dune-localfunctions 2.10
Loading...
Searching...
No Matches
Namespaces | Classes | Typedefs | Functions
Dune Namespace Reference

Namespaces

namespace  DerivativeLayoutNS
 
namespace  MonomImp
 
namespace  Python
 

Classes

class  BasisInterface
 Interface for global-valued shape functions. More...
 
struct  BasisInterfaceSwitch
 Switch for uniform treatment of local and global basis classes. More...
 
struct  BasisMatrix
 
struct  BasisMatrix< const Dune::VirtualMonomialBasis< dim, F >, Interpolation, Field >
 
struct  BasisMatrix< const MonomialBasis< geometryId, F >, Interpolation, Field >
 
struct  BasisMatrix< const PolynomialBasis< Eval, CM, D, R >, Interpolation, Field >
 
struct  BasisMatrix< const PolynomialBasisWithMatrix< Eval, CM >, Interpolation, Field >
 
struct  BasisMatrixBase
 
class  BDFMCubeLocalBasis
 Brezzi-Douglas-Fortin-Marini shape functions on a reference cube. More...
 
class  BDFMCubeLocalBasis< D, R, 2, 1 >
 First order Brezzi-Douglas-Fortin-Marini shape functions on the reference quadrialteral. More...
 
class  BDFMCubeLocalBasis< D, R, 2, 2 >
 Second order Brezzi-Douglas-Fortin-Marini shape functions on the reference quadrialteral. More...
 
class  BDFMCubeLocalBasis< D, R, 2, 3 >
 Third order Brezzi-Douglas-Fortin-Marini shape functions on the reference quadrialteral. More...
 
class  BDFMCubeLocalCoefficients
 Layout map for Brezzi-Douglas-Fortin-Marini elements on cubes. More...
 
class  BDFMCubeLocalFiniteElement
 Brezzi-Douglas-Fortin-Marini finite elements for cubes. More...
 
class  BDFMCubeLocalInterpolation
 Interpolation for Brezzi-Douglas-Fortin-Marini shape functions on cubes. More...
 
class  BDM1Cube2DLocalBasis
 First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral. More...
 
class  BDM1Cube2DLocalCoefficients
 Layout map for Brezzi-Douglas-Marini-1 elements on quadrilaterals. More...
 
class  BDM1Cube2DLocalFiniteElement
 First order Brezzi-Douglas-Marini shape functions on quadrilaterals. More...
 
class  BDM1Cube2DLocalInterpolation
 First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral. More...
 
class  BDM1Cube3DLocalBasis
 First order Brezzi-Douglas-Marini shape functions on the reference hexahedron. More...
 
class  BDM1Cube3DLocalCoefficients
 Layout map for Brezzi-Douglas-Marini-1 elements on hexahedra. More...
 
class  BDM1Cube3DLocalFiniteElement
 First order Brezzi-Douglas-Marini shape functions on hexahedron. More...
 
class  BDM1Cube3DLocalInterpolation
 First order Brezzi-Douglas-Marini shape functions on the reference hexahedron. More...
 
class  BDM1Simplex2DLocalBasis
 First order Brezzi-Douglas-Marini shape functions on the reference triangle. More...
 
class  BDM1Simplex2DLocalCoefficients
 Layout map for Brezzi-Douglas-Marini-1 elements on triangles. More...
 
class  BDM1Simplex2DLocalFiniteElement
 First order Brezzi-Douglas-Marini shape functions on triangles. More...
 
class  BDM1Simplex2DLocalInterpolation
 First order Brezzi-Douglas-Marini shape functions on the reference triangle. More...
 
class  BDM2Cube2DLocalBasis
 First order Brezzi-Douglas-Marini shape functions on quadrilaterals. More...
 
class  BDM2Cube2DLocalCoefficients
 Layout map for Brezzi-Douglas-Marini-2 elements on quadrilaterals. More...
 
class  BDM2Cube2DLocalFiniteElement
 Second order Brezzi-Douglas-Marini shape functions on quadrilaterals. More...
 
class  BDM2Cube2DLocalInterpolation
 First order Brezzi-Douglas-Marini shape functions on quadrilaterals. More...
 
class  BDM2Simplex2DLocalBasis
 First order Brezzi-Douglas-Marini shape functions on quadrilaterals. More...
 
class  BDM2Simplex2DLocalCoefficients
 Layout map for Brezzi-Douglas-Marini-2 elements on triangles. More...
 
class  BDM2Simplex2DLocalFiniteElement
 Second order Brezzi-Douglas-Marini shape functions on triangles. More...
 
class  BDM2Simplex2DLocalInterpolation
 First order Brezzi-Douglas-Marini shape functions on triangles. More...
 
class  BrezziDouglasMariniCubeLocalFiniteElement
 Brezzi-Douglas-Marini local finite element for cubes. More...
 
class  BrezziDouglasMariniCubeLocalFiniteElement< D, R, 2, 1 >
 Brezzi-Douglas-Marini local finite elements for cubes with dimension 2 and order 1. More...
 
class  BrezziDouglasMariniCubeLocalFiniteElement< D, R, 2, 2 >
 Brezzi-Douglas-Marini local finite elements for cubes with dimension 2 and order 2. More...
 
class  BrezziDouglasMariniCubeLocalFiniteElement< D, R, 3, 1 >
 Brezzi-Douglas-Marini local finite elements for cubes with dimension 3 and order 1. More...
 
