dune-localfunctions 2.10
Loading...
Searching...
No Matches
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 CBase
 CDune::MonomialEvaluator< B >::BaseIterator< Deriv >
 CDune::BasisInterfaceInterface for global-valued shape functions
 CDune::BasisInterfaceSwitch< Basis, Dummy >Switch for uniform treatment of local and global basis classes
 CDune::BasisMatrix< PreBasis, Interpolation, Field >
 CDune::BDFMCubeLocalBasis< D, R, dim, order >Brezzi-Douglas-Fortin-Marini shape functions on a reference cube
 CDune::BDFMCubeLocalBasis< D, R, 2, 1 >First order Brezzi-Douglas-Fortin-Marini shape functions on the reference quadrialteral
 CDune::BDFMCubeLocalBasis< D, R, 2, 2 >Second order Brezzi-Douglas-Fortin-Marini shape functions on the reference quadrialteral
 CDune::BDFMCubeLocalBasis< D, R, 2, 3 >Third order Brezzi-Douglas-Fortin-Marini shape functions on the reference quadrialteral
 CDune::BDFMCubeLocalFiniteElement< D, R, dim, order >Brezzi-Douglas-Fortin-Marini finite elements for cubes
 CDune::BDFMCubeLocalInterpolation< D, R, dim, order >Interpolation for Brezzi-Douglas-Fortin-Marini shape functions on cubes
 CDune::BDM1Cube2DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral
 CDune::BDM1Cube2DLocalFiniteElement< D, R >First order Brezzi-Douglas-Marini shape functions on quadrilaterals
 CDune::BDM1Cube2DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral
 CDune::BDM1Cube2DLocalInterpolation< Dune::BDM1Cube2DLocalBasis< D, R > >
 CDune::BDM1Cube3DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on the reference hexahedron
 CDune::BDM1Cube3DLocalFiniteElement< D, R >First order Brezzi-Douglas-Marini shape functions on hexahedron
 CDune::BDM1Cube3DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on the reference hexahedron
 CDune::BDM1Cube3DLocalInterpolation< Dune::BDM1Cube3DLocalBasis< D, R > >
 CDune::BDM1Simplex2DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on the reference triangle
 CDune::BDM1Simplex2DLocalFiniteElement< D, R >First order Brezzi-Douglas-Marini shape functions on triangles
 CDune::BDM1Simplex2DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on the reference triangle
 CDune::BDM1Simplex2DLocalInterpolation< Dune::BDM1Simplex2DLocalBasis< D, R > >
 CDune::BDM2Cube2DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on quadrilaterals
 CDune::BDM2Cube2DLocalFiniteElement< D, R >Second order Brezzi-Douglas-Marini shape functions on quadrilaterals
 CDune::BDM2Cube2DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on quadrilaterals
 CDune::BDM2Cube2DLocalInterpolation< Dune::BDM2Cube2DLocalBasis< D, R > >
 CDune::BDM2Simplex2DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on quadrilaterals
 CDune::BDM2Simplex2DLocalFiniteElement< D, R >Second order Brezzi-Douglas-Marini shape functions on triangles
 CDune::BDM2Simplex2DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on triangles
 CDune::BDM2Simplex2DLocalInterpolation< Dune::BDM2Simplex2DLocalBasis< D, R > >
 CDune::BrezziDouglasMariniCubeLocalFiniteElement< D, R, dim, order >Brezzi-Douglas-Marini local finite element for cubes
 CDune::BrezziDouglasMariniSimplexLocalFiniteElement< D, R, dim, order >Brezzi-Douglas-Marini local finite element for simplices
 CDune::CoefficientsInterfaceInterface for global-valued coefficients
 CDune::ComputeField< Field, sum >
 CDune::PolynomialBasis< Eval, CM, D, R >::Convert< dummy, DVector >
 CDune::PolynomialBasis< Eval, CM, D, R >::Convert< dummy, DomainVector >
 CDune::CrouzeixRaviartLocalFiniteElement< D, R, dim >Crouzeix-Raviart finite element
