# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License
"""
Module for reading Lobster output files. For more information
on LOBSTER see www.cohp.de.
"""
import collections
import fnmatch
import itertools
import os
import re
import warnings
from collections import defaultdict
from typing import Dict, Any, Optional, List
import numpy as np
import spglib
from monty.io import zopen
from monty.json import MSONable
from monty.serialization import loadfn
from pymatgen.core.structure import Structure
from pymatgen.electronic_structure.bandstructure import LobsterBandStructureSymmLine
from pymatgen.electronic_structure.core import Spin, Orbital
from pymatgen.electronic_structure.dos import Dos, LobsterCompleteDos
from pymatgen.io.vasp.inputs import Incar, Kpoints, Potcar
from pymatgen.io.vasp.outputs import Vasprun
from pymatgen.symmetry.bandstructure import HighSymmKpath
__author__ = "Janine George, Marco Esters"
__copyright__ = "Copyright 2017, The Materials Project"
__version__ = "0.2"
__maintainer__ = "Janine George, Marco Esters "
__email__ = "janine.george@uclouvain.be, esters@uoregon.edu"
__date__ = "Dec 13, 2017"
MODULE_DIR = os.path.dirname(os.path.abspath(__file__))
[docs]class Cohpcar:
"""
Class to read COHPCAR/COOPCAR files generated by LOBSTER.
.. attribute: cohp_data
Dict that contains the COHP data of the form:
{bond: {"COHP": {Spin.up: cohps, Spin.down:cohps},
"ICOHP": {Spin.up: icohps, Spin.down: icohps},
"length": bond length,
"sites": sites corresponding to the bond}
Also contains an entry for the average, which does not have
a "length" key.
.. attribute: efermi
The Fermi energy in eV.
.. attribute: energies
Sequence of energies in eV. Note that LOBSTER shifts the energies
so that the Fermi energy is at zero.
.. attribute: is_spin_polarized
Boolean to indicate if the calculation is spin polarized.
.. attribute: orb_res_cohp
orb_cohp[label] = {bond_data["orb_label"]: {"COHP": {Spin.up: cohps, Spin.down:cohps},
"ICOHP": {Spin.up: icohps, Spin.down: icohps},
"orbitals": orbitals,
"length": bond lengths,
"sites": sites corresponding to the bond}}
"""
def __init__(self, are_coops: bool = False, filename: str = None):
"""
Args:
are_coops: Determines if the file is a list of COHPs or COOPs.
Default is False for COHPs.
filename: Name of the COHPCAR file. If it is None, the default
file name will be chosen, depending on the value of are_coops.
"""
self.are_coops = are_coops
if filename is None:
filename = "COOPCAR.lobster" if are_coops \
else "COHPCAR.lobster"
with zopen(filename, "rt") as f:
contents = f.read().split("\n")
# The parameters line is the second line in a COHPCAR file. It
# contains all parameters that are needed to map the file.
parameters = contents[1].split()
# Subtract 1 to skip the average
num_bonds = int(parameters[0]) - 1
self.efermi = float(parameters[-1])
if int(parameters[1]) == 2:
spins = [Spin.up, Spin.down]
self.is_spin_polarized = True
else:
spins = [Spin.up]
self.is_spin_polarized = False
# The COHP data start in row num_bonds + 3
data = np.array([np.array(row.split(), dtype=float) for row in contents[num_bonds + 3:]]).transpose()
data = np.array([np.array(row.split(), dtype=float) for row in contents[num_bonds + 3:]]).transpose()
self.energies = data[0]
cohp_data = {"average": {"COHP": {spin: data[1 + 2 * s * (num_bonds + 1)]
for s, spin in enumerate(spins)},
"ICOHP": {spin: data[2 + 2 * s * (num_bonds + 1)]
for s, spin in enumerate(spins)}}} # type: Dict[Any, Any]
orb_cohp = {} # type: Dict[str, Any]
# present for Lobster versions older than Lobster 2.2.0
veryold = False
# the labeling had to be changed: there are more than one COHP for each atom combination
# this is done to make the labeling consistent with ICOHPLIST.lobster
bondnumber = 0
for bond in range(num_bonds):
bond_data = self._get_bond_data(contents[3 + bond])
label = str(bondnumber)
orbs = bond_data["orbitals"]
cohp = {spin: data[2 * (bond + s * (num_bonds + 1)) + 3]
for s, spin in enumerate(spins)}
icohp = {spin: data[2 * (bond + s * (num_bonds + 1)) + 4]
for s, spin in enumerate(spins)}
if orbs is None:
bondnumber = bondnumber + 1
label = str(bondnumber)
cohp_data[label] = {"COHP": cohp, "ICOHP": icohp,
"length": bond_data["length"],
"sites": bond_data["sites"]}
elif label in orb_cohp:
orb_cohp[label].update(
{bond_data["orb_label"]: {"COHP": cohp, "ICOHP": icohp, "orbitals": orbs,
"length": bond_data["length"], "sites": bond_data["sites"]}})
else:
# present for Lobster versions older than Lobster 2.2.0
if bondnumber == 0:
veryold = True
if veryold:
bondnumber += 1
label = str(bondnumber)
orb_cohp[label] = {bond_data["orb_label"]: {"COHP": cohp,
"ICOHP": icohp,
"orbitals": orbs,
"length": bond_data["length"],
"sites": bond_data["sites"]}}
# present for lobster older than 2.2.0
if veryold:
for bond_str in orb_cohp:
cohp_data[bond_str] = {"COHP": None, "ICOHP": None,
"length": bond_data["length"],
"sites": bond_data["sites"]}
self.orb_res_cohp = orb_cohp if orb_cohp else None
self.cohp_data = cohp_data
@staticmethod
def _get_bond_data(line: str) -> dict:
"""
Subroutine to extract bond label, site indices, and length from
a LOBSTER header line. The site indices are zero-based, so they
can be easily used with a Structure object.
Example header line: No.4:Fe1->Fe9(2.4524893531900283)
Example header line for orbtial-resolved COHP:
No.1:Fe1[3p_x]->Fe2[3d_x^2-y^2](2.456180552772262)
Args:
line: line in the COHPCAR header describing the bond.
Returns:
Dict with the bond label, the bond length, a tuple of the site
indices, a tuple containing the orbitals (if orbital-resolved),
and a label for the orbitals (if orbital-resolved).
"""
orb_labs = ["s", "p_y", "p_z", "p_x", "d_xy", "d_yz", "d_z^2",
"d_xz", "d_x^2-y^2", "f_y(3x^2-y^2)", "f_xyz",
"f_yz^2", "f_z^3", "f_xz^2", "f_z(x^2-y^2)", "f_x(x^2-3y^2)"]
line_new = line.rsplit("(", 1)
# bondnumber = line[0].replace("->", ":").replace(".", ":").split(':')[1]
length = float(line_new[-1][:-1])
sites = line_new[0].replace("->", ":").split(":")[1:3]
site_indices = tuple(int(re.split(r"\D+", site)[1]) - 1
for site in sites)
# species = tuple(re.split(r"\d+", site)[0] for site in sites)
if "[" in sites[0]:
orbs = [re.findall(r"\[(.*)\]", site)[0] for site in sites]
orbitals = [tuple((int(orb[0]), Orbital(orb_labs.index(orb[1:])))) for orb in
orbs] # type: Any
orb_label = "%d%s-%d%s" % (orbitals[0][0], orbitals[0][1].name,
orbitals[1][0], orbitals[1][1].name) # type: Any
else:
orbitals = None
orb_label = None
# a label based on the species alone is not feasible, there can be more than one bond for each atom combination
# label = "%s" % (bondnumber)
bond_data = {"length": length, "sites": site_indices,
"orbitals": orbitals, "orb_label": orb_label}
return bond_data
[docs]class Icohplist:
"""
Class to read ICOHPLIST/ICOOPLIST files generated by LOBSTER.
.. attribute: are_coops
Boolean to indicate if the populations are COOPs or COHPs.
.. attribute: is_spin_polarized
Boolean to indicate if the calculation is spin polarized.
.. attribute: Icohplist
Dict containing the listfile data of the form:
{bond: "length": bond length,
"number_of_bonds": number of bonds
"icohp": {Spin.up: ICOHP(Ef) spin up, Spin.down: ...}}
.. attribute: IcohpCollection
IcohpCollection Object
"""
def __init__(self, are_coops: bool = False, filename: str = None):
"""
Args:
are_coops: Determines if the file is a list of ICOHPs or ICOOPs.
