NFFT 3.5.3alpha
reconstruct_data_inh_3d.c
1/*
2 * Copyright (c) 2002, 2017 Jens Keiner, Stefan Kunis, Daniel Potts
3 *
4 * This program is free software; you can redistribute it and/or modify it under
5 * the terms of the GNU General Public License as published by the Free Software
6 * Foundation; either version 2 of the License, or (at your option) any later
7 * version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
11 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
12 * details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 51
16 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18#include <stdlib.h>
19#include <math.h>
20#include <limits.h>
21#include <complex.h>
22
23#include "nfft3.h"
24
25#ifndef MAX
26#define MAX(a,b) (((a)>(b))?(a):(b))
27#endif
28
35static void reconstruct(char* filename,int N,int M,int iteration , int weight)
36{
37 int j,k,l;
38 double t0, t1;
39 double time,min_time,max_time,min_inh,max_inh;
40 double t,real,imag;
41 double w,epsilon=0.0000003; /* epsilon is a the break criterium for
42 the iteration */;
43 mri_inh_3d_plan my_plan;
44 solver_plan_complex my_iplan;
45 FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime;
46 int my_N[3],my_n[3];
49 unsigned infft_flags = CGNR | PRECOMPUTE_DAMP;
50
51 double Ts;
52 double W;
53 int N3;
54 int m=2;
55 double sigma = 1.25;
56
57 ftime=fopen("readout_time.dat","r");
58 finh=fopen("inh.dat","r");
59
60 min_time=INT_MAX; max_time=INT_MIN;
61 for(j=0;j<M;j++)
62 {
63 fscanf(ftime,"%le ",&time);
64 if(time<min_time)
65 min_time = time;
66 if(time>max_time)
67 max_time = time;
68 }
69
70 fclose(ftime);
71
72 Ts=(min_time+max_time)/2.0;
73
74
75 min_inh=INT_MAX; max_inh=INT_MIN;
76 for(j=0;j<N*N;j++)
77 {
78 fscanf(finh,"%le ",&w);
79 if(w<min_inh)
80 min_inh = w;
81 if(w>max_inh)
82 max_inh = w;
83 }
84 fclose(finh);
85
86 N3=ceil((MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma);
87 /* N3 has to be even */
88 if(N3%2!=0)
89 N3++;
90
91 W= MAX(fabs(min_inh),fabs(max_inh))/(0.5-((double) m)/N3);
92
93 my_N[0]=N;my_n[0]=ceil(N*sigma);
94 my_N[1]=N; my_n[1]=ceil(N*sigma);
95 my_N[2]=N3; my_n[2]=ceil(N3*sigma);
96
97 /* initialise nfft */
98 mri_inh_3d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags,
99 FFTW_MEASURE| FFTW_DESTROY_INPUT);
100
101 if (weight)
102 infft_flags = infft_flags | PRECOMPUTE_WEIGHT;
103
104 /* initialise my_iplan, advanced */
105 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags );
106
107 /* get the weights */
108 if(my_iplan.flags & PRECOMPUTE_WEIGHT)
109 {
110 fw=fopen("weights.dat","r");
111 for(j=0;j<my_plan.M_total;j++)
112 {
113 fscanf(fw,"%le ",&my_iplan.w[j]);
114 }
115 fclose(fw);
116 }
117
118 /* get the damping factors */
119 if(my_iplan.flags & PRECOMPUTE_DAMP)
120 {
121 for(j=0;j<N;j++){
122 for(k=0;k<N;k++) {
123 int j2= j-N/2;
124 int k2= k-N/2;
125 double r=sqrt(j2*j2+k2*k2);
126 if(r>(double) N/2)
127 my_iplan.w_hat[j*N+k]=0.0;
128 else
129 my_iplan.w_hat[j*N+k]=1.0;
130 }
131 }
132 }
133
134 fp=fopen(filename,"r");
135 ftime=fopen("readout_time.dat","r");