 CDune::DefaultBasisFactory< PreBFactory, InterpolFactory, dim, dimR, SF, CF, PreBasisKeyExtractor >
 CDune::DefaultBasisFactory< MonomialBasisFactory< dim, CF >, LagrangeInterpolationFactory< LP, dim, CF >, dim, 1, SF, CF >
 CDune::DefaultBasisFactory< NedelecPreBasisFactory< dim, CF >, NedelecL2InterpolationFactory< dim, CF >, dim, dim, SF, CF >
 CDune::DefaultBasisFactory< RTPreBasisFactory< dim, CF >, RaviartThomasL2InterpolationFactory< dim, CF >, dim, dim, SF, CF >
 CDune::DerivativeAssign< Vec1, Vec2 >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::derivative > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::value > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, FieldVector< F2, 1 > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, FieldVector< F2, dimR > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::derivative > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::value > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, FieldVector< F2, 1 > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, FieldVector< F2, dimR > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::derivative > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::value > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, F2 >
 CDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::derivative >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::value > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::derivative >, FieldVector< F2, dimR > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::value >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::derivative > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::value >, FieldVector< F2, dimR > >
 CDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, layout > >
 CDune::Derivatives< F, dimD, dimR, deriv, layout >
 CDune::Derivatives< F, dimD, dimR, 0, DerivativeLayoutNS::value >
 CDune::Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::derivative >
 CDune::Derivatives< F, dimD, dimR, deriv-1, DerivativeLayoutNS::value >
 CDune::DGLocalCoefficientsA class providing local coefficients for dg spaces
 CDune::DGLocalCoefficientsFactory< BasisFactory >A factory class for the dg local coefficients
 CDune::DimSpecificPQkLocalFiniteElementFactory< D, R, d, k >Factory that only creates dimension specific local finite elements
 CDune::DimSpecificPQkLocalFiniteElementFactory< D, R, 3, k >Factory that only creates dimension specific local finite elements
 CDune::DualP1LocalBasis< D, R, dim, faceDualT >Dual Lagrange shape functions on the simplex
 CDune::DualP1LocalBasis< D, R, dim, false >
 CDune::DualP1LocalFiniteElement< D, R, dim, faceDual >The local dual p1 finite element on simplices
 CDune::DualP1LocalInterpolation< dim, LB >
 CDune::DualP1LocalInterpolation< dim, Dune::DualP1LocalBasis< D, R, dim, false > >
 CDune::DualPQ1LocalFiniteElementCache< D, R, dim, faceDual >
 CDune::DualQ1LocalBasis< D, R, dim >Dual Lagrange shape functions of order 1 on the reference cube
 CDune::DualQ1LocalFiniteElement< D, R, dim, faceDual >The local dual Q1 finite element on cubes
 CDune::DualQ1LocalInterpolation< dim, LB >
 CDune::DualQ1LocalInterpolation< dim, Dune::DualQ1LocalBasis< D, R, dim > >
 CDune::DynamicLagrangeLocalFiniteElementCache< Domain, Range, dim >A cache that stores Lagrange finite elements for the given dimension and order
 CDune::DynamicMatrix
 CDynamicMatrix
 CDune::EdgeS0_5Common< dim, DF >Common base class for edge elements
 CDune::EdgeS0_5Common< Geometry::mydimension, Geometry::ctype >
 CDune::EdgeS0_5Common< Traits_::dimDomainLocal, Traits_::DomainField >