Defaults to False for ICOHPs.
filename: Name of the ICOHPLIST file. If it is None, the default
file name will be chosen, depending on the value of are_coops.
"""
self.are_coops = are_coops
if filename is None:
filename = "ICOOPLIST.lobster" if are_coops \
else "ICOHPLIST.lobster"
# LOBSTER list files have an extra trailing blank line
# and we don't need the header.
with zopen(filename, 'rt') as f:
data = f.read().split("\n")[1:-1]
if len(data) == 0:
raise IOError("ICOHPLIST file contains no data.")
# Which Lobster version?
if len(data[0].split()) == 8:
version = '3.1.1'
elif len(data[0].split()) == 6:
version = '2.2.1'
warnings.warn('Please consider using the new Lobster version. See www.cohp.de.')
else:
raise ValueError
# If the calculation is spin polarized, the line in the middle
# of the file will be another header line.
if "distance" in data[len(data) // 2]:
num_bonds = len(data) // 2
if num_bonds == 0:
raise IOError("ICOHPLIST file contains no data.")
self.is_spin_polarized = True
else:
num_bonds = len(data)
self.is_spin_polarized = False
list_labels = []
list_atom1 = []
list_atom2 = []
list_length = []
list_translation = []
list_num = []
list_icohp = []
for bond in range(num_bonds):
line = data[bond].split()
icohp = {}
if version == '2.2.1':
label = "%s" % (line[0])
atom1 = str(line[1])
atom2 = str(line[2])
length = float(line[3])
icohp[Spin.up] = float(line[4])
num = int(line[5])
translation = [0, 0, 0]
if self.is_spin_polarized:
icohp[Spin.down] = float(data[bond + num_bonds + 1].split()[4])
elif version == '3.1.1':
label = "%s" % (line[0])
atom1 = str(line[1])
atom2 = str(line[2])
length = float(line[3])
translation = [int(line[4]), int(line[5]), int(line[6])]
icohp[Spin.up] = float(line[7])
num = int(1)
if self.is_spin_polarized:
icohp[Spin.down] = float(data[bond + num_bonds + 1].split()[7])
list_labels.append(label)
list_atom1.append(atom1)
list_atom2.append(atom2)
list_length.append(length)
list_translation.append(translation)
list_num.append(num)
list_icohp.append(icohp)
# to avoid circular dependencies
from pymatgen.electronic_structure.cohp import IcohpCollection
self._icohpcollection = IcohpCollection(are_coops=are_coops, list_labels=list_labels, list_atom1=list_atom1,
list_atom2=list_atom2, list_length=list_length,
list_translation=list_translation, list_num=list_num,
list_icohp=list_icohp, is_spin_polarized=self.is_spin_polarized)
@property
def icohplist(self) -> Dict[Any, Dict[str, Any]]:
"""
Returns: icohplist compatible with older version of this class
"""
icohplist_new = {}
for key, value in self._icohpcollection._icohplist.items():
icohplist_new[key] = {"length": value._length, "number_of_bonds": value._num,
"icohp": value._icohp, "translation": value._translation}
return icohplist_new
@property
def icohpcollection(self):
"""
Returns: IcohpCollection object
"""
return self._icohpcollection
[docs]class Doscar:
"""
Class to deal with Lobster's projected DOS and local projected DOS.
The beforehand quantum-chemical calculation was performed with VASP
.. attribute:: completedos
LobsterCompleteDos Object
.. attribute:: pdos
List of Dict including numpy arrays with pdos. Access as pdos[atomindex]['orbitalstring']['Spin.up/Spin.down']
.. attribute:: tdos
Dos Object of the total density of states
.. attribute:: energies
numpy array of the energies at which the DOS was calculated (in eV, relative to Efermi)
.. attribute:: tdensities
tdensities[Spin.up]: numpy array of the total density of states for the Spin.up contribution at each of the
energies
tdensities[Spin.down]: numpy array of the total density of states for the Spin.down contribution at each of the
energies
if is_spin_polarized=False:
tdensities[Spin.up]: numpy array of the total density of states
.. attribute:: itdensities:
itdensities[Spin.up]: numpy array of the total density of states for the Spin.up contribution at each of the
energies
itdensities[Spin.down]: numpy array of the total density of states for the Spin.down contribution at each of the
energies
if is_spin_polarized=False:
itdensities[Spin.up]: numpy array of the total density of states
.. attribute:: is_spin_polarized
Boolean. Tells if the system is spin polarized
"""
def __init__(self, doscar: str = "DOSCAR.lobster", structure_file: str = "POSCAR", dftprogram: str = "Vasp"):
"""
Args:
doscar: DOSCAR filename, typically "DOSCAR.lobster"
structure_file: for vasp, this is typically "POSCAR"
dftprogram: so far only "vasp" is implemented
"""
self._doscar = doscar
if dftprogram == "Vasp":
self._final_structure = Structure.from_file(structure_file)
self._parse_doscar()
def _parse_doscar(self):
doscar = self._doscar
tdensities = {}
itdensities = {}
f = open(doscar)
natoms = int(f.readline().split()[0])
efermi = float([f.readline() for nn in range(4)][3].split()[17])
dos = []
orbitals = []
for atom in range(natoms + 1):
line = f.readline()
ndos = int(line.split()[2])
orbitals.append(line.split(';')[-1].split())
line = f.readline().split()
cdos = np.zeros((ndos, len(line)))
cdos[0] = np.array(line)
for nd in range(1, ndos):
line = f.readline().split()
cdos[nd] = np.array(line)
dos.append(cdos)
f.close()
doshere = np.array(dos[0])
if len(doshere[0, :]) == 5:
self._is_spin_polarized = True
elif len(doshere[0, :]) == 3:
self._is_spin_polarized = False
else:
raise ValueError("There is something wrong with the DOSCAR. Can't extract spin polarization.")
energies = doshere[:, 0]
if not self._is_spin_polarized:
tdensities[Spin.up] = doshere[:, 1]
itdensities[Spin.up] = doshere[:, 2]
pdoss = []
spin = Spin.up
for atom in range(natoms):
pdos = defaultdict(dict)
data = dos[atom + 1]
_, ncol = data.shape
orbnumber = 0
for j in range(1, ncol):
orb = orbitals[atom + 1][orbnumber]
pdos[orb][spin] = data[:, j]
orbnumber = orbnumber + 1
pdoss.append(pdos)
else:
tdensities[Spin.up] = doshere[:, 1]
tdensities[Spin.down] = doshere[:, 2]
itdensities[Spin.up] = doshere[:, 3]
itdensities[Spin.down] = doshere[:, 4]
pdoss = []
for atom in range(natoms):
pdos = defaultdict(dict)
data = dos[atom + 1]
_, ncol = data.shape
orbnumber = 0
for j in range(1, ncol):
if j % 2 == 0:
spin = Spin.down
else:
spin = Spin.up
orb = orbitals[atom + 1][orbnumber]
pdos[orb][spin] = data[:, j]
if j % 2 == 0:
orbnumber = orbnumber + 1
pdoss.append(pdos)
self._efermi = efermi
self._pdos = pdoss
self._tdos = Dos(efermi, energies, tdensities)
self._energies = energies
self._tdensities = tdensities
self._itdensities = itdensities
final_struct = self._final_structure
pdossneu = {final_struct[i]: pdos for i, pdos in enumerate(self._pdos)}
self._completedos = LobsterCompleteDos(final_struct, self._tdos, pdossneu)
@property
def completedos(self) -> LobsterCompleteDos:
"""
:return: CompleteDos
"""
return self._completedos
@property
def pdos(self) -> list:
"""
:return: Projected DOS
"""
return self._pdos
@property
def tdos(self) -> Dos:
"""
:return: Total DOS
"""
return self._tdos
@property
def energies(self) -> np.array:
"""
:return: Energies
"""
return self._energies
@property
def tdensities(self) -> np.array:
"""
:return: total densities as a np.array
"""
return self._tdensities
@property
def itdensities(self) -> np.array:
"""
:return: integrated total densities as a np.array
"""
return self._itdensities
@property
def is_spin_polarized(self) -> bool:
"""
:return: Whether run is spin polarized.