136
137 for(j=0;j<my_plan.M_total;j++)
138 {
139 fscanf(fp,"%le %le %le %le",&my_plan.plan.x[3*j+0],&my_plan.plan.x[3*j+1],&real,&imag);
140 my_iplan.y[j]=real+ _Complex_I*imag;
141 fscanf(ftime,"%le ",&my_plan.plan.x[3*j+2]);
142
143 my_plan.plan.x[3*j+2] = (my_plan.plan.x[3*j+2]-Ts)*W/N3;
144 }
145 fclose(fp);
146 fclose(ftime);
147
148
149 finh=fopen("inh.dat","r");
150 for(j=0;j<N*N;j++)
151 {
152 fscanf(finh,"%le ",&my_plan.w[j]);
153 my_plan.w[j]/=W;
154 }
155 fclose(finh);
156
157
158 if(my_plan.plan.flags & PRE_PSI) {
159 nfft_precompute_psi(&my_plan.plan);
160 }
161 if(my_plan.plan.flags & PRE_FULL_PSI) {
162 nfft_precompute_full_psi(&my_plan.plan);
163 }
164
165 /* init some guess */
166 for(j=0;j<my_plan.N_total;j++)
167 {
168 my_iplan.f_hat_iter[j]=0.0;
169 }
170
171 t0 = nfft_clock_gettime_seconds();
172
173 /* inverse trafo */
174 solver_before_loop_complex(&my_iplan);
175 for(l=0;l<iteration;l++)
176 {
177 /* break if dot_r_iter is smaller than epsilon*/
178 if(my_iplan.dot_r_iter<epsilon)
179 break;
180 fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter),
181 l+1,iteration);
182 solver_loop_one_step_complex(&my_iplan);
183 }
184
185 t1 = nfft_clock_gettime_seconds();
186 t = t1-t0;
187
188 fout_real=fopen("output_real.dat","w");
189 fout_imag=fopen("output_imag.dat","w");
190
191 for (j=0;j<N*N;j++) {
192 /* Verschiebung wieder herausrechnen */
193 my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*M_PI*Ts*my_plan.w[j]*W);
194
195 fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j]));
196 fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j]));
197 }
198
199 fclose(fout_real);
200 fclose(fout_imag);
201 solver_finalize_complex(&my_iplan);
202 mri_inh_3d_finalize(&my_plan);
203}
204
205
206int main(int argc, char **argv)
207{
208 if (argc <= 5) {
209
210 printf("usage: ./reconstruct_data_inh_3d FILENAME N M ITER WEIGHTS\n");
211 return 1;
212 }
213
214 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5]));
215
216 return 1;
217}
218/* \} */
#define MALLOC_F_HAT
Definition nfft3.h:194
#define MALLOC_X
Definition nfft3.h:193
#define PRE_FULL_PSI
Definition nfft3.h:192
#define PRE_PSI
Definition nfft3.h:191
#define MALLOC_F
Definition nfft3.h:195
#define FFTW_INIT
Definition nfft3.h:197
#define PRE_PHI_HUT
Definition nfft3.h:187
#define CGNR
Definition nfft3.h:808
#define PRECOMPUTE_DAMP
Definition nfft3.h:812
#define PRECOMPUTE_WEIGHT
Definition nfft3.h:811
Header file for the nfft3 library.
NFFT_INT M_total
Total number of samples.
Definition nfft3.h:532
NFFT_INT N_total
Total number of Fourier coefficients.
Definition nfft3.h:532
data structure for an inverse NFFT plan with double precision
Definition nfft3.h:802
double * w
weighting factors
Definition nfft3.h:802
unsigned flags
iteration type
Definition nfft3.h:802
double * w_hat
damping factors
Definition nfft3.h:802
double dot_r_iter
weighted dotproduct of r_iter
Definition nfft3.h:802
fftw_complex * y
right hand side, samples
Definition nfft3.h:802
fftw_complex * f_hat_iter
iterative solution
Definition nfft3.h:802