class  BrezziDouglasMariniSimplexLocalFiniteElement
 Brezzi-Douglas-Marini local finite element for simplices. More...
 
class  BrezziDouglasMariniSimplexLocalFiniteElement< D, R, 2, 1 >
 Brezzi-Douglas-Marini local finite elements for simplices with dimension 2 and order 1. More...
 
class  BrezziDouglasMariniSimplexLocalFiniteElement< D, R, 2, 2 >
 Brezzi-Douglas-Marini local finite elements for simplices with dimension 2 and order 2. More...
 
struct  CoefficientsInterface
 Interface for global-valued coefficients. More...
 
struct  ComputeField
 
class  CrouzeixRaviartLocalFiniteElement
 Crouzeix-Raviart finite element. More...
 
struct  DefaultBasisFactory
 
struct  DerivativeAssign
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::derivative > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::value > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, FieldVector< F2, 1 > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::derivative >, FieldVector< F2, dimR > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::derivative > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, Derivatives< F2, dimD, 1, deriv, DerivativeLayoutNS::value > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, FieldVector< F2, 1 > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, DerivativeLayoutNS::value >, FieldVector< F2, dimR > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::derivative > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::value > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, F2 >
 
struct  DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::derivative >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::value > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::derivative >, FieldVector< F2, dimR > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::value >, Derivatives< F2, dimD, dimR, deriv, DerivativeLayoutNS::derivative > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, DerivativeLayoutNS::value >, FieldVector< F2, dimR > >
 
struct  DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, layout > >
 
struct  Derivatives
 
struct  Derivatives< F, dimD, dimR, 0, DerivativeLayoutNS::value >
 
struct  Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::derivative >
 
struct  Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::value >
 
class  DGLocalCoefficients
 A class providing local coefficients for dg spaces. More...
 
struct  DGLocalCoefficientsFactory
 A factory class for the dg local coefficients. More...
 
struct  DGLocalFiniteElement
 Takes the basis and interpolation factory from a given LocalFiniteElement (derived from GenericLocalFiniteElement) and replaces the coefficients with dg local keys, i.e., attaches all degrees of freedom to the codimension zero entity. More...
 
struct  DimSpecificPQkLocalFiniteElementFactory
 Factory that only creates dimension specific local finite elements. More...
 
struct  DimSpecificPQkLocalFiniteElementFactory< D, R, 3, k >
 Factory that only creates dimension specific local finite elements. More...
 
class  DualP1LocalBasis
 Dual Lagrange shape functions on the simplex. More...
 
class  DualP1LocalCoefficients
 Local coefficients for dual simplex P1 elements. More...
 
class  DualP1LocalFiniteElement
 The local dual p1 finite element on simplices. More...
 
class  DualP1LocalInterpolation
 
class  DualPQ1LocalFiniteElementCache
 
class  DualQ1LocalBasis
 Dual Lagrange shape functions of order 1 on the reference cube. More...
 
class  DualQ1LocalCoefficients
 Layout map for dual Q1 elements. More...
 
class  DualQ1LocalFiniteElement
 The local dual Q1 finite element on cubes. More...
 
class  DualQ1LocalInterpolation
 
class  DynamicLagrangeLocalFiniteElementCache
 A cache that stores Lagrange finite elements for the given dimension and order. More...
 
class  EdgeS0_5Basis
 Basis for order 0.5 (lowest order) edge elements on simplices. More...
 
class  EdgeS0_5Coefficients
 Coefficients for lowest order edge elements on simplices. More...
 
struct  EdgeS0_5Common
 Common base class for edge elements. More...
 
class  EdgeS0_5FiniteElement
 FiniteElement for lowest order edge elements on simplices. More...
 
struct  EdgeS0_5FiniteElementFactory
 Factory for EdgeS0_5FiniteElement objects. More...
 
class  EdgeS0_5Interpolation
 Interpolation for lowest order edge elements on simplices. More...
 
class  EmptyPointSet
 
class  EquidistantPointSet
 
struct  FieldCast
 
struct  FieldCast< F2, Dune::FieldMatrix< F1, dim1, dim2 > >
 
struct  FieldCast< F2, Dune::FieldVector< F1, dim > >
 
struct  FieldTraits< Derivatives< F, dimD, dimR, deriv, layout > >
 
struct  FieldTraits< LFETensor< F, dimD, deriv > >
 
struct  FieldTraits< MultiIndex< dim, Field > >
 
class  FiniteElementFactoryInterface
 Factory interface for global-valued finite elements. More...
 
class  FiniteElementInterface
 Interface for global-valued finite elements. More...
 
struct  FiniteElementInterfaceSwitch
 Switch for uniform treatment of finite element with either the local or the global interface. More...
 
struct  GenericLocalFiniteElement
 A LocalFiniteElement implementation based on three TopologyFactories providing the LocalBasis, LocalCoefficients, and LocalInterpolations. Note the key type for all three factories must coincide. More...
 
class  HierarchicalP2LocalFiniteElement
 
class  HierarchicalP2WithElementBubbleLocalFiniteElement
 Linear Lagrange functions enriched with quadratic edge bubble functions and an element bubble function. More...
 
class  HierarchicalPrismP2LocalBasis
 
class  HierarchicalPrismP2LocalFiniteElement
 
class  HierarchicalPrismP2LocalInterpolation
 
class  HierarchicalSimplexP2LocalBasis
 
class  HierarchicalSimplexP2LocalBasis< D, R, 1 >
 Hierarchical P2 basis in 1d. More...
 