"""
return self._is_spin_polarized
[docs]class Charge:
"""
Class to read CHARGE files generated by LOBSTER
.. attribute: atomlist
List of atoms in CHARGE.lobster
.. attribute: types
List of types of atoms in CHARGE.lobster
.. attribute: Mulliken
List of Mulliken charges of atoms in CHARGE.lobster
.. attribute: Loewdin
List of Loewdin charges of atoms in CHARGE.Loewdin
.. attribute: num_atoms
Number of atoms in CHARGE.lobster
"""
def __init__(self, filename: str = "CHARGE.lobster"):
"""
Args:
filename: filename for the CHARGE file, typically "CHARGE.lobster"
"""
with zopen(filename, 'rt') as f:
data = f.read().split("\n")[3:-3]
if len(data) == 0:
raise IOError("CHARGES file contains no data.")
self.num_atoms = len(data)
self.atomlist = [] # type: List[str]
self.types = [] # type: List[str]
self.Mulliken = [] # type: List[float]
self.Loewdin = [] # type: List[float]
for atom in range(0, self.num_atoms):
line = data[atom].split()
self.atomlist.append(line[1] + line[0])
self.types.append(line[1])
self.Mulliken.append(float(line[2]))
self.Loewdin.append(float(line[3]))
[docs] def get_structure_with_charges(self, structure_filename):
"""
get a Structure with Mulliken and Loewdin charges as site properties
Args:
structure_filename: filename of POSCAR
Returns:
Structure Object with Mulliken and Loewdin charges as site properties
"""
struct = Structure.from_file(structure_filename)
Mulliken = self.Mulliken
Loewdin = self.Loewdin
site_properties = {"Mulliken Charges": Mulliken, "Loewdin Charges": Loewdin}
new_struct = struct.copy(site_properties=site_properties)
return new_struct
[docs]class Lobsterout:
"""
Class to read in the lobsterout and evaluate the spilling, save the basis, save warnings, save infos
.. attribute: basis_functions
list of basis functions that were used in lobster run as strings
.. attribute: basis_type
list of basis type that were used in lobster run as strings
.. attribute: chargespilling
list of charge spilling (first entry: result for spin 1, second entry: result for spin 2 or not present)
.. attribute: dftprogram
string representing the dft program used for the calculation of the wave function
.. attribute: elements
list of strings of elements that were present in lobster calculation
.. attribute: has_CHARGE
Boolean, indicates that CHARGE.lobster is present
.. attribute: has_COHPCAR
Boolean, indicates that COHPCAR.lobster and ICOHPLIST.lobster are present
.. attribute: has_COOPCAR
Boolean, indicates that COOPCAR.lobster and ICOOPLIST.lobster are present
.. attribute: has_DOSCAR
Boolean, indicates that DOSCAR.lobster is present
.. attribute: has_Projection
Boolean, indcates that projectionData.lobster is present
.. attribute: has_bandoverlaps
Boolean, indcates that bandOverlaps.lobster is present
.. attribute: has_density_of_energies
Boolean, indicates that DensityOfEnergy.lobster is present
.. attribute: has_fatbands
Boolean, indicates that fatband calculation was performed
.. attribute: has_grosspopulation
Boolean, indicates that GROSSPOP.lobster is present
.. attribute: info_lines
string with additional infos on the run
.. attribute: info_orthonormalization
string with infos on orthonormalization
.. attribute: is_restart_from_projection
Boolean that indicates that calculation was restartet from existing projection file
.. attribute: lobster_version
string that indicates Lobster version
.. attribute: number_of_spins
Integer indicating the number of spins
.. attribute: number_of_threads
integer that indicates how many threads were used
.. attribute: timing
dict with infos on timing
.. attribute: totalspilling
list of values indicating the total spilling for spin channel 1 (and spin channel 2)
.. attribute: warninglines
string with all warnings
"""
def __init__(self, filename="lobsterout"):
"""
Args:
filename: filename of lobsterout
"""
warnings.warn("Make sure the lobsterout is read in correctly. This is a brand new class.")
# read in file
with zopen(filename, 'rt') as f:
data = f.read().split("\n") # [3:-3]
if len(data) == 0:
raise IOError("lobsterout does not contain any data")
# check if Lobster starts from a projection
self.is_restart_from_projection = self._starts_from_projection(data=data)
self.lobster_version = self._get_lobster_version(data=data)
self.number_of_threads = int(self._get_threads(data=data))
self.dftprogram = self._get_dft_program(data=data)
self.number_of_spins = self._get_number_of_spins(data=data)
chargespilling, totalspilling = self._get_spillings(data=data, number_of_spins=self.number_of_spins)
self.chargespilling = chargespilling
self.totalspilling = totalspilling
elements, basistype, basisfunctions = self._get_elements_basistype_basisfunctions(data=data)
self.elements = elements
self.basis_type = basistype
self.basis_functions = basisfunctions
wall_time, user_time, sys_time = self._get_timing(data=data)
timing = {}
timing['walltime'] = wall_time
timing['usertime'] = user_time
timing['sys_time'] = sys_time
self.timing = timing
warninglines = self._get_all_warning_lines(data=data)
self.warninglines = warninglines
orthowarning = self._get_warning_orthonormalization(data=data)
self.info_orthonormalization = orthowarning
infos = self._get_all_info_lines(data=data)
self.info_lines = infos
self.has_DOSCAR = self._has_DOSCAR(data=data)
self.has_COHPCAR = self._has_COOPCAR(data=data)
self.has_COOPCAR = self._has_COHPCAR(data=data)
self.has_CHARGE = self._has_CHARGE(data=data)
self.has_Projection = self._has_projection(data=data)
self.has_bandoverlaps = self._has_bandoverlaps(data=data)
self.has_fatbands = self._has_fatband(data=data)
self.has_grosspopulation = self._has_grosspopulation(data=data)
self.has_density_of_energies = self._has_density_of_energies(data=data)
[docs] def get_doc(self):
"""
Returns: LobsterDict with all the information stored in lobsterout
"""
LobsterDict = {}
# check if Lobster starts from a projection
LobsterDict['restart_from_projection'] = self.is_restart_from_projection
LobsterDict['lobster_version'] = self.lobster_version
LobsterDict['threads'] = self.number_of_threads
LobsterDict['Dftprogram'] = self.dftprogram
LobsterDict['chargespilling'] = self.chargespilling
LobsterDict['totalspilling'] = self.totalspilling
LobsterDict['elements'] = self.elements
LobsterDict['basistype'] = self.basis_type
LobsterDict['basisfunctions'] = self.basis_functions
LobsterDict['timing'] = self.timing
LobsterDict['warnings'] = self.warninglines
LobsterDict['orthonormalization'] = self.info_orthonormalization
LobsterDict['infos'] = self.info_lines
LobsterDict['hasDOSCAR'] = self.has_DOSCAR
LobsterDict['hasCOHPCAR'] = self.has_COHPCAR
LobsterDict['hasCOOPCAR'] = self.has_COOPCAR
LobsterDict['hasCHARGE'] = self.has_CHARGE
LobsterDict['hasProjection'] = self.has_Projection
LobsterDict['hasbandoverlaps'] = self.has_bandoverlaps
LobsterDict['hasfatband'] = self.has_fatbands
LobsterDict['hasGrossPopuliation'] = self.has_grosspopulation
LobsterDict['hasDensityOfEnergies'] = self.has_density_of_energies
return LobsterDict
def _get_lobster_version(self, data):
for row in data:
splitrow = row.split()
if len(splitrow) > 1:
if splitrow[0] == "LOBSTER":
return splitrow[1]
def _has_bandoverlaps(self, data):
if 'WARNING: I dumped the band overlap matrices to the file bandOverlaps.lobster.' in data:
return True
else:
return False
def _starts_from_projection(self, data):
if 'loading projection from projectionData.lobster...' in data:
return True
else:
return False
def _has_DOSCAR(self, data):