 CDune::EdgeS0_5FiniteElement< Geometry, RF >FiniteElement for lowest order edge elements on simplices
 CDune::EmptyPointSet< F, dim >
 CDune::MonomImp::EvalAccess< Traits >Access output vector of evaluateFunction() and evaluate()
 CDune::MonomImp::Evaluate< Traits, c >
 CDune::MonomImp::Evaluate< Traits, 1 >
 CDune::DefaultBasisFactory< PreBFactory, InterpolFactory, dim, dimR, SF, CF, PreBasisKeyExtractor >::EvaluationBasisFactory< dd, FF >
 CDune::MonomialBasisFactory< dim, F >::EvaluationBasisFactory< dd, FF >
 CDune::MonomialBasisProvider< dim, SF >::EvaluationBasisFactory< dd, FF >
 CDune::NedelecPreBasisFactory< dim, Field >::EvaluationBasisFactory< dd, FF >
 CDune::OrthonormalBasisFactory< dim, SF, CF >::EvaluationBasisFactory< dd, FF >
 CDune::RTPreBasisFactory< dim, Field >::EvaluationBasisFactory< dd, FF >
 CDune::FieldCast< F2, V >
 CDune::FieldCast< F2, Dune::FieldMatrix< F1, dim1, dim2 > >
 CDune::FieldCast< F2, Dune::FieldVector< F1, dim > >
 CDune::FieldTraits< Derivatives< F, dimD, dimR, deriv, layout > >
 CDune::FieldTraits< LFETensor< F, dimD, deriv > >
 CDune::FieldTraits< MultiIndex< dim, Field > >
 CFiniteElementFactory
 CDune::FiniteElementFactoryInterface< Geometry, VertexOrder >Factory interface for global-valued finite elements
 CDune::FiniteElementInterfaceInterface for global-valued finite elements
 CDune::FiniteElementInterfaceSwitch< FiniteElement, Dummy >Switch for uniform treatment of finite element with either the local or the global interface
 CDune::GenericLocalFiniteElement< BasisF, CoeffF, InterpolF >A LocalFiniteElement implementation based on three TopologyFactories providing the LocalBasis, LocalCoefficients, and LocalInterpolations. Note the key type for all three factories must coincide
 CDune::GenericLocalFiniteElement< FE::BasisFactory, DGLocalCoefficientsFactory< FE::BasisFactory >, FE::InterpolationFactory >
 CDune::GenericLocalFiniteElement< FE::BasisFactory, DGLocalCoefficientsFactory< FE::BasisFactory >, LocalL2InterpolationFactory< FE::BasisFactory, false > >
 CDune::GenericLocalFiniteElement< LagrangeBasisFactory< LP, dimDomain, R, R >, LagrangeCoefficientsFactory< LP, dimDomain, R >, LagrangeInterpolationFactory< LP, dimDomain, R > >
 CDune::GenericLocalFiniteElement< OrthonormalBasisFactory< dimDomain, R, R >, DGLocalCoefficientsFactory< OrthonormalBasisFactory< dimDomain, R, R > >, LocalL2InterpolationFactory< OrthonormalBasisFactory< dimDomain, R, R >, true > >
 CDune::GenericLocalFiniteElement< RaviartThomasBasisFactory< dimDomain, R, R >, RaviartThomasCoefficientsFactory< dimDomain >, RaviartThomasL2InterpolationFactory< dimDomain, R > >
 CDune::InterpolationHelper< F, dimension >::Helper< Func, Container, type >
 CDune::InterpolationHelper< F, dimension >::Helper< Basis, Matrix, false >
 CDune::InterpolationHelper< F, dimension >::Helper< Func, Vector, true >
 CDune::HierarchicalP2LocalFiniteElement< D, R, dim >
 CDune::HierarchicalP2WithElementBubbleLocalFiniteElement< D, R, dim >Linear Lagrange functions enriched with quadratic edge bubble functions and an element bubble function
 CDune::HierarchicalPrismP2LocalBasis< D, R >
 CDune::HierarchicalPrismP2LocalFiniteElement< D, R >
 CDune::HierarchicalPrismP2LocalInterpolation< LB >
 CDune::HierarchicalPrismP2LocalInterpolation< Dune::HierarchicalPrismP2LocalBasis< D, R > >
 CDune::HierarchicalSimplexP2LocalBasis< D, R, dim >
 CDune::HierarchicalSimplexP2LocalBasis< D, R, 1 >Hierarchical P2 basis in 1d
 CDune::HierarchicalSimplexP2LocalBasis< D, R, 2 >Hierarchical P2 basis in 2d