class  HierarchicalSimplexP2LocalBasis< D, R, 2 >
 Hierarchical P2 basis in 2d. More...
 
class  HierarchicalSimplexP2LocalBasis< D, R, 3 >
 Hierarchical P2 basis in 3d. More...
 
class  HierarchicalSimplexP2LocalInterpolation
 
class  HierarchicalSimplexP2WithElementBubbleLocalBasis
 P1 basis in dim-d enriched by quadratic edge bubble functions and an element bubble function of order dim+1. More...
 
class  HierarchicalSimplexP2WithElementBubbleLocalCoefficients
 The local keys of the hierarchical basis functions with element bubble. More...
 
class  HierarchicalSimplexP2WithElementBubbleLocalInterpolation
 
struct  Identity
 
struct  InterpolationHelper
 
struct  InterpolationInterface
 Interface for global-valued interpolation. More...
 
struct  L2LocalFiniteElement
 Takes the basis factory from a given LocalFiniteElement (derived from GenericLocalFiniteElement) and replaces the coefficients with dg local keys, i.e., attaches all degrees of freedom to the codimension zero entity and uses a l2 interpolation. More...
 
struct  LagrangeBasisFactory
 
struct  LagrangeCoefficientsFactory
 
class  LagrangeCubeLocalFiniteElement
 Lagrange finite element for cubes with arbitrary compile-time dimension and polynomial order. More...
 
struct  LagrangeInterpolationFactory
 
class  LagrangeLocalFiniteElement
 Lagrange local finite elements for a given set of interpolation points. More...
 
class  LagrangePoint
 
class  LagrangePrismLocalFiniteElement
 Lagrange finite element for 3d prisms with arbitrary compile-time polynomial order. More...
 
class  LagrangePyramidLocalFiniteElement
 Lagrange finite element for 3d pyramids with compile-time polynomial order. More...
 
class  LagrangeSimplexLocalFiniteElement
 Lagrange finite element for simplices with arbitrary compile-time dimension and polynomial order. More...
 
class  LFEMatrix
 
class  LFETensor
 
struct  LFETensor< F, 0, 0 >
 
struct  LFETensor< F, 0, deriv >
 
class  LFETensor< F, dimD, 0 >
 
struct  LFETensorAxpy
 
struct  LFETensorAxpy< Derivatives< F1, dimD, 1, d, DerivativeLayoutNS::derivative >, Vec2, deriv >
 
struct  LFETensorAxpy< Derivatives< F1, dimD, 1, d, DerivativeLayoutNS::value >, Vec2, deriv >
 
struct  LFETensorAxpy< Derivatives< F1, dimD, dimR, d, DerivativeLayoutNS::derivative >, Vec2, deriv >
 
struct  LFETensorAxpy< Derivatives< F1, dimD, dimR, d, DerivativeLayoutNS::value >, Vec2, deriv >
 
struct  LocalBasisTraits
 Type traits for LocalBasisVirtualInterface. More...
 
class  LocalBasisVirtualImp
 class for wrapping a basis using the virtual interface More...
 
class  LocalBasisVirtualInterface
 virtual base class for a local basis More...
 
class  LocalCoefficientsContainer
 
class  LocalCoefficientsVirtualImp
 class for wrapping local coefficients using the virtual interface More...
 
class  LocalCoefficientsVirtualInterface
 virtual base class for local coefficients More...
 
struct  LocalFiniteElementCloneFactory
 
struct  LocalFiniteElementCloneFactoryHelper
 
struct  LocalFiniteElementCloneFactoryHelper< Imp, true >
 
struct  LocalFiniteElementTraits
 traits helper struct More...
 
class  LocalFiniteElementVariant
 Type erasure class for wrapping LocalFiniteElement classes. More...
 
class  LocalFiniteElementVariantCache
 A cache storing a compile time selection of local finite element implementations. More...
 
class  LocalFiniteElementVirtualImp
 class for wrapping a finite element using the virtual interface More...
 
class  LocalFiniteElementVirtualInterface
 virtual base class for local finite elements with functions More...
 
class  LocalInterpolationVirtualImp
 class for wrapping a local interpolation using the virtual interface More...
 
class  LocalInterpolationVirtualInterface
 virtual base class for a local interpolation More...
 
class  LocalInterpolationVirtualInterfaceBase
 virtual base class for a local interpolation More...
 
class  LocalKey
 Describe position of one degree of freedom. More...
 
struct  LocalL2Interpolation
 A local L2 interpolation taking a test basis and a quadrature rule. More...
 
struct  LocalL2Interpolation< B, Q, false >
 
struct  LocalL2Interpolation< B, Q, true >
 
class  LocalL2InterpolationBase
 
struct  LocalL2InterpolationFactory
 A factory class for the local l2 interpolations taking a basis factory. More...
 
class  LocalLagrangeInterpolation
 
struct  LocalToGlobalBasisAdaptorTraits
 Traits class for local-to-global basis adaptors. More...
 
class  LocalToGlobalInterpolationAdaptor
 Convert a local interpolation into a global interpolation. More...
 
class  MimeticLocalBasis
 
class  MimeticLocalCoefficients
 ! More...
 
