParU_Factorize: numerical factorization
	ParU_Solve: solve a linear system, Ax=b
	ParU_LSolve: solve a linear system, Lx=b
	ParU_USolve: solve a linear system, Ux=b
	ParU_Perm: permute and scale a dense vector or matrix
	ParU_InvPerm: permute and scale a dense vector or matrix
	ParU_Residual: compute the residual
	ParU_FreeNumeric: free a numeric factorization
	ParU_FreeSymbolic: free a symbolic analysis
	ParU_FreeControl: free a Control object

	C Syntax
	ParU_C_Version: version of the ParU package
	ParU_C_Control: parameters that control ParU
	ParU_C_Get_*: get information from a ParU opaque object
	ParU_C_Set_Control_*: set Control parameters
	ParU_C_Analyze: symbolic analysis
	ParU_C_Factorize: numeric factorization
	ParU_C_Solve_A*: solve a linear system, Ax=b
	ParU_C_Solve_L*: solve a linear system, Lx=b
	ParU_C_Solve_U*: solve a linear system, Ux=b
	ParU_C_Perm: permute and scale a dense vector or matrix
	ParU_C_InvPerm: permute and scale a dense vector or matrix
	ParU_C_Residual_*: compute the residual
	ParU_C_FreeNumeric: free a numeric factorization
	ParU_C_FreeSymbolic: free a symbolic analysis structure
	ParU_C_FreeControl: free a Control object

	Thread safety of malloc, calloc, realloc, and free
	Using ParU in MATLAB
	Compiling ParU for MATLAB
	Using ParU in MATLAB

	Requirements and Availability