 CDune::HierarchicalSimplexP2LocalBasis< D, R, 3 >Hierarchical P2 basis in 3d
 CDune::HierarchicalSimplexP2LocalInterpolation< LB >
 CDune::HierarchicalSimplexP2LocalInterpolation< Dune::HierarchicalSimplexP2LocalBasis< D, R, dim > >
 CDune::HierarchicalSimplexP2WithElementBubbleLocalBasis< D, R, dim >P1 basis in dim-d enriched by quadratic edge bubble functions and an element bubble function of order dim+1
 CDune::HierarchicalSimplexP2WithElementBubbleLocalCoefficients< dim >The local keys of the hierarchical basis functions with element bubble
 CDune::HierarchicalSimplexP2WithElementBubbleLocalInterpolation< LB, dim >
 CDune::HierarchicalSimplexP2WithElementBubbleLocalInterpolation< LocalBasisType, dim >
 CDune::Identity
 CONBCompute::Integral< geometryId >
 CDune::InterpolationHelper< F, dimension >
 CDune::InterpolationInterfaceInterface for global-valued interpolation
 CDune::MonomialEvaluator< B >::Iterator< deriv >
 CDune::MonomImp::JacobianAccess< Traits >Access output vector of evaluateJacobian()
 CDune::LagrangeCoefficientsFactory< LP, dim, F >
 CDune::LagrangeCubeLocalFiniteElement< D, R, dim, k >Lagrange finite element for cubes with arbitrary compile-time dimension and polynomial order
 CDune::LagrangeCubeLocalFiniteElement< Geometry::ctype, RF, Geometry::mydimension, 1 >
 CDune::LagrangeInterpolationFactory< LP, dim, F >
 CDune::LagrangePoint< F, dim >
 CDune::LagrangePrismLocalFiniteElement< D, R, k >Lagrange finite element for 3d prisms with arbitrary compile-time polynomial order
 CDune::LagrangePyramidLocalFiniteElement< D, R, k >Lagrange finite element for 3d pyramids with compile-time polynomial order
 CDune::LagrangeSimplexLocalFiniteElement< D, R, d, k >Lagrange finite element for simplices with arbitrary compile-time dimension and polynomial order
 CDune::LFEMatrix< F >
 CDune::LFETensor< F, dimD, deriv >
 CDune::LFETensor< F, 0, 0 >
 CDune::LFETensor< F, 0, deriv >
 CDune::LFETensor< F, dimD, 0 >
 CDune::LFETensorAxpy< Vec1, Vec2, deriv >
 CDune::LFETensorAxpy< Derivatives< F1, dimD, 1, d, DerivativeLayoutNS::derivative >, Vec2, deriv >
 CDune::LFETensorAxpy< Derivatives< F1, dimD, 1, d, DerivativeLayoutNS::value >, Vec2, deriv >
 CDune::LFETensorAxpy< Derivatives< F1, dimD, dimR, d, DerivativeLayoutNS::derivative >, Vec2, deriv >
 CDune::LFETensorAxpy< Derivatives< F1, dimD, dimR, d, DerivativeLayoutNS::value >, Vec2, deriv >
 CDune::LocalBasisTraits< DF, n, D, RF, m, R, J >Type traits for LocalBasisVirtualInterface
 CDune::LocalBasisVirtualInterface< T >Virtual base class for a local basis
 CDune::LocalBasisVirtualInterface< LocalBasisTraits >
 CDune::LocalCoefficientsContainer
 CDune::LocalCoefficientsVirtualInterfaceVirtual base class for local coefficients
 CDune::LocalFiniteElementCloneFactory< Imp >
 CDune::LocalFiniteElementCloneFactoryHelper< Imp, IsInterface >
 CDune::LocalFiniteElementTraits< LB, LC, LI >Traits helper struct
 CDune::LocalFiniteElementVariant< Implementations >Type erasure class for wrapping LocalFiniteElement classes
 CDune::LocalFiniteElementVariant< LagrangeSimplexLocalFiniteElement< D, R, 2, 2 >, LagrangeCubeLocalFiniteElement< D, R, 2, 2 > >
 CDune::LocalFiniteElementVirtualInterface< T >Virtual base class for local finite elements with functions
 CDune::LocalFiniteElementVirtualInterface< Imp::Traits::LocalBasisType::Traits >
 CDune::LocalInterpolationVirtualInterfaceBase< DomainType, RangeType >Virtual base class for a local interpolation
 CDune::LocalInterpolationVirtualInterfaceBase< typename LocalBasisTraits::DomainType, typename LocalBasisTraits::RangeType >