class  MimeticLocalFiniteElement
 
class  MimeticLocalInterpolation
 
class  MonomialBasis
 
struct  MonomialBasisFactory
 
struct  MonomialBasisHelper
 
class  MonomialBasisImpl
 
struct  MonomialBasisProvider
 
class  MonomialBasisSize
 
struct  MonomialEvaluator
 
class  MonomialFiniteElementFactory
 Factory for global-valued MonomFiniteElement objects. More...
 
class  MonomialLocalBasis
 
class  MonomialLocalCoefficients
 
class  MonomialLocalFiniteElement
 Monomial basis for discontinuous Galerkin methods. More...
 
class  MonomialLocalInterpolation
 
struct  Mult
 
struct  Mult< Field, FieldVector< Field2, dimRange > >
 
class  MultiIndex
 
class  Nedelec1stKindCubeLocalFiniteElement
 Nédélec elements of the first kind for cube elements. More...
 
class  Nedelec1stKindSimplexLocalFiniteElement
 Nédélec elements of the first kind for simplex elements. More...
 
struct  NedelecBasisFactory
 
struct  NedelecCoefficientsFactory
 
class  NedelecL2Interpolation
 An L2-based interpolation for Nedelec. More...
 
struct  NedelecL2InterpolationBuilder
 
struct  NedelecL2InterpolationFactory
 
struct  NedelecPreBasisFactory
 
struct  NedelecVecMatrix
 
struct  OrthonormalBasisFactory
 
class  OrthonormalLocalFiniteElement
 A class providing orthonormal basis functions. More...
 
class  P0LocalBasis
 
class  P0LocalCoefficients
 
class  P0LocalFiniteElement
 The local p0 finite element on all types of reference elements. More...
 
class  P0LocalInterpolation
 
class  Pk1DFiniteElement
 Langrange finite element of arbitrary order on triangles. More...
 
struct  Pk1DFiniteElementFactory
 Factory for Pk1DFiniteElement objects. More...
 
class  Pk2DFiniteElement
 Langrange finite element of arbitrary order on triangles. More...
 
struct  Pk2DFiniteElementFactory
 Factory for Pk2DFiniteElement objects. More...
 
class  PolynomialBasis
 
class  PolynomialBasisWithMatrix
 
class  PowerBasis
 Meta-basis turning a scalar basis into vector-valued basis. More...
 
class  PowerCoefficients
 Meta-coefficients turning a scalar coefficients into vector-valued coefficients. More...
 
class  PowerFiniteElement
 Meta-finite element turning a scalar finite element into vector-valued one. More...
 
class  PowerFiniteElementFactory
 Factory for meta-finite elements turning scalar finite elements into vector-valued ones. More...
 
class  PowerInterpolation
 Meta-interpolation turning a scalar interpolation into vector-valued interpolation. More...
 
class  PQ22DLocalFiniteElement
 
class  PQkLocalFiniteElementCache
 A cache that stores all available Pk/Qk like local finite elements for the given dimension and order. More...
 
struct  PQkLocalFiniteElementFactory
 Factory to create any kind of Pk/Qk like element wrapped for the virtual interface. More...
 
struct  Precision
 
struct  Precision< double >
 
struct  Precision< float >
 
struct  Precision< long double >
 
class  Q1FiniteElementFactory
 Factory for global-valued Q1 elements. More...
 
class  Q2FiniteElementFactory
 Factory for global-valued Q23D elements. More...
 
struct  RannacherTurek2DLocalBasis
 
class  RannacherTurek3DLocalBasis
 
struct  RannacherTurekLocalBasis
 Rannacher-Turek shape functions. More...
 
struct  RannacherTurekLocalBasis< D, R, 2 >
 
struct  RannacherTurekLocalBasis< D, R, 3 >
 
struct  RannacherTurekLocalCoefficients
 layout for Rannacher-Turek elements More...
 
struct  RannacherTurekLocalFiniteElement
 Rannacher-Turek shape functions. More...
 
class  RannacherTurekLocalInterpolation
 please doc me More...
 
struct  RaviartThomasBasisFactory
 
struct  RaviartThomasCoefficientsFactory
 
class  RaviartThomasCubeLocalFiniteElement
 Raviart-Thomas local finite elements for cubes. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 2, 0 >
 Raviart-Thomas local finite elements for cubes with dimension 2 and order 0. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 2, 1 >
 Raviart-Thomas local finite elements for cubes with dimension 2 and order 1. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 2, 2 >
 Raviart-Thomas local finite elements for cubes with dimension 2 and order 2. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 2, 3 >
 Raviart-Thomas local finite elements for cubes with dimension 2 and order 3. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 2, 4 >
 Raviart-Thomas local finite elements for cubes with dimension 2 and order 4. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 3, 0 >
 Raviart-Thomas local finite elements for cubes with dimension 3 and order 0. More...
 
class  RaviartThomasCubeLocalFiniteElement< D, R, 3, 1 >
 Raviart-Thomas local finite elements for cubes with dimension 3 and order 1. More...
 
class  RaviartThomasL2Interpolation
 An L2-based interpolation for Raviart Thomas. More...
 
struct  RaviartThomasL2InterpolationFactory
 
class  RaviartThomasSimplexLocalFiniteElement
 Raviart-Thomas local finite elements of arbitrary order for simplices of arbitrary dimension. More...
 
class  RefinedP0LocalBasis
 Uniformly refined constant shape functions on a unit simplex in R^dim. More...
 
class  RefinedP0LocalCoefficients
 Layout map for RefinedP0 elements. More...
 