if 'writing DOSCAR.lobster...' in data and 'SKIPPING writing DOSCAR.lobster...' not in data:
return True
else:
return False
def _has_COOPCAR(self, data):
if 'writing COOPCAR.lobster and ICOOPLIST.lobster...' in data and \
'SKIPPING writing COOPCAR.lobster and ICOOPLIST.lobster...' not in data:
return True
else:
return False
def _has_COHPCAR(self, data):
if 'writing COHPCAR.lobster and ICOHPLIST.lobster...' in data and \
'SKIPPING writing COHPCAR.lobster and ICOHPLIST.lobster...' not in data:
return True
else:
return False
def _has_CHARGE(self, data):
# weitere optionen testen -> auch hier kann uebersprungen werden
if 'SKIPPING writing CHARGE.lobster...' not in data:
return True
else:
return False
def _has_grosspopulation(self, data):
if 'writing CHARGE.lobster and GROSSPOP.lobster...' in data:
return True
else:
return False
def _has_projection(self, data):
if 'saving projection to projectionData.lobster...' in data:
return True
else:
return False
def _has_fatband(self, data):
for row in data:
splitrow = row.split()
if len(splitrow) > 1:
if splitrow[1] == 'FatBand':
return True
return False
def _has_density_of_energies(self, data):
if "writing DensityOfEnergy.lobster..." in data:
return True
else:
return False
def _get_dft_program(self, data):
for row in data:
splitrow = row.split()
if len(splitrow) > 4:
if splitrow[3] == "program...":
return splitrow[4]
def _get_number_of_spins(self, data):
if "spillings for spin channel 2" in data:
return 2
else:
return 1
def _get_threads(self, data):
for row in data:
splitrow = row.split()
if len(splitrow) > 11:
if (splitrow[11]) == "threads" or (splitrow[11] == "thread"):
return splitrow[10]
def _get_spillings(self, data, number_of_spins):
charge_spilling = []
total_spilling = []
for row in data:
splitrow = row.split()
if len(splitrow) > 2:
if splitrow[2] == 'spilling:':
if splitrow[1] == 'charge':
charge_spilling.append(np.float(splitrow[3].replace('%', '')) / 100.0)
if splitrow[1] == 'total':
total_spilling.append(np.float(splitrow[3].replace('%', '')) / 100.0)
if len(charge_spilling) == number_of_spins and len(total_spilling) == number_of_spins:
break
return charge_spilling, total_spilling
def _get_elements_basistype_basisfunctions(self, data):
begin = False
end = False
elements = []
basistype = []
basisfunctions = []
for row in data:
if begin and not end:
splitrow = row.split()
if splitrow[0] not in ['INFO:', 'WARNING:', 'setting', 'calculating', 'post-processing', 'saving',
'spillings', 'writing']:
elements.append(splitrow[0])
basistype.append(splitrow[1].replace('(', '').replace(')', ''))
# last sign is a ''
basisfunctions.append(splitrow[2:])
else:
end = True
if "setting up local basis functions..." in row:
begin = True
return elements, basistype, basisfunctions
def _get_timing(self, data):
# will give back wall, user and sys time
begin = False
# end=False
# time=[]
for row in data:
splitrow = row.split()
if 'finished' in splitrow:
begin = True
if begin:
if 'wall' in splitrow:
wall_time = (splitrow[2:10])
if 'user' in splitrow:
user_time = (splitrow[0:8])
if 'sys' in splitrow:
sys_time = (splitrow[0:8])
wall_time_dict = {"h": wall_time[0], "min": wall_time[2], "s": wall_time[4], "ms": wall_time[6]}
user_time_dict = {"h": user_time[0], "min": user_time[2], "s": user_time[4], "ms": user_time[6]}
sys_time_dict = {"h": sys_time[0], "min": sys_time[2], "s": sys_time[4], "ms": sys_time[6]}
return wall_time_dict, user_time_dict, sys_time_dict
def _get_warning_orthonormalization(self, data):
orthowarning = []
for row in data:
splitrow = row.split()
if 'orthonormalized' in splitrow:
orthowarning.append(" ".join(splitrow[1:]))
return orthowarning
def _get_all_warning_lines(self, data):
warnings = []
for row in data:
splitrow = row.split()
if len(splitrow) > 0:
if splitrow[0] == 'WARNING:':
warnings.append(" ".join(splitrow[1:]))
return warnings
def _get_all_info_lines(self, data):
infos = []
for row in data:
splitrow = row.split()
if len(splitrow) > 0:
if splitrow[0] == 'INFO:':
infos.append(" ".join(splitrow[1:]))
return infos
[docs]class Fatband:
"""
Reads in FATBAND_x_y.lobster files
.. attribute: efermi
efermi that was read in from vasprun.xml
.. attribute: eigenvals
{Spin.up:[][],Spin.down:[][]}, the first index of the array
[][] refers to the band and the second to the index of the
kpoint. The kpoints are ordered according to the order of the
kpoints array. If the band structure is not spin polarized, we
only store one data set under Spin.up.
.. attribute: is_spinpolarized
Boolean that tells you whether this was a spin-polarized calculation
.. attribute: kpoints_array
list of kpoint as numpy arrays, in frac_coords of the given lattice by default
.. attribute: label_dict
(dict) of {} this link a kpoint (in frac coords or cartesian coordinates depending on the coords).
.. attribute: lattice
lattice object of reciprocal lattice as read in from vasprun.xml
.. attribute: nbands
number of bands used in the calculation
.. attribute: p_eigenvals
dict of orbital projections as {spin: array of dict}.
The indices of the array are [band_index, kpoint_index].
The dict is then built the following way:
{"string of element": "string of orbital as read in from FATBAND file"}
If the band structure is not spin polarized, we only store one data set under Spin.up.
.. attribute: structure
structure read in from vasprun.xml
"""
def __init__(self, filenames=".", vasprun='vasprun.xml', Kpointsfile='KPOINTS'):
"""
Args:
filenames (list or string): can be a list of file names or a path to a folder folder from which all
"FATBAND_*" files will be read
vasprun: corresponding vasprun file
Kpointsfile: KPOINTS file for bandstructure calculation, typically "KPOINTS"
"""
warnings.warn('Make sure all relevant FATBAND files were generated and read in!')
warnings.warn('Use Lobster 3.2.0 or newer for fatband calculations!')
VASPRUN = Vasprun(filename=vasprun, ionic_step_skip=None,
ionic_step_offset=0, parse_dos=True,
parse_eigen=False, parse_projected_eigen=False,
parse_potcar_file=False, occu_tol=1e-8,
exception_on_bad_xml=True)
self.structure = VASPRUN.final_structure
self.lattice = self.structure.lattice.reciprocal_lattice
self.efermi = VASPRUN.efermi
kpoints_object = Kpoints.from_file(Kpointsfile)
atomtype = []
atomnames = []
orbital_names = []
if not isinstance(filenames, list) or filenames is None:
filenames_new = []
if filenames is None:
filenames = '.'
for file in os.listdir(filenames):
if fnmatch.fnmatch(file, 'FATBAND_*.lobster'):
filenames_new.append(os.path.join(filenames, file))
filenames = filenames_new
if len(filenames) == 0:
raise ValueError("No FATBAND files in folder or given")
for ifilename, filename in enumerate(filenames):
with zopen(filename, "rt") as f:
contents = f.read().split("\n")
# TODO: could be replaced for future versions of Lobster, get atomname from filename
atomnames.append(os.path.split(filename)[1].split('_')[1].capitalize())
parameters = contents[0].split()
atomtype.append(re.split(r"[0-9]+", parameters[3])[0].capitalize())
orbital_names.append(parameters[4])
# get atomtype orbital dict
atom_orbital_dict = {}
for iatom, atom in enumerate(atomnames):
if atom not in atom_orbital_dict:
atom_orbital_dict[atom] = []
atom_orbital_dict[atom].append(orbital_names[iatom])
# test if there are the same orbitals twice or if two different formats were used or if all necessary orbitals
# are there
for key, items in atom_orbital_dict.items():
if len(set(items)) != len(items):
raise (ValueError("The are two FATBAND files for the same atom and orbital. The program will stop."))