 CDune::LocalKeyDescribe position of one degree of freedom
 CDune::LocalL2Interpolation< B, Q, onb >A local L2 interpolation taking a test basis and a quadrature rule
 CDune::LocalL2InterpolationBase< B, Q >
 CDune::LocalL2InterpolationFactory< BasisFactory, onb >A factory class for the local l2 interpolations taking a basis factory
 CDune::LocalLagrangeInterpolation< LP, dim, F >
 CDune::MimeticLocalBasis< D, R, dim >
 CDune::MimeticLocalFiniteElement< D, R, dim >
 CDune::MimeticLocalInterpolation< LB >
 CDune::MimeticLocalInterpolation< Dune::MimeticLocalBasis< D, R, dim > >
 CDune::MonomialBasisFactory< dim, F >
 CDune::MonomialBasisHelper< mydim, dim, F >
 CDune::MonomialBasisImpl< geometryId, F >
 CDune::MonomialBasisImpl< geometryId, Field >
 CDune::MonomialBasisSize< geometryId >
 CDune::MonomialEvaluator< B >
 CDune::MonomialLocalBasis< D, R, d, p >
 CDune::MonomialLocalFiniteElement< D, R, d, p >Monomial basis for discontinuous Galerkin methods
 CDune::MonomialLocalInterpolation< LB, size >
 CDune::MonomialLocalInterpolation< Dune::MonomialLocalBasis< D, R, d, p >, static_size >
 CDune::Mult< Field, Field2 >
 CDune::Mult< Field, FieldVector< Field2, dimRange > >
 CDune::MultiIndex< dim, Field >
 CDune::Nedelec1stKindCubeLocalFiniteElement< D, R, dim, k >Nédélec elements of the first kind for cube elements
 CDune::Nedelec1stKindSimplexLocalFiniteElement< D, R, dim, k >Nédélec elements of the first kind for simplex elements
 CDune::NedelecCoefficientsFactory< dim >
 CDune::NedelecL2InterpolationBuilder< dim, Field >
 CDune::NedelecL2InterpolationBuilder< dimension, Field >
 CDune::NedelecL2InterpolationFactory< dim, Field >
 CDune::NedelecPreBasisFactory< dim, Field >
 CDune::NedelecVecMatrix< geometryId, Field >
 CDune::OrthonormalBasisFactory< dim, SF, CF >
 CDune::P0LocalBasis< D, R, d >
 CDune::P0LocalFiniteElement< D, R, d >The local p0 finite element on all types of reference elements
 CDune::P0LocalInterpolation< LB >
 CDune::P0LocalInterpolation< Dune::P0LocalBasis< D, R, d > >
 CDune::PolynomialBasis< Eval, CM, D, R >
 CDune::PolynomialBasis< Eval, SparseCoeffMatrix< typename Eval::Field, Eval::dimRange >, double, double >
 CDune::PowerBasis< Backend, dimR >Meta-basis turning a scalar basis into vector-valued basis
 CDune::PowerBasis< typename Backend::Traits::Basis, dimR >
 CDune::PowerFiniteElement< Backend, dimR >Meta-finite element turning a scalar finite element into vector-valued one
 CDune::PowerInterpolation< Backend, BasisTraits >Meta-interpolation turning a scalar interpolation into vector-valued interpolation
 CDune::PowerInterpolation< typename Backend::Traits::Interpolation, typename Basis::Traits >
 CDune::PQ22DLocalFiniteElement< D, R >
 CDune::PQkLocalFiniteElementCache< D, R, dim, k >A cache that stores all available Pk/Qk like local finite elements for the given dimension and order
 CDune::PQkLocalFiniteElementFactory< D, R, dim, k >Factory to create any kind of Pk/Qk like element wrapped for the virtual interface
 CDune::Precision< Field >
 CDune::Precision< double >
 CDune::Precision< float >
 CDune::Precision< long double >
 CDune::RannacherTurek2DLocalBasis< D, R >
 CDune::RannacherTurek3DLocalBasis< D, R >
 CDune::RannacherTurekLocalBasis< D, R, d >Rannacher-Turek shape functions
 CDune::RannacherTurekLocalCoefficients< d >Layout for Rannacher-Turek elements
 CDune::RannacherTurekLocalFiniteElement< D, R, d >Rannacher-Turek shape functions
 CDune::RannacherTurekLocalInterpolation< D, R, d >Please doc me
 CDune::RaviartThomasCoefficientsFactory< dim >