class  RefinedP0LocalFiniteElement
 Local finite element that is piecewise P0 on a once uniformly refined reference geometry. More...
 
class  RefinedP0LocalFiniteElement< D, R, 1 >
 Local finite element that is piecewise P0 on a once uniformly refined reference geometry. More...
 
class  RefinedP0LocalFiniteElement< D, R, 2 >
 Local finite element that is piecewise P0 on a once uniformly refined reference geometry. More...
 
class  RefinedP0LocalFiniteElement< D, R, 3 >
 Local finite element that is piecewise P0 on a once uniformly refined reference geometry. More...
 
class  RefinedP0LocalInterpolation
 
class  RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 1 > >
 
class  RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 2 > >
 
class  RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 3 > >
 
class  RefinedP1LocalBasis
 
class  RefinedP1LocalBasis< D, R, 1 >
 Uniformly refined linear Lagrange shape functions in 1D. More...
 
class  RefinedP1LocalBasis< D, R, 2 >
 Uniformly refined linear Lagrange shape functions on the triangle. More...
 
class  RefinedP1LocalBasis< D, R, 3 >
 Uniformly refined linear Lagrange shape functions on the 3D-simplex (tetrahedron). More...
 
class  RefinedP1LocalFiniteElement
 Piecewise linear continuous Lagrange functions on a uniformly refined simplex element. More...
 
class  RefinedSimplexLocalBasis
 
class  RefinedSimplexLocalBasis< D, 1 >
 Base class for LocalBasis classes based on uniform refinement in 1D; provides numbering and local coordinates of subelements. More...
 
class  RefinedSimplexLocalBasis< D, 2 >
 Base class for LocalBasis classes based on uniform refinement in 2D; provides numbering and local coordinates of subelements. More...
 
class  RefinedSimplexLocalBasis< D, 3 >
 Base class for LocalBasis classes based on uniform refinement in 3D; provides numbering and local coordinates of subelements. More...
 
class  RT02DLocalBasis
 
class  RT02DLocalCoefficients
 
class  RT02DLocalFiniteElement
 Zero order Raviart-Thomas shape functions on triangles. More...
 
class  RT02DLocalInterpolation
 
class  RT03DLocalBasis
 
class  RT03DLocalCoefficients
 
class  RT03DLocalFiniteElement
 Zero order Raviart-Thomas shape functions on tetrahedra. More...
 
class  RT03DLocalInterpolation
 
class  RT0Cube2DLocalBasis
 
class  RT0Cube2DLocalCoefficients
 
class  RT0Cube2DLocalFiniteElement
 Zero order Raviart-Thomas shape functions on rectangles. More...
 
class  RT0Cube2DLocalInterpolation
 
class  RT0Cube3DLocalBasis
 
class  RT0Cube3DLocalCoefficients
 
class  RT0Cube3DLocalFiniteElement
 Zero order Raviart-Thomas shape functions on cubes. More...
 
class  RT0Cube3DLocalInterpolation
 
class  RT0PrismLocalBasis
 First order Raviart-Thomas shape functions on the reference prism. More...
 
class  RT0PrismLocalCoefficients
 Layout map for Raviart-Thomas-1 elements on prisms. More...
 
class  RT0PrismLocalFiniteElement
 First order Raviart-Thomas shape functions on prisms. More...
 
class  RT0PrismLocalInterpolation
 First order Raviart-Thomas shape functions on the reference prism. More...
 
class  RT0PyramidLocalBasis
 First order Raviart-Thomas shape functions on the reference pyramid. More...
 
class  RT0PyramidLocalCoefficients
 Layout map for Raviart-Thomas-1 elements on pyramids. More...
 
class  RT0PyramidLocalFiniteElement
 First order Raviart-Thomas shape functions on pyramids. More...
 
class  RT0PyramidLocalInterpolation
 First order Raviart-Thomas shape functions on the reference hexahedron. More...
 
class  RT12DLocalBasis
 First order Raviart-Thomas shape functions on the reference triangle. More...
 
class  RT12DLocalCoefficients
 Layout map for Raviart-Thomas-1 elements on the reference triangle. More...
 
class  RT12DLocalFiniteElement
 First order Raviart-Thomas shape functions on triangles. More...
 
class  RT12DLocalInterpolation
 First order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT1Cube2DLocalBasis
 First order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT1Cube2DLocalCoefficients
 Layout map for Raviart-Thomas-1 elements on quadrilaterals. More...
 
class  RT1Cube2DLocalFiniteElement
 First order Raviart-Thomas shape functions on quadrilaterals. More...
 
class  RT1Cube2DLocalInterpolation
 First order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT1Cube3DLocalBasis
 First order Raviart-Thomas shape functions on the reference hexahedron. More...
 
class  RT1Cube3DLocalCoefficients
 Layout map for Raviart-Thomas-1 elements on quadrilaterals. More...
 
class  RT1Cube3DLocalFiniteElement
 First order Raviart-Thomas shape functions on cubes. More...
 
class  RT1Cube3DLocalInterpolation
 First order Raviart-Thomas shape functions on the reference hexahedron. More...
 
class  RT2Cube2DLocalBasis
 Second order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT2Cube2DLocalCoefficients
 Layout map for Raviart-Thomas-2 elements on quadrilaterals. More...
 
class  RT2Cube2DLocalFiniteElement
 Second order Raviart-Thomas shape functions on cubes. More...
 