split = []
for item in items:
split.append(item.split("_")[0])
for orb, number in collections.Counter(split).items():
if number != 1 and number != 3 and number != 5 and number != 7:
raise ValueError(
"Make sure all relevant orbitals were generated and that no duplicates (2p and 2p_x) are "
"present")
kpoints_array = []
for ifilename, filename in enumerate(filenames):
with zopen(filename, "rt") as f:
contents = f.read().split("\n")
if ifilename == 0:
self.nbands = int(parameters[6])
self.number_kpts = kpoints_object.num_kpts - int(contents[1].split()[2]) + 1
if len(contents[1:]) == self.nbands + 2:
self.is_spinpolarized = False
elif len(contents[1:]) == self.nbands * 2 + 2:
self.is_spinpolarized = True
else:
linenumbers = []
for iline, line in enumerate(contents[1:self.nbands * 2 + 4]):
if line.split()[0] == '#':
linenumbers.append(iline)
if ifilename == 0:
if len(linenumbers) == 2:
self.is_spinpolarized = True
else:
self.is_spinpolarized = False
if ifilename == 0:
eigenvals = {}
eigenvals[Spin.up] = [[collections.defaultdict(float)
for i in range(self.number_kpts)]
for j in range(self.nbands)]
if self.is_spinpolarized:
eigenvals[Spin.down] = [[collections.defaultdict(float)
for i in range(self.number_kpts)]
for j in range(self.nbands)]
p_eigenvals = {}
p_eigenvals[Spin.up] = [
[{str(e): {str(orb): collections.defaultdict(float) for orb in atom_orbital_dict[e]}
for e in atomnames}
for i in range(self.number_kpts)]
for j in range(self.nbands)]
if self.is_spinpolarized:
p_eigenvals[Spin.down] = [
[{str(e): {str(orb): collections.defaultdict(float) for orb in atom_orbital_dict[e]}
for e in atomnames}
for i in range(self.number_kpts)]
for j in range(self.nbands)]
ikpoint = -1
for iline, line in enumerate(contents[1:-1]):
if line.split()[0] == '#':
KPOINT = np.array([float(line.split()[4]), float(line.split()[5]), float(line.split()[6])])
if ifilename == 0:
kpoints_array.append(KPOINT)
linenumber = 0
iband = 0
ikpoint += 1
if linenumber == self.nbands:
iband = 0
if line.split()[0] != '#':
if linenumber < self.nbands:
if ifilename == 0:
eigenvals[Spin.up][iband][ikpoint] = float(line.split()[1]) + self.efermi
p_eigenvals[Spin.up][iband][ikpoint][atomnames[ifilename]][orbital_names[ifilename]] = float(
line.split()[2])
if linenumber >= self.nbands and self.is_spinpolarized:
if ifilename == 0:
eigenvals[Spin.down][iband][ikpoint] = float(line.split()[1]) + self.efermi
p_eigenvals[Spin.down][iband][ikpoint][atomnames[ifilename]][
orbital_names[ifilename]] = float(line.split()[2])
linenumber += 1
iband += 1
self.kpoints_array = kpoints_array
self.eigenvals = eigenvals
self.p_eigenvals = p_eigenvals
label_dict = {}
for ilabel, label in enumerate(kpoints_object.labels[-self.number_kpts:], start=0):
if label is not None:
label_dict[label] = kpoints_array[ilabel]
self.label_dict = label_dict
[docs] def get_bandstructure(self):
"""
returns a LobsterBandStructureSymmLine object which can be plotted with a normal BSPlotter
"""
return LobsterBandStructureSymmLine(kpoints=self.kpoints_array, eigenvals=self.eigenvals, lattice=self.lattice,
efermi=self.efermi, labels_dict=self.label_dict,
structure=self.structure,
projections=self.p_eigenvals)
[docs]class Lobsterin(dict, MSONable):
"""
This class can handle and generate lobsterin files
Furthermore, it can also modify INCAR files for lobster, generate KPOINT files for fatband calculations in Lobster,
and generate the standard primitive cells in a POSCAR file that are needed for the fatband calculations.
There are also several standard lobsterin files that can be easily generated.
"""
# all keywords known to this class so far
# reminder: lobster is not case sensitive
AVAILABLEKEYWORDS = ['COHPstartEnergy', 'COHPendEnergy', 'basisSet', 'cohpGenerator',
'gaussianSmearingWidth', 'saveProjectionToFile', 'basisfunctions', 'skipdos',
'skipcohp', 'skipcoop', 'skipPopulationAnalysis', 'skipGrossPopulation',
'userecommendedbasisfunctions', 'loadProjectionFromFile', 'forceEnergyRange',
'DensityOfEnergy', 'BWDF', 'BWDFCOHP', 'skipProjection', 'createFatband',
'writeBasisFunctions', 'writeMatricesToFile', 'realspaceHamiltonian',
'realspaceOverlap', 'printPAWRealSpaceWavefunction', 'printLCAORealSpaceWavefunction',
'noFFTforVisualization', 'RMSp', 'onlyReadVasprun.xml', 'noMemoryMappedFiles',
'skipPAWOrthonormalityTest', 'doNotIgnoreExcessiveBands', 'doNotUseAbsoluteSpilling',
'skipReOrthonormalization', 'forceV1HMatrix', 'useOriginalTetrahedronMethod',
'useDecimalPlaces', 'kSpaceCOHP']
# keyword + one float can be used in file
FLOATKEYWORDS = ['COHPstartEnergy', 'COHPendEnergy', 'gaussianSmearingWidth', 'useDecimalPlaces', 'COHPSteps']
# one of these keywords +endstring can be used in file
STRINGKEYWORDS = ['basisSet', 'cohpGenerator', 'realspaceHamiltonian', 'realspaceOverlap',
'printPAWRealSpaceWavefunction', 'printLCAORealSpaceWavefunction', 'kSpaceCOHP']
# the keyword alone will turn on or off a function
BOOLEANKEYWORDS = ['saveProjectionToFile', 'skipdos', 'skipcohp', 'skipcoop', 'loadProjectionFromFile',
'forceEnergyRange', 'DensityOfEnergy', 'BWDF', 'BWDFCOHP', 'skipPopulationAnalysis',
'skipGrossPopulation', 'userecommendedbasisfunctions', 'skipProjection',
'writeBasisFunctions', 'writeMatricesToFile', 'noFFTforVisualization', 'RMSp',
'onlyReadVasprun.xml', 'noMemoryMappedFiles', 'skipPAWOrthonormalityTest',
'doNotIgnoreExcessiveBands', 'doNotUseAbsoluteSpilling', 'skipReOrthonormalization',
'forceV1HMatrix', 'useOriginalTetrahedronMethod', 'forceEnergyRange', 'bandwiseSpilling',
'kpointwiseSpilling']
# several of these keywords + ending can be used in a lobsterin file:
LISTKEYWORDS = ['basisfunctions', 'cohpbetween', 'createFatband']
def __init__(self, settingsdict: dict):
"""
Args:
settingsdict: dict to initialize Lobsterin
"""
super().__init__()
# check for duplicates
listkey = [key.lower() for key in settingsdict.keys()]
if len(listkey) != len(list(set(listkey))):
raise IOError("There are duplicates for the keywords! The program will stop here.")
self.update(settingsdict)
def __setitem__(self, key, val):
"""
Add parameter-val pair to Lobsterin. Warns if parameter is not in list of
valid lobsterintags. Also cleans the parameter and val by stripping
leading and trailing white spaces. Similar to INCAR class.
"""
# due to the missing case sensitivity of lobster, the following code is neccessary
found = False
for key_here in self.keys():
if key.strip().lower() == key_here.lower():
new_key = key_here
found = True
if not found:
new_key = key
if new_key.lower() not in [element.lower() for element in Lobsterin.AVAILABLEKEYWORDS]:
raise (ValueError("Key is currently not available"))
super().__setitem__(new_key, val.strip() if isinstance(val, str) else val)
def __getitem__(self, item):
"""
implements getitem from dict to avoid problems with cases
"""
found = False
for key_here in self.keys():
if item.strip().lower() == key_here.lower():
new_key = key_here
found = True
if not found:
new_key = item
val = dict.__getitem__(self, new_key)
return val
[docs] def diff(self, other):
"""
Diff function for lobsterin. Compares two lobsterin and indicates which parameters are the same.
Similar to the diff in INCAR.
Args:
other (Lobsterin): Lobsterin object to compare to
Returns:
dict with differences and similarities
"""
similar_param = {}
different_param = {}
key_list_others = [element.lower() for element in other.keys()]
for k1, v1 in self.items():
k1lower = k1.lower()
if k1lower not in key_list_others:
different_param[k1.upper()] = {"lobsterin1": v1, "lobsterin2": None}
else:
for key_here in other.keys():
if k1.lower() == key_here.lower():
new_key = key_here
if isinstance(v1, str):
if v1.strip().lower() != other[new_key].strip().lower():
different_param[k1.upper()] = {"lobsterin1": v1, "lobsterin2": other[new_key]}
else:
similar_param[k1.upper()] = v1
elif isinstance(v1, list):
new_set1 = set([element.strip().lower() for element in v1])
new_set2 = set([element.strip().lower() for element in other[new_key]])
if new_set1 != new_set2:
different_param[k1.upper()] = {"lobsterin1": v1, "lobsterin2": other[new_key]}
else:
if v1 != other[new_key]:
different_param[k1.upper()] = {"lobsterin1": v1, "lobsterin2": other[new_key]}
else:
similar_param[k1.upper()] = v1
for k2, v2 in other.items():
if k2.upper() not in similar_param and k2.upper() not in different_param:
for key_here in self.keys():
if k2.lower() == key_here.lower():
new_key = key_here
else:
new_key = k2
if new_key not in self:
different_param[k2.upper()] = {"lobsterin1": None, "lobsterin2": v2}
return {"Same": similar_param, "Different": different_param}
def _get_nbands(self, structure: Structure):
"""
get number of nbands
"""
if self.get("basisfunctions") is None:
raise IOError("No basis functions are provided. The program cannot calculate nbands.")
else:
basis_functions = [] # type: List[str]
for string_basis in self["basisfunctions"]:
# string_basis.lstrip()
string_basis_raw = string_basis.strip().split(" ")
while "" in string_basis_raw:
string_basis_raw.remove("")
for i in range(0, int(structure.composition.element_composition[string_basis_raw[0]])):
basis_functions.extend(string_basis_raw[1:])
no_basis_functions = 0
for basis in basis_functions:
if "s" in basis:
no_basis_functions = no_basis_functions + 1
elif "p" in basis:
no_basis_functions = no_basis_functions + 3
elif "d" in basis:
no_basis_functions = no_basis_functions + 5
elif "f" in basis:
no_basis_functions = no_basis_functions + 7
return int(no_basis_functions)
[docs] def write_lobsterin(self, path="lobsterin", overwritedict=None):
"""
writes a lobsterin file
Args:
path (str): filename of the lobsterin file that will be written
overwritedict (dict): dict that can be used to overwrite lobsterin, e.g. {"skipdos": True}
"""
# will overwrite previous entries
# has to search first if entry is already in Lobsterindict (due to case insensitivity)
if overwritedict is not None:
for key, entry in overwritedict.items():
found = False
for key2 in self.keys():
if key.lower() == key2.lower():
self.get[key2] = entry
found = True
if not found:
self.get[key] = entry
filename = path
with open(filename, 'w') as f:
for key in Lobsterin.AVAILABLEKEYWORDS:
if key.lower() in [element.lower() for element in self.keys()]:
if key.lower() in [element.lower() for element in Lobsterin.FLOATKEYWORDS]:
f.write(key + ' ' + str(self.get(key)) + '\n')
elif key.lower() in [element.lower() for element in Lobsterin.BOOLEANKEYWORDS]:
# checks if entry is True or False
for key_here in self.keys():
if key.lower() == key_here.lower():
new_key = key_here
if self.get(new_key):
f.write(key + '\n')
elif key.lower() in [element.lower() for element in Lobsterin.STRINGKEYWORDS]:
f.write(key + ' ' + str(self.get(key) + '\n'))
elif key.lower() in [element.lower() for element in Lobsterin.LISTKEYWORDS]:
for entry in self.get(key):
f.write(key + ' ' + str(entry) + '\n')
[docs] def as_dict(self):
"""
:return: MSONable dict
"""
d = dict(self)
d["@module"] = self.__class__.__module__
d["@class"] = self.__class__.__name__
return d
[docs] @classmethod
def from_dict(cls, d):
"""
:param d: Dict representation
:return: Lobsterin
"""
return Lobsterin({k: v for k, v in d.items() if k not in ["@module",
"@class"]})
[docs] def write_INCAR(self, incar_input: str = "INCAR", incar_output: str = "INCAR.lobster", poscar_input: str = "POSCAR",
isym: int = -1,
further_settings: dict = None):
"""
Will only make the run static, insert nbands, make ISYM=-1, set LWAVE=True and write a new INCAR.
You have to check for the rest.
Args:
incar_input (str): path to input INCAR
incar_output (str): path to output INCAR
poscar_input (str): path to input POSCAR
isym (int): isym equal to -1 or 0 are possible. Current Lobster version only allow -1.
further_settings (dict): A dict can be used to include further settings, e.g. {"ISMEAR":-5}
"""
# reads old incar from file, this one will be modified
incar = Incar.from_file(incar_input)
warnings.warn("Please check your incar_input before using it. This method only changes three settings!")
if isym == -1:
incar["ISYM"] = -1
elif isym == 0:
incar["ISYM"] = 0
else:
ValueError("isym has to be -1 or 0.")
incar["NSW"] = 0
incar["LWAVE"] = True
# get nbands from _get_nbands (use basis set that is inserted)
incar["NBANDS"] = self._get_nbands(Structure.from_file(poscar_input))
if further_settings is not None:
for key, item in further_settings.items():
incar[key] = further_settings[key]
# print it to file
incar.write_file(incar_output)
@staticmethod
def get_basis(structure: Structure, potcar_symbols: list,
address_basis_file: str = os.path.join(MODULE_DIR, "BASIS_PBE_54.yaml")):
"""
will get the basis from given potcar_symbols (e.g., ["Fe_pv","Si"]
#include this in lobsterin class
Args:
structure (Structure): Structure object
potcar_symbols: list of potcar symbols
Returns:
returns basis
"""
Potcar_names = [name for name in potcar_symbols]
AtomTypes_Potcar = [name.split('_')[0] for name in Potcar_names]
AtomTypes = structure.symbol_set
if set(AtomTypes) != set(AtomTypes_Potcar):
raise IOError("Your POSCAR does not correspond to your POTCAR!")
BASIS = loadfn(address_basis_file)['BASIS']
basis_functions = []
list_forin = []
for itype, type in enumerate(Potcar_names):
if type not in BASIS:
raise ValueError("You have to provide the basis for" + str(
type) + "manually. We don't have any information on this POTCAR.")
basis_functions.append(BASIS[type].split())
tojoin = str(AtomTypes_Potcar[itype]) + " "
tojoin2 = "".join(str(str(e) + " ") for e in BASIS[type].split())
list_forin.append(str(tojoin + tojoin2))
return list_forin
[docs] @staticmethod
def write_POSCAR_with_standard_primitive(POSCAR_input="POSCAR", POSCAR_output="POSCAR.lobster", symprec=0.01):
"""
writes a POSCAR with the standard primitive cell. This is needed to arrive at the correct kpath
Args:
POSCAR_input (str): filename of input POSCAR
POSCAR_output (str): filename of output POSCAR
symprec (float): precision to find symmetry
"""
structure = Structure.from_file(POSCAR_input)
kpath = HighSymmKpath(structure, symprec=symprec)
new_structure = kpath.prim
new_structure.to(fmt='POSCAR', filename=POSCAR_output)
[docs] @staticmethod
def write_KPOINTS(POSCAR_input: str = "POSCAR", KPOINTS_output="KPOINTS.lobster", reciprocal_density: int = 100,
isym: int = -1, from_grid: bool = False, input_grid: list = [5, 5, 5], line_mode: bool = True,
kpoints_line_density: int = 20, symprec: float = 0.01):
"""
writes a KPOINT file for lobster (only ISYM=-1 and ISYM=0 are possible), grids are gamma centered
Args:
POSCAR_input (str): path to POSCAR
KPOINTS_output (str): path to output KPOINTS
reciprocal_density (int): Grid density
isym (int): either -1 or 0. Current Lobster versions only allow -1.