 CDune::RaviartThomasCubeLocalFiniteElement< D, R, dim, order >Raviart-Thomas local finite elements for cubes
 CDune::RaviartThomasL2InterpolationFactory< dim, Field >
 CDune::RefinedP0LocalFiniteElement< D, R, dim >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
 CDune::RefinedP0LocalFiniteElement< D, R, 1 >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
 CDune::RefinedP0LocalFiniteElement< D, R, 2 >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
 CDune::RefinedP0LocalFiniteElement< D, R, 3 >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
 CDune::RefinedP0LocalInterpolation< LB >
 CDune::RefinedP0LocalInterpolation< Dune::RefinedP0LocalBasis< D, R, 1 > >
 CDune::RefinedP0LocalInterpolation< Dune::RefinedP0LocalBasis< D, R, 2 > >
 CDune::RefinedP0LocalInterpolation< Dune::RefinedP0LocalBasis< D, R, 3 > >
 CDune::RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 1 > >
 CDune::RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 2 > >
 CDune::RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 3 > >
 CDune::RefinedP1LocalFiniteElement< D, R, dim >Piecewise linear continuous Lagrange functions on a uniformly refined simplex element
 CDune::RefinedSimplexLocalBasis< D, dim >
 CDune::RefinedSimplexLocalBasis< D, 1 >Base class for LocalBasis classes based on uniform refinement in 1D; provides numbering and local coordinates of subelements
 CDune::RefinedSimplexLocalBasis< D, 2 >Base class for LocalBasis classes based on uniform refinement in 2D; provides numbering and local coordinates of subelements
 CDune::RefinedSimplexLocalBasis< D, 3 >Base class for LocalBasis classes based on uniform refinement in 3D; provides numbering and local coordinates of subelements
 CDune::RT02DLocalBasis< D, R >
 CDune::RT02DLocalFiniteElement< D, R >Zero order Raviart-Thomas shape functions on triangles
 CDune::RT02DLocalInterpolation< LB >
 CDune::RT02DLocalInterpolation< Dune::RT02DLocalBasis< D, R > >
 CDune::RT03DLocalBasis< D, R >
 CDune::RT03DLocalFiniteElement< D, R >Zero order Raviart-Thomas shape functions on tetrahedra
 CDune::RT03DLocalInterpolation< LB >
 CDune::RT03DLocalInterpolation< Dune::RT03DLocalBasis< D, R > >
 CDune::RT0Cube2DLocalBasis< D, R >
 CDune::RT0Cube2DLocalFiniteElement< D, R >Zero order Raviart-Thomas shape functions on rectangles
 CDune::RT0Cube2DLocalInterpolation< LB >
 CDune::RT0Cube2DLocalInterpolation< Dune::RT0Cube2DLocalBasis< D, R > >
 CDune::RT0Cube3DLocalBasis< D, R >
 CDune::RT0Cube3DLocalFiniteElement< D, R >Zero order Raviart-Thomas shape functions on cubes
 CDune::RT0Cube3DLocalInterpolation< LB >
 CDune::RT0Cube3DLocalInterpolation< Dune::RT0Cube3DLocalBasis< D, R > >
 CDune::RT0PrismLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference prism
 CDune::RT0PrismLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on prisms
 CDune::RT0PrismLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference prism
 CDune::RT0PrismLocalInterpolation< Dune::RT0PrismLocalBasis< D, R > >
 CDune::RT0PyramidLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference pyramid
 CDune::RT0PyramidLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on pyramids
 CDune::RT0PyramidLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference hexahedron
 CDune::RT0PyramidLocalInterpolation< Dune::RT0PyramidLocalBasis< D, R > >
 CDune::RT12DLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference triangle
 CDune::RT12DLocalCoefficientsLayout map for Raviart-Thomas-1 elements on the reference triangle
 CDune::RT12DLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on triangles
