
Text Annotation

https://golang.org
FreeText Annotation

Line Annotation

Square Annotation

Circle Annotation

Polygon Annotation

PolyLine Annotation

MyTitle
Highlight Annotation

Underline Annotation

Squiggly Annotation

StrikeOut Annotation

Caret Annotation

Stamp Annotation

Ink Annotation

FileAttachment Annotation

Sound Annotation

Google's Go Programming Language

Yossi Gil

What is it?

 Google's newly released Programming Language.

 Factor: An extensible Programming Language
(Slava Pestov 2008)

 Many other “internal languages”

 Not: Go! (a Prolog like obscure agent-based
programming language).

 Compiled, concurrent, imperative, structured, GC, {}

 By: Ken Thompson (B,C), Rob Pike (Limbo), 2007-

 Other Google Purchases: Udi Manber, Bram Moolenaar (vim), Vint
Cerf, Larry Brilliant, Michael Burrows (BW), Joshua Bloch (Java), Ed
Lu(astronaut)

Example

package main

import ("os"

 "flag”)

var nFlag = flag.Bool("n", false, `no \n`)

func main() {

 flag.Parse()

 s := "";

 for i := 0; i < flag.NArg(); i++ {

 if i > 0 { s += " " }

 s += flag.Arg(i)

 }

 if !*nFlag { s += "\n" }

 os.Stdout.WriteString(s);

}

Philosophy: No Bookkeeping

 Programming today: bookkeeping, repetition,
and clerical work.

 Dick Gabriel (IBM):

“Old programs read like quiet conversations between a well-spoken
research worker and a well-studied mechanical colleague, not as a
debate with a compiler. Who'd have guessed sophistication bought

such noise?”

 New Abstractions: Good.

 New Verbosity: Bad.

Why?

 No new major systems language in a decade.

 But much has changed:

 - sprawling libraries & dependency chains

 - dominance of networking

 - client/server focus

 - massive clusters

 - the rise of multi-core CPUs

 Major systems languages were not designed
with all these factors in mind.

Objectives

 The efficiency of a statically-typed compiled
language with the ease of programming of a
dynamic language.

 Safety: type-safe and memory-safe.

 Good support for concurrency and
communication.

 Efficient, latency-free garbage collection.

 High-speed compilation...

Design Principles

 Orthogonality: A few orthogonal features work better than a
lot of overlapping ones. (e.g. no ”while” command)

 Simple, Regular Grammar: Few keywords, parsable without a
symbol table.

 Reduced typing. Let the language work things out. No
stuttering; don't want to see

 foo.Foo *myFoo = new foo.Foo(foo.FOO_INIT)

 Reduce typing. Keep the type system clear. No type hierarchy.
Too clumsy to write code by constructing type hierarchies.

 Safety: GC and Memory (no pointer arithmetic)

 OO?: Yes, but the ”Google” way...

Idea: Escape from Type System Tyranny

 Const in C++ as an example

 well-intentioned but awkward in practice

 Type Hierarchy

 Types in large programs do not easily fall into
hierarchies

 You can be safe or productive, not both

Give us good old C back, but better

Why New Language?

New libraries won’t help

Adding anything will not enable us to reduce and
simplify the language

Parenthesis

 It is a ”curly braces language”, just like C, C++,
Java, C# and many others.

 But, the syntax of conditionals and iteration is
simplified: parenthesis are optional, curly
brackets are mandatory

 for i := 0; i < flag.NArg(); i++ {

 if i > 0 {

 s += Space

 }

 s += flag.Arg(i)

 }

Semicolons

 No semicolons...

 except in:

 for i := 0; i < 10; i++ {...}

 if v := math.Pow(x, n); v < 5 {…}

 Improve on the synthesis approach:

 Internally, the language uses semicolons.

 They are added automatically for you.

 CASE tool will remove them from text.

 Necessary if you have two statements on the
same line.

No Need for Type Declaration

Equivalent declerations:

var s string = ”Hello”;

var s = ”Hello”;

s := ”Hello”; //Initialization operator

Declering Constants:

const space = ” ”;

Decleration inside a for loop:

for i := 1; i < 100; i++

Declares i to be a new variable of type integer

Primitive Types

 Boolean: boolean

 Integral: int8, int16, int32, int64, int

 int is 32 bits or 64 bits, but it is always distinct from int32 and int64

 Unsigned: uint8, uint16, uint32, uint64, uint

 uint is 32 bits or 64 bits, but it is always distinct from uint32 and uint64

 byte is alias for uint8

 Float: float32, float64, float

 float is 32 bits or 64 bits, but it is always distinct from float32 and float64

 Complex: complex32, complex64

 complex is 32 bits or 64 bits, but it is always distinct from complex32 and complex64

 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value

 Any pointer or value of type uintptr can be converted into a Pointer and vice versa.

String Type

Similar to immutable array of bytes

Partial inspection

No partial modification

Arrays and Slices

• Indices, just like C, are 0,..,Size

• Multidimensional, just like C, unlike Java.

• Size must be known at compile time

• No pointer arithmetic is allowed?

• Why???

• Slice types: reference to a contiguous segment
of an array and contains a numbered sequence
of elements from that array.

Arrays and Slices- example

func f(a [10]int) { fmt.Println(a) }

func fp(a *[10]int) { fmt.Println(a) }

func main() {

 var ar [10] int

 f(ar) // passes a copy of ar

 fp(&ar) // passes a pointer to ar

 var a []int //creating a slice

 a = ar[7:9]

}

Struct Types and Methods

type Point struct { x, y float64 }

// A method on *Point

func (p *Point) Abs() float64 {

 return math.Sqrt(p.x*p.x + p.y*p.y)

}

p := &Point{ 3, 4 }

fmt.Print(p.Abs()) // will print 5

Interfaces

type Abser interface {

 Abs() float64

}

type Vertex struct {

 X, Y float64

}

func (v *Vertex) Abs() float64 {

 return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

func main() {

 var a Abser

 v := Vertex{3, 4}

 a = &v // a *Vertex implements Abser

 a = v // a Vertex, does NOT implement Abser

 fmt.Println(a.Abs())

}

Other Type Constructors

• Map

• Function

• Channel (for parallel programming)

• No union

• No inheritance (struct may implement
interfaces)

Differences from C++

• No constructors

• No destructions (thanks to garbage collection)

• No pointer arithmetic

• Arrays are first class values
(passed by value to functions)

• No implicit type conversion
All conversions must be explicit

• nil “belongs” to all pointer types

White Lie Above

Constants (and literals) are untyped!

const b = 3

Gives the literal “3” a symbolic name “b”

But, “3” is untyped!

 var a uint

const b = 3;

 …

f(a + b) // untyped numeric constant “3" becomes typed as uint

goroutine

func IsReady(what string, minutes int64) {

 time.Sleep(minutes * 60*1e9)
 // Unit is nanosecs.

 fmt.Println(what, "is ready")

}

go IsReady("tea", 6)

go IsReady("coffee", 2)

fmt.Println("I'm waiting...")

Prints:

 I'm waiting... (right away)

 coffee is ready (2 minutes later)

 tea is ready (6 minutes later)

Channels

func pump(ch chan int) {

 for i := 0; ; i++ { ch <- i }

}

func suck(ch chan int) {

 for { fmt.Println(<-ch) }

}

ch1 := make(chan int)

go pump(ch1) // pump hangs; we run

fmt.Println(<-ch1) // prints 0

go suck(ch1) // tons of numbers appear