from_grid (bool): If True KPOINTS will be generated with the help of a grid given in input_grid. Otherwise,
they will be generated from the reciprocal_density
input_grid (list): grid to generate the KPOINTS file
line_mode (bool): If True, band structure will be generated
kpoints_line_density (int): density of the lines in the band structure
symprec (float): precision to determine symmetry
"""
structure = Structure.from_file(POSCAR_input)
# should this really be static? -> make it similar to INCAR?
if not from_grid:
kpointgrid = Kpoints.automatic_density_by_vol(structure, reciprocal_density).kpts
mesh = kpointgrid[0]
else:
mesh = input_grid
# The following code is taken from: SpacegroupAnalyzer
# we need to switch off symmetry here
latt = structure.lattice.matrix
positions = structure.frac_coords
unique_species = [] # type: List[Any]
zs = []
magmoms = []
for species, g in itertools.groupby(structure,
key=lambda s: s.species):
if species in unique_species:
ind = unique_species.index(species)
zs.extend([ind + 1] * len(tuple(g)))
else:
unique_species.append(species)
zs.extend([len(unique_species)] * len(tuple(g)))
for site in structure:
if hasattr(site, 'magmom'):
magmoms.append(site.magmom)
elif site.is_ordered and hasattr(site.specie, 'spin'):
magmoms.append(site.specie.spin)
else:
magmoms.append(0)
# For now, we are setting magmom to zero. (Taken from INCAR class)
cell = latt, positions, zs, magmoms
# TODO: what about this shift?
mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[0, 0, 0])
# exit()
# get the kpoints for the grid
if isym == -1:
kpts = []
weights = []
all_labels = []
for gp in grid:
kpts.append(gp.astype(float) / mesh)
weights.append(float(1))
all_labels.append("")
elif isym == 0:
# time reversal symmetry: k and -k are equivalent
kpts = []
weights = []
all_labels = []
newlist = [list(gp) for gp in list(grid)]
mapping = []
for gp in newlist:
minusgp = [-k for k in gp]
if minusgp in newlist and minusgp not in [[0, 0, 0]]:
mapping.append(newlist.index(minusgp))
else:
mapping.append(newlist.index(gp))
for igp, gp in enumerate(newlist):
if mapping[igp] > igp:
kpts.append(np.array(gp).astype(float) / mesh)
weights.append(float(2))
all_labels.append("")
elif mapping[igp] == igp:
kpts.append(np.array(gp).astype(float) / mesh)
weights.append(float(1))
all_labels.append("")
else:
ValueError("Only isym=-1 and isym=0 are allowed.")
# line mode
if line_mode:
kpath = HighSymmKpath(structure, symprec=symprec)
if not np.allclose(kpath.prim.lattice.matrix, structure.lattice.matrix):
raise ValueError(
"You are not using the standard primitive cell. The k-path is not correct. Please generate a "
"standard primitive cell first.")
frac_k_points, labels = kpath.get_kpoints(
line_density=kpoints_line_density,
coords_are_cartesian=False)
for k in range(len(frac_k_points)):
kpts.append(frac_k_points[k])
weights.append(0.0)
all_labels.append(labels[k])
if isym == -1:
comment = (
"ISYM=-1, grid: " + str(mesh) if not line_mode else "ISYM=-1, grid: " + str(mesh) + " plus kpoint path")
elif isym == 0:
comment = (
"ISYM=0, grid: " + str(mesh) if not line_mode else "ISYM=0, grid: " + str(mesh) + " plus kpoint path")
KpointObject = Kpoints(comment=comment,
style=Kpoints.supported_modes.Reciprocal,
num_kpts=len(kpts), kpts=kpts, kpts_weights=weights,
labels=all_labels)
KpointObject.write_file(filename=KPOINTS_output)
[docs] @classmethod
def from_file(cls, lobsterin: str):
"""
Args:
lobsterin (str): path to lobsterin
Returns:
Lobsterin object
"""
with zopen(lobsterin, 'rt') as f:
data = f.read().split("\n")
if len(data) == 0:
raise IOError("lobsterin file contains no data.")
Lobsterindict = {} # type: Dict
for datum in data:
# will remove all commments to avoid complications
raw_datum = datum.split('!')[0]
raw_datum = raw_datum.split('//')[0]
raw_datum = raw_datum.split('#')[0]
raw_datum = raw_datum.split(' ')
while "" in raw_datum:
raw_datum.remove("")
if len(raw_datum) > 1:
# check which type of keyword this is, handle accordingly
if raw_datum[0].lower() not in [datum2.lower() for datum2 in Lobsterin.LISTKEYWORDS]:
if raw_datum[0].lower() not in [datum2.lower() for datum2 in Lobsterin.FLOATKEYWORDS]:
if raw_datum[0].lower() not in Lobsterindict:
Lobsterindict[raw_datum[0].lower()] = " ".join(raw_datum[1:])
else:
raise ValueError("Same keyword " + str(raw_datum[0].lower()) + "twice!")
else:
if raw_datum[0].lower() not in Lobsterindict:
Lobsterindict[raw_datum[0].lower()] = float(raw_datum[1])
else:
raise ValueError("Same keyword " + str(raw_datum[0].lower()) + "twice!")
else:
if raw_datum[0].lower() not in Lobsterindict:
Lobsterindict[raw_datum[0].lower()] = [" ".join(raw_datum[1:])]
else:
Lobsterindict[raw_datum[0].lower()].append(" ".join(raw_datum[1:]))
elif len(raw_datum) > 0:
Lobsterindict[raw_datum[0].lower()] = True
return cls(Lobsterindict)
@staticmethod
def _get_potcar_symbols(POTCAR_input: str) -> list:
"""
will return the name of the species in the POTCAR
Args:
POTCAR_input(str): string to potcar file
Returns:
list of the names of the species in string format
"""
potcar = Potcar.from_file(POTCAR_input)
for pot in potcar:
if pot.potential_type != "PAW":
raise IOError("Lobster only works with PAW! Use different POTCARs")
if potcar.functional != "PBE":
raise IOError("We only have BASIS options for PBE so far")
Potcar_names = [name["symbol"] for name in potcar.spec]
return Potcar_names
[docs] @classmethod
def standard_calculations_from_vasp_files(cls, POSCAR_input: str = "POSCAR", INCAR_input: str = "INCAR",
POTCAR_input: Optional[str] = None,
dict_for_basis: Optional[dict] = None,
option: str = 'standard'):
"""
will generate Lobsterin with standard settings
Args:
POSCAR_input(str): path to POSCAR
INCAR_input(str): path to INCAR
POTCAR_input (str): path to POTCAR
dict_for_basis (dict): can be provided: it should look the following:
dict_for_basis={"Fe":'3p 3d 4s 4f', "C": '2s 2p'} and will overwrite all settings from POTCAR_input
option (str): 'standard' will start a normal lobster run where COHPs, COOPs, DOS, CHARGE etc. will be
calculated
'standard_from_projection' will start a normal lobster run from a projection
'standard_with_fatband' will do a fatband calculation, run over all orbitals
'onlyprojection' will only do a projection
'onlydos' will only calculate a projected dos
'onlycohp' will only calculate cohp
'onlycoop' will only calculate coop
'onlycohpcoop' will only calculate cohp and coop
Returns:
Lobsterin Object with standard settings
"""
warnings.warn(
"Always check and test the provided basis functions. The spilling of your Lobster calculation might help")
# warn that fatband calc cannot be done with tetrahedron method at the moment
if option not in ['standard', 'standard_from_projection', 'standard_with_fatband', 'onlyprojection', 'onlydos',
'onlycohp', 'onlycoop', 'onlycohpcoop']:
raise ValueError("The option is not valid!")
Lobsterindict = {} # type: Dict[Any,Any]
# this basis set covers most elements
Lobsterindict['basisSet'] = 'pbeVaspFit2015'
# energies around e-fermi
Lobsterindict['COHPstartEnergy'] = -15.0
Lobsterindict['COHPendEnergy'] = 5.0
if option in ['standard', 'onlycohp', 'onlycoop', 'onlycohpcoop', 'standard_with_fatband']:
# every interaction with a distance of 6.0 is checked
Lobsterindict['cohpGenerator'] = "from 0.1 to 6.0 orbitalwise"
# the projection is saved
Lobsterindict['saveProjectionToFile'] = True
if option == 'standard_from_projection':
Lobsterindict['cohpGenerator'] = "from 0.1 to 6.0 orbitalwise"
Lobsterindict['loadProjectionFromFile'] = True
if option == 'onlycohp':
Lobsterindict['skipdos'] = True
Lobsterindict['skipcoop'] = True
Lobsterindict['skipPopulationAnalysis'] = True
Lobsterindict['skipGrossPopulation'] = True
if option == 'onlycoop':
Lobsterindict['skipdos'] = True
Lobsterindict['skipcohp'] = True
Lobsterindict['skipPopulationAnalysis'] = True
Lobsterindict['skipGrossPopulation'] = True
if option == 'onlycohpcoop':
Lobsterindict['skipdos'] = True
Lobsterindict['skipPopulationAnalysis'] = True
Lobsterindict['skipGrossPopulation'] = True
if option == 'onlydos':
Lobsterindict['skipcohp'] = True
Lobsterindict['skipcoop'] = True
Lobsterindict['skipPopulationAnalysis'] = True
Lobsterindict['skipGrossPopulation'] = True
if option == 'onlyprojection':
Lobsterindict['skipdos'] = True
Lobsterindict['skipcohp'] = True
Lobsterindict['skipcoop'] = True
Lobsterindict['skipPopulationAnalysis'] = True
Lobsterindict['skipGrossPopulation'] = True
Lobsterindict['saveProjectionToFile'] = True
incar = Incar.from_file(INCAR_input)
if incar["ISMEAR"] == 0:
Lobsterindict['gaussianSmearingWidth'] = incar["SIGMA"]
if incar["ISMEAR"] != 0 and option == "standard_with_fatband":
raise ValueError("ISMEAR has to be 0 for a fatband calculation with Lobster")
if dict_for_basis is not None:
# dict_for_basis={"Fe":'3p 3d 4s 4f', "C": '2s 2p'}
# will just insert this basis and not check with poscar
basis = [key + ' ' + value for key, value in dict_for_basis.items()]
elif POTCAR_input is not None:
# get basis from POTCAR
potcar_names = Lobsterin._get_potcar_symbols(POTCAR_input=POTCAR_input)
basis = Lobsterin.get_basis(structure=Structure.from_file(POSCAR_input),
potcar_symbols=potcar_names)
else:
raise ValueError("basis cannot be generated")
Lobsterindict["basisfunctions"] = basis
if option == 'standard_with_fatband':
Lobsterindict['createFatband'] = basis
return cls(Lobsterindict)
[docs]class Bandoverlaps:
"""
Class to read in bandOverlaps.lobster files. These files are not created during every Lobster run.
.. attribute: bandoverlapsdict is a dict of the following form:
{spin:{"kpoint as string": {"maxDeviation": float that describes the max deviation, "matrix": 2D
array of the size number of bands times number of bands including the overlap matrices with } }}
.. attribute: maxDeviation is a list of floats describing the maximal Deviation for each problematic kpoint
"""
def __init__(self, filename: str = "bandOverlaps.lobster"):
"""
Args:
filename: filename of the "bandOverlaps.lobster" file
"""
with zopen(filename, "rt") as f:
contents = f.read().split("\n")
self._read(contents)
def _read(self, contents: list):
"""
will read in all contents of the file
Args:
contents: list of strings
"""
self.bandoverlapsdict = {} # type: Dict
self.max_deviation = [] # type: List
# This has to be done like this because there can be different numbers of problematic k-points per spin
for line in contents:
if "Overlap Matrix (abs) of the orthonormalized projected bands for spin 0" in line:
spin = Spin.up
elif "Overlap Matrix (abs) of the orthonormalized projected bands for spin 1" in line:
spin = Spin.down
elif "k-point" in line:
kpoint = line.split(" ")
kpoint_array = []
for kpointel in kpoint:
if kpointel not in ["at", "k-point", ""]:
kpoint_array.append(str(kpointel))
elif "maxDeviation" in line:
if spin not in self.bandoverlapsdict:
self.bandoverlapsdict[spin] = {}
if not " ".join(kpoint_array) in self.bandoverlapsdict[spin]:
self.bandoverlapsdict[spin][" ".join(kpoint_array)] = {}
maxdev = line.split(" ")[2]
self.bandoverlapsdict[spin][" ".join(kpoint_array)]["maxDeviation"] = float(maxdev)
self.max_deviation.append(float(maxdev))
self.bandoverlapsdict[spin][" ".join(kpoint_array)]["matrix"] = []
else:
overlaps = []
for el in (line.split(" ")):
if el not in [""]:
overlaps.append(float(el))
self.bandoverlapsdict[spin][" ".join(kpoint_array)]["matrix"].append(overlaps)
[docs] def has_good_quality_maxDeviation(self, limit_maxDeviation: float = 0.1) -> bool:
"""
will check if the maxDeviation from the ideal bandoverlap is smaller or equal to limit_maxDeviation
Args:
limit_maxDeviation: limit of the maxDeviation
Returns:
Boolean that will give you information about the quality of the projection
"""
for deviation in self.max_deviation:
if deviation > limit_maxDeviation:
return False
return True
[docs] def has_good_quality_check_occupied_bands(self, number_occ_bands_spin_up: int,
number_occ_bands_spin_down: Optional[int] = None,
spin_polarized: bool = False, limit_deviation: float = 0.1) -> bool:
"""
will check if the deviation from the ideal bandoverlap of all occupied bands is smaller or equal to
limit_deviation
Args:
number_occ_bands_spin_up (int): number of occupied bands of spin up
number_occ_bands_spin_down (int): number of occupied bands of spin down
spin_polarized (bool): If True, then it was a spin polarized calculation
limit_deviation (float): limit of the maxDeviation
Returns:
Boolean that will give you information about the quality of the projection
"""
for matrix in self.bandoverlapsdict[Spin.up].values():
for iband1, band1 in enumerate(matrix["matrix"]):
for iband2, band2 in enumerate(band1):
if iband1 < number_occ_bands_spin_up and iband2 < number_occ_bands_spin_up:
if iband1 == iband2:
if abs(band2 - 1.0) > limit_deviation:
return False
else:
if band2 > limit_deviation:
return False
if spin_polarized:
for matrix in self.bandoverlapsdict[Spin.down].values():
for iband1, band1 in enumerate(matrix["matrix"]):
for iband2, band2 in enumerate(band1):
if number_occ_bands_spin_down is not None:
if iband1 < number_occ_bands_spin_down and iband2 < number_occ_bands_spin_down:
if iband1 == iband2:
if abs(band2 - 1.0) > limit_deviation:
return False
else:
if band2 > limit_deviation:
return False
else:
ValueError("number_occ_bands_spin_down has to be specified")
return True
[docs]class Grosspop:
"""
Class to read in GROSSPOP.lobster files.
.. attribute: list_dict_grosspop
which is a list of dicts including all information about the grosspopulations, one sample dict looks like this:
{'element': 'O', 'Mulliken GP': {'2s': '1.80', '2p_y': '1.83', '2p_z': '1.79', '2p_x': '1.75', 'total': '7.18'},
'Loewdin GP': {'2s': '1.60', '2p_y': '1.82', '2p_z': '1.77', '2p_x': '1.73', 'total': '6.92'}}
The 0. entry of the list refers to the first atom in GROSSPOP.lobster and so on.
"""
def __init__(self, filename: str = "GROSSPOP.lobster"):
"""
Args:
filename: filename of the "GROSSPOP.lobster" file
"""
# opens file
with zopen(filename, "rt") as f:
contents = f.read().split("\n")
self.list_dict_grosspop = [] # type: List[Any]
# transfers content of file to list of dict
for line in contents[3:]:
cleanline = [i for i in line.split(" ") if not i == '']
if len(cleanline) == 5:
smalldict = {}
smalldict["element"] = cleanline[1]
smalldict["Mulliken GP"] = {}
smalldict["Loewdin GP"] = {}
smalldict["Mulliken GP"][cleanline[2]] = float(cleanline[3])
smalldict["Loewdin GP"][cleanline[2]] = float(cleanline[4])
elif len(cleanline) > 0:
smalldict["Mulliken GP"][cleanline[0]] = float(cleanline[1])
smalldict["Loewdin GP"][cleanline[0]] = float(cleanline[2])
if 'total' in cleanline[0]:
self.list_dict_grosspop.append(smalldict)
[docs] def get_structure_with_total_grosspop(self, structure_filename: str) -> Structure:
"""
get a Structure with Mulliken and Loewdin total grosspopulations as site properties
Args:
structure_filename (str): filename of POSCAR
Returns:
Structure Object with Mulliken and Loewdin total grosspopulations as site properties
"""
struct = Structure.from_file(structure_filename)
site_properties = {} # type: Dict[str, Any]
mullikengp = []
loewdingp = []
for grosspop in self.list_dict_grosspop:
mullikengp.append(grosspop["Mulliken GP"]["total"])
loewdingp.append(grosspop["Loewdin GP"]["total"])
site_properties = {"Total Mulliken GP": mullikengp, "Total Loewdin GP": loewdingp}
new_struct = struct.copy(site_properties=site_properties)
return new_struct