 CDune::RT12DLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT12DLocalInterpolation< Dune::RT12DLocalBasis< D, R > >
 CDune::RT1Cube2DLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT1Cube2DLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on quadrilaterals
 CDune::RT1Cube2DLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT1Cube2DLocalInterpolation< Dune::RT1Cube2DLocalBasis< D, R > >
 CDune::RT1Cube3DLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference hexahedron
 CDune::RT1Cube3DLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on cubes
 CDune::RT1Cube3DLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference hexahedron
 CDune::RT1Cube3DLocalInterpolation< Dune::RT1Cube3DLocalBasis< D, R > >
 CDune::RT2Cube2DLocalBasis< D, R >Second order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT2Cube2DLocalFiniteElement< D, R >Second order Raviart-Thomas shape functions on cubes
 CDune::RT2Cube2DLocalInterpolation< LB >Second order Raviart-Thomas shape functions on the reference triangle
 CDune::RT2Cube2DLocalInterpolation< Dune::RT2Cube2DLocalBasis< D, R > >
 CDune::RT3Cube2DLocalBasis< D, R >Second order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT3Cube2DLocalFiniteElement< D, R >Second order Raviart-Thomas shape functions on cubes
 CDune::RT3Cube2DLocalInterpolation< LB >Second order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT3Cube2DLocalInterpolation< Dune::RT3Cube2DLocalBasis< D, R > >
 CDune::RT4Cube2DLocalBasis< D, R >Second order Raviart-Thomas shape functions on the reference quadrilateral
 CDune::RT4Cube2DLocalFiniteElement< D, R >Second order Raviart-Thomas shape functions on cubes
 CDune::RT4Cube2DLocalInterpolation< LB >Second order Raviart-Thomas shape functions on the reference triangle
 CDune::RT4Cube2DLocalInterpolation< Dune::RT4Cube2DLocalBasis< D, R > >
 CDune::RTL2InterpolationBuilder< dim, Field >
 CDune::RTL2InterpolationBuilder< dimension, Field >
 CDune::RTPreBasisFactory< dim, Field >
 CDune::RTVecMatrix< geometryId, Field >
 CDune::SimplexP1BubbleLocalBasis< D, R, dim >P1 basis in dim-d enriched by an (order dim+1) element bubble function
 CDune::SimplexP1BubbleLocalCoefficients< dim >The Local keys associated to the dim-d local basis functions
 CDune::SimplexP1BubbleLocalFiniteElement< D, R, dim >Linear Lagrange functions enriched with an element bubble function
 CDune::SimplexP1BubbleLocalInterpolation< LB >Interpolation into the SimplexP1BubbleLocalBasis
 CDune::SimplexP1BubbleLocalInterpolation< LocalBasisType >
 CDune::SparseCoeffMatrix< F, bSize >
 CDune::SparseCoeffMatrix< typename Eval::Field, Eval::dimRange >
 CDune::StaticLagrangeLocalFiniteElementCache< id, Domain, Range, dim, order >A cache that stores all available Pk/Qk like local finite elements for the given dimension and order for the case that the GeometryType is fixed and has the given Id
 CBase::template Iterator
 CTopologySingletonFactory
 CBackend::Traits
 CDune::BasisInterface::TraitsTypes of domain and range
 CDune::EdgeS0_5Basis< Geometry, RF >::TraitsExport type traits for function signature
 CDune::FiniteElementInterface::TraitsTypes of component objects
 CDune::PowerFiniteElement< Backend, dimR >::TraitsTypes of component objects
 CDune::Unity< Field >A class representing the unit of a given Field
 CDune::Unity< MultiIndex< dim, F > >
 CDune::VirtualMonomialBasis< dim, F >
 CDune::VirtualMonomialBasis< static_cast< GeometryType >(geometryId).dim(), F >
 CDune::Zero< Field >A class representing the zero of a given Field
 CDune::Zero< MultiIndex< dim, F > >