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What is it? 


 Google's newly released Programming Language. 


 Factor: An extensible Programming Language 
(Slava Pestov 2008) 


 Many other “internal languages” 


 Not: Go! (a Prolog like obscure agent-based 
programming language). 


 Compiled, concurrent, imperative, structured, GC, {} 


 By: Ken Thompson (B,C), Rob  Pike (Limbo), 2007- 


 Other Google Purchases: Udi Manber, Bram Moolenaar (vim), Vint 
Cerf, Larry Brilliant, Michael Burrows (BW), Joshua Bloch (Java), Ed 
Lu(astronaut) 







Example 


package main 


import ("os" 


   "flag”) 


var nFlag = flag.Bool("n", false, `no \n`) 


func main() { 


    flag.Parse() 


    s := ""; 


    for i := 0; i < flag.NArg(); i++ { 


       if i > 0 { s += " " } 


       s += flag.Arg(i) 


    } 


    if !*nFlag { s += "\n" } 


    os.Stdout.WriteString(s); 


} 







Philosophy: No Bookkeeping 


 Programming today: bookkeeping, repetition, 
and clerical work.  


 Dick Gabriel (IBM):  


“Old programs read like quiet conversations between a well-spoken 
research worker and a well-studied mechanical colleague, not as a 
debate with a compiler. Who'd have guessed sophistication bought 


such noise?”  


 New Abstractions: Good. 


 New Verbosity: Bad. 







Why? 


 No new major systems language in a decade. 


 But much has changed: 


  - sprawling libraries & dependency chains 


  - dominance of networking 


  - client/server focus 


  - massive clusters 


  - the rise of multi-core CPUs 


 Major systems languages were not designed 
with all these factors in mind. 







Objectives 


 The efficiency of a statically-typed compiled 
language with the ease of programming of a 
dynamic language. 


 Safety: type-safe and memory-safe. 


 Good support for concurrency and 
communication. 


 Efficient, latency-free garbage collection. 


 High-speed compilation... 


 







Design Principles 


 Orthogonality:  A few orthogonal features work better than a 
lot of overlapping ones. (e.g. no ”while” command) 


 Simple, Regular Grammar:  Few keywords, parsable without a 
symbol table. 


 Reduced typing. Let the language work things out.  No 
stuttering; don't want to see 


   foo.Foo *myFoo = new foo.Foo(foo.FOO_INIT) 


 Reduce typing. Keep the type system clear. No type hierarchy. 
Too clumsy to write code by constructing type hierarchies. 


 Safety: GC and Memory (no pointer arithmetic) 


 OO?: Yes, but the ”Google” way... 







Idea: Escape from Type System Tyranny 


 Const in C++ as an example 


 well-intentioned but awkward in practice 


 Type Hierarchy 


 Types in large programs do not easily fall into 
hierarchies 


 You can be safe or productive, not both 


 


 


Give us good old C back, but better 







Why New Language? 


New libraries won’t help 


Adding anything will not enable us to reduce and 
simplify the language 


 







Parenthesis 


 It is a ”curly braces language”, just like C, C++, 
Java, C# and many others. 


 But, the syntax of conditionals and iteration is 
simplified: parenthesis are optional, curly 
brackets are mandatory 


 
        for i := 0; i < flag.NArg(); i++ { 


            if i > 0 { 


                s += Space 


            } 


            s += flag.Arg(i) 


        } 







Semicolons 


 No semicolons...  


 except in: 


 for i := 0; i < 10; i++ {...} 


 if v := math.Pow(x, n); v < 5 {…} 


 Improve on the synthesis approach: 


 Internally, the language uses semicolons. 


 They are added automatically for you. 


 CASE tool will remove them from text. 


 Necessary if you have two statements on the 
same line. 


 







No Need for Type Declaration 


Equivalent declerations: 


var s string = ”Hello”; 


var s = ”Hello”; 


s := ”Hello”; //Initialization operator 


 


Declering Constants: 


const space = ” ”; 


 


Decleration inside a for loop: 


for i := 1; i < 100; i++ 


Declares i to be a new variable of type integer 







Primitive Types 


 Boolean: boolean 


 Integral: int8, int16, int32, int64, int 


 int is 32 bits or 64 bits, but it is always distinct from int32 and int64 


 Unsigned: uint8, uint16, uint32, uint64, uint 


 uint is 32 bits or 64 bits, but it is always distinct from uint32 and uint64 


 byte is alias for uint8 


 Float: float32, float64, float 


 float is 32 bits or 64 bits, but it is always distinct from float32 and float64 


 Complex: complex32, complex64 


 complex is 32 bits or 64 bits, but it is always distinct from complex32 and complex64 


 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value 


 Any pointer or value of type uintptr can be converted into a Pointer and vice versa. 







String  Type 


Similar to immutable array of bytes 


Partial inspection 


No partial modification 


 







Arrays and Slices 


• Indices, just like C, are 0,..,Size 


• Multidimensional, just like C, unlike Java. 


• Size must be known at compile time 


• No pointer arithmetic is allowed? 


• Why??? 


• Slice types:  reference to a contiguous segment 
of an array and contains a numbered sequence 
of elements from that array.  


 







Arrays and Slices- example 


func f(a [10]int) { fmt.Println(a) } 


func fp(a *[10]int) { fmt.Println(a) } 


func main() { 


    var ar [10] int 


    f(ar)    // passes a copy of ar 


    fp(&ar)  // passes a pointer to ar 


     


    var a []int //creating a slice 


    a = ar[7:9] 


} 







Struct Types and Methods 


type Point struct { x, y float64 } 


 


// A method on *Point 


func (p *Point) Abs() float64 { 


 return math.Sqrt(p.x*p.x + p.y*p.y) 


} 


 


p := &Point{ 3, 4 } 


fmt.Print(p.Abs())  // will print 5 







Interfaces 


type Abser interface { 


 Abs() float64 


} 


type Vertex struct { 


 X, Y float64 


} 


func (v *Vertex) Abs() float64 { 


 return math.Sqrt(v.X*v.X + v.Y*v.Y) 


} 


func main() { 


 var a Abser 


 v := Vertex{3, 4} 


 a = &v // a *Vertex implements Abser 


 a = v  // a Vertex, does NOT implement Abser 


 fmt.Println(a.Abs()) 


} 







Other Type Constructors 


• Map 


• Function 


• Channel (for parallel programming) 


• No union 


• No inheritance (struct may implement 
interfaces) 


  







Differences from C++ 


• No constructors 


• No destructions (thanks to garbage collection) 


• No pointer arithmetic 


• Arrays are first class values  
(passed by value to functions) 


• No implicit type conversion 
All conversions must be explicit 


• nil “belongs” to all pointer types 


 







White Lie Above 


Constants (and literals) are untyped! 


const b = 3 


Gives the literal “3” a symbolic name “b” 


But, “3” is untyped! 


  var a uint 


const b = 3; 


   … 


f(a + b) // untyped numeric constant “3" becomes typed as uint 


 


 







goroutine 


func IsReady(what string, minutes int64) { 


    time.Sleep(minutes * 60*1e9)  
  // Unit is nanosecs. 


    fmt.Println(what, "is ready") 


} 


go IsReady("tea", 6) 


go IsReady("coffee", 2) 


fmt.Println("I'm waiting...") 
 


Prints: 


 I'm waiting...   (right away) 


 coffee is ready  (2 minutes later) 


 tea is ready     (6 minutes later) 







Channels 


func pump(ch chan int) { 


    for i := 0; ; i++ { ch <- i } 


} 


func suck(ch chan int) { 


    for { fmt.Println(<-ch) } 


} 


ch1 := make(chan int) 


go pump(ch1)        // pump hangs; we run 


fmt.Println(<-ch1)  // prints 0 


go suck(ch1)  // tons of numbers appear 