class  RT2Cube2DLocalInterpolation
 Second order Raviart-Thomas shape functions on the reference triangle. More...
 
class  RT3Cube2DLocalBasis
 Second order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT3Cube2DLocalCoefficients
 Layout map for Raviart-Thomas-3 elements on quadrilaterals. More...
 
class  RT3Cube2DLocalFiniteElement
 Second order Raviart-Thomas shape functions on cubes. More...
 
class  RT3Cube2DLocalInterpolation
 Second order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT4Cube2DLocalBasis
 Second order Raviart-Thomas shape functions on the reference quadrilateral. More...
 
class  RT4Cube2DLocalCoefficients
 Layout map for Raviart-Thomas-4 elements on quadrilaterals. More...
 
class  RT4Cube2DLocalFiniteElement
 Second order Raviart-Thomas shape functions on cubes. More...
 
class  RT4Cube2DLocalInterpolation
 Second order Raviart-Thomas shape functions on the reference triangle. More...
 
struct  RTL2InterpolationBuilder
 
struct  RTPreBasisFactory
 
struct  RTVecMatrix
 
class  ScalarLocalToGlobalBasisAdaptor
 Convert a simple scalar local basis into a global basis. More...
 
struct  ScalarLocalToGlobalFiniteElementAdaptor
 Convert a simple scalar local finite element into a global finite element. More...
 
class  ScalarLocalToGlobalFiniteElementAdaptorFactory
 Factory for ScalarLocalToGlobalFiniteElementAdaptor objects. More...
 
class  SimplexP1BubbleLocalBasis
 P1 basis in dim-d enriched by an (order dim+1) element bubble function. More...
 
class  SimplexP1BubbleLocalCoefficients
 The Local keys associated to the dim-d local basis functions. More...
 
class  SimplexP1BubbleLocalFiniteElement
 Linear Lagrange functions enriched with an element bubble function. More...
 
class  SimplexP1BubbleLocalInterpolation
 Interpolation into the SimplexP1BubbleLocalBasis. More...
 
class  SparseCoeffMatrix
 
class  StandardBiMonomialBasis
 
struct  StandardEvaluator
 
class  StandardMonomialBasis
 
class  StaticLagrangeLocalFiniteElementCache
 A cache that stores all available Pk/Qk like local finite elements for the given dimension and order for the case that the GeometryType is fixed and has the given Id. More...
 
class  StaticLagrangeLocalFiniteElementCache< GeometryType::Id(~0u), Domain, Range, dim, order >
 A cache that stores all available Pk/Qk like local finite elements for the given dimension and order. More...
 
struct  Unity
 A class representing the unit of a given Field. More...
 
struct  Unity< MultiIndex< dim, F > >
 
class  VirtualMonomialBasis
 
class  VirtualMonomialBasisImpl
 
struct  Zero
 A class representing the zero of a given Field. More...
 
struct  Zero< MultiIndex< dim, F > >
 

Typedefs

template<class D , class R , int dim>
using HierarchicalP1WithElementBubbleLocalFiniteElement = SimplexP1BubbleLocalFiniteElement< D, R, dim >
 Linear Lagrange functions enriched with an element bubble function.
 
template<class D , class R , std::size_t dim, std::size_t order>
using LagrangeLocalFiniteElementCache = LocalFiniteElementVariantCache< Impl::ImplementedLagrangeFiniteElements< D, R, dim, order > >
 A cache that stores all available Pk/Qk like local finite elements for the given dimension and order.
 
template<class D , class R , std::size_t dim, std::size_t order>
using RaviartThomasLocalFiniteElementCache = LocalFiniteElementVariantCache< Impl::ImplementedRaviartThomasLocalFiniteElements< D, R, dim, order > >
 A cache that stores all available Raviart-Thomas local finite elements for the given dimension and order.
 

Functions

std::size_t numLagrangePoints (const GeometryType &gt, std::size_t order)
 
template<class ct , unsigned int cdim>
static unsigned int equidistantLagrangePoints (const GeometryType &gt, unsigned int codim, std::size_t order, unsigned int *count, LagrangePoint< ct, cdim > *points)
 
template<int deriv, class BasisFactory , class PrintField , GeometryType::Id geometryId>
void basisPrint (std::ostream &out, typename BasisFactory::Object &basis)
 
template<int deriv, class BasisFactory , class PrintField = typename BasisFactory::StorageField>
void basisPrint (std::ostream &out, typename BasisFactory::Key &key)
 
template<class Field >
Field operator+ (const Unity< Field > &u, const Field &f)
 
template<class Field >
Field operator- (const Unity< Field > &u, const Field &f)
 
template<class Field >
Field operator* (const Unity< Field > &u, const Field &f)
 
template<class Field >
Field operator/ (const Unity< Field > &u, const Field &f)
 
template<class Field >
bool operator== (const Zero< Field > &, const Field &f)
 
template<class Field >
bool operator== (const Field &f, const Zero< Field > &z)
 
template<class Field >
bool operator< (const Zero< Field > &, const Field &f)
 
template<class Field >
bool operator< (const Field &f, const Zero< Field > &)
 
template<class Field >
bool operator> (const Zero< Field > &z, const Field &f)
 
template<class Field >
bool operator> (const Field &f, const Zero< Field > &z)
 
template<class F2 , class F1 >
void field_cast (const F1 &f1, F2 &f2)
 a helper class to cast from one field to another
 
template<class F2 , class F1 , int dim>
void field_cast (const Dune::FieldVector< F1, dim > &f1, Dune::FieldVector< F2, dim > &f2)
 
template<class F2 , class F1 >
void field_cast (const Dune::FieldVector< F1, 1 > &f1, F2 &f2)
 
template<class F2 , class F1 >
void field_cast (const F1 &f1, Dune::FieldVector< F2, 1 > &f2)
 
template<class F2 , class F1 , int rdim, int cdim>
void field_cast (const Dune::FieldMatrix< F1, rdim, cdim > &f1, Dune::FieldMatrix< F2, rdim, cdim > &f2)
 
template<class F2 , class F1 >
void field_cast (const Dune::FieldMatrix< F1, 1, 1 > &f1, Dune::FieldMatrix< F2, 1, 1 > &f2)
 
template<class F2 , class F1 >
void field_cast (const Dune::FieldMatrix< F1, 1, 1 > &f1, F2 &f2)
 
template<class F2 , class F1 >
void field_cast (const F1 &f1, Dune::FieldMatrix< F2, 1, 1 > &f2)
 
template<class F2 , class F1 >
void field_cast (const Dune::FieldVector< F1, 1 > &f1, Dune::FieldMatrix< F2, 1, 1 > &f2)
 
template<class F2 , class F1 >
void field_cast (const Dune::FieldMatrix< F1, 1, 1 > &f1, Dune::FieldVector< F2, 1 > &f2)
 
template<class F2 , class F1 >
void field_cast (const Dune::FieldVector< F1, 1 > &f1, Dune::FieldVector< F2, 1 > &f2)
 
template<class F2 , class V >
FieldCast< F2, V >::type field_cast (const V &f1)
 
template<class Field >
std::ostream & operator<< (std::ostream &out, const LFEMatrix< Field > &mat)
 
template<int dim, class Field >
std::ostream & operator<< (std::ostream &, const MultiIndex< dim, Field > &)
 
template<int dim, class Field , class F >
MultiIndex< dim, Field > operator* (const F &f, const MultiIndex< dim, Field > &m)
 
template<int dim, class Field , class F >
MultiIndex< dim, Field > operator/ (const F &f, const MultiIndex< dim, Field > &m)
 
template<int d, class F >
std::ostream & operator<< (std::ostream &out, const std::vector< MultiIndex< d, F > > &y)
 
template<int d, class F , int dimR>
std::ostream & operator<< (std::ostream &out, const std::vector< Dune::FieldVector< MultiIndex< d, F >, dimR > > &y)
 
template<int d, class F , int dimR1, int dimR2>
std::ostream & operator<< (std::ostream &out, const std::vector< Dune::FieldMatrix< MultiIndex< d, F >, dimR1, dimR2 > > &y)
 
template<int d, class F >
std::ostream & operator<< (std::ostream &out, const MultiIndex< d, F > &val)
 
template<int dim, class Field >
bool operator< (const Zero< MultiIndex< dim, Field > > &, const MultiIndex< dim, Field > &)
 
template<int dim, class Field >
bool operator< (const MultiIndex< dim, Field > &f, const Zero< MultiIndex< dim, Field > > &)
 
template<class F , int dimD, unsigned int deriv>
std::ostream & operator<< (std::ostream &out, const LFETensor< F, dimD, deriv > &tensor)
 
template<class F , int dimD, int dimR, unsigned int deriv>
std::ostream & operator<< (std::ostream &out, const Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::derivative > &d)
 
template<class F , int dimD, int dimR, unsigned int deriv>
std::ostream & operator<< (std::ostream &out, const Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::value > &d)
 
template<class F , int dimD, int dimR>
std::ostream & operator<< (std::ostream &out, const Derivatives< F, dimD, dimR, 0, DerivativeLayoutNS::derivative > &d)
 
template<class F , int dimD, int dimR>
std::ostream & operator<< (std::ostream &out, const Derivatives< F, dimD, dimR, 0, DerivativeLayoutNS::value > &d)
 
template<class F , int dimD, int dimR, unsigned int deriv, DerivativeLayoutNS::DerivativeLayout layout>
std::ostream & operator<< (std::ostream &out, const std::vector< Derivatives< F, dimD, dimR, deriv, layout > > &y)
 

Typedef Documentation

◆ HierarchicalP1WithElementBubbleLocalFiniteElement

template<class D , class R , int dim>
using Dune::HierarchicalP1WithElementBubbleLocalFiniteElement = typedef SimplexP1BubbleLocalFiniteElement<D,R,dim>

Linear Lagrange functions enriched with an element bubble function.

Linear Lagrange functions enriched with an element bubble function.

The set of basis functions contains the classical Lagrange basis functions of order 1, i.e., the barycentric coordinates, and a single element "bubble" function that vanishes on all faces of the element. The bubble function is simply defined as the product of all linear basis functions and thus has polynomial order dim+1.

A classical example where this kind of basis is used in the discretization of the Stokes equation with the stable mixed-element called MINI element, see

Arnold, D.N., Brezzi, F. and Fortin, M. A stable finite element for the Stokes equations. Calcolo 21, 337-344 (1984). doi: 10.1007/BF02576171

The velocity field is discretized with continuous piecewise linear functions enriched by a bubble function.

Note
The implementation here is restricted to simplex elements.
Template Parameters
DType to represent the field in the domain.
RType to represent the field in the range.
dimDimension of the domain.

◆ LagrangeLocalFiniteElementCache

template<class D , class R , std::size_t dim, std::size_t order>
using Dune::LagrangeLocalFiniteElementCache = typedef LocalFiniteElementVariantCache<Impl::ImplementedLagrangeFiniteElements<D,R,dim,order> >

A cache that stores all available Pk/Qk like local finite elements for the given dimension and order.

An interface for dealing with different vertex orders is currently missing.

Template Parameters
DType used for domain coordinates
RType used for shape function values
dimElement dimension
orderElement order

The cached finite element implementations can be obtained using get(GeometryType).

◆ RaviartThomasLocalFiniteElementCache

template<class D , class R , std::size_t dim, std::size_t order>
using Dune::RaviartThomasLocalFiniteElementCache = typedef LocalFiniteElementVariantCache<Impl::ImplementedRaviartThomasLocalFiniteElements<D,R,dim,order> >

A cache that stores all available Raviart-Thomas local finite elements for the given dimension and order.

Template Parameters
DType used for domain coordinates
RType used for shape function values
dimElement dimension
orderElement order

The cached finite element implementations can be obtained using get(GeometryType).

Function Documentation

◆ basisPrint() [1/2]

template<int deriv, class BasisFactory , class PrintField = typename BasisFactory::StorageField>
void Dune::basisPrint ( std::ostream &  out,
typename BasisFactory::Key &  key 
)

◆ basisPrint() [2/2]

template<int deriv, class BasisFactory , class PrintField , GeometryType::Id geometryId>
void Dune::basisPrint ( std::ostream &  out,
typename BasisFactory::Object &  basis 
)

◆ equidistantLagrangePoints()

template<class ct , unsigned int cdim>
static unsigned int Dune::equidistantLagrangePoints ( const GeometryType &  gt,
unsigned int  codim,
std::size_t  order,
unsigned int *  count,
LagrangePoint< ct, cdim > *  points 
)
inlinestatic

◆ field_cast() [1/12]

template<class F2 , class F1 >
void Dune::field_cast ( const Dune::FieldMatrix< F1, 1, 1 > &  f1,
Dune::FieldMatrix< F2, 1, 1 > &  f2 
)
inline

◆ field_cast() [2/12]

template<class F2 , class F1 >
void Dune::field_cast ( const Dune::FieldMatrix< F1, 1, 1 > &  f1,
Dune::FieldVector< F2, 1 > &  f2 
)
inline

◆ field_cast() [3/12]

template<class F2 , class F1 >
void Dune::field_cast ( const Dune::FieldMatrix< F1, 1, 1 > &  f1,
F2 &  f2 
)
inline

◆ field_cast() [4/12]

template<class F2 , class F1 , int rdim, int cdim>
void Dune::field_cast ( const Dune::FieldMatrix< F1, rdim, cdim > &  f1,
Dune::FieldMatrix< F2, rdim, cdim > &  f2 
)
inline

◆ field_cast() [5/12]

template<class F2 , class F1 >
void Dune::field_cast ( const Dune::FieldVector< F1, 1 > &  f1,
Dune::FieldMatrix< F2, 1, 1 > &  f2 
)
inline

◆ field_cast() [6/12]

template<class F2 , class F1 >
void Dune::field_cast ( const Dune::FieldVector< F1, 1 > &  f1,
Dune::FieldVector< F2, 1 > &  f2 
)
inline

◆ field_cast() [7/12]

template<class F2 , class F1 >
void Dune::field_cast ( const Dune::FieldVector< F1, 1 > &  f1,
F2 &  f2 
)
inline

◆ field_cast() [8/12]

template<class F2 , class F1 , int dim>
void Dune::field_cast ( const Dune::FieldVector< F1, dim > &  f1,
Dune::FieldVector< F2, dim > &  f2 
)
inline

◆ field_cast() [9/12]

template<class F2 , class F1 >
void Dune::field_cast ( const F1 &  f1,
Dune::FieldMatrix< F2, 1, 1 > &  f2 
)
inline

◆ field_cast() [10/12]

template<class F2 , class F1 >
void Dune::field_cast ( const F1 &  f1,
Dune::FieldVector< F2, 1 > &  f2 
)
inline

◆ field_cast() [11/12]

template<class F2 , class F1 >
void Dune::field_cast ( const F1 &  f1,
F2 &  f2 
)
inline

a helper class to cast from one field to another

This cast can be used for assignment between different field types, including for example between FieldVectors with different fields. Specially the conversion from a special type e.g. gmp to build in types are provided, the other direction can be more easily handled by the special field type implementation.

◆ field_cast() [12/12]

template<class F2 , class V >
FieldCast< F2, V >::type Dune::field_cast ( const V &  f1)
inline

◆ numLagrangePoints()

std::size_t Dune::numLagrangePoints ( const GeometryType &  gt,
std::size_t  order 
)
inline

◆ operator*() [1/2]

template<int dim, class Field , class F >
MultiIndex< dim, Field > Dune::operator* ( const F &  f,
const MultiIndex< dim, Field > &  m 
)

◆ operator*() [2/2]

template<class Field >
Field Dune::operator* ( const Unity< Field > &  u,
const Field &  f 
)

◆ operator+()

template<class Field >
Field Dune::operator+ ( const Unity< Field > &  u,
const Field &  f 
)

◆ operator-()

template<class Field >
Field Dune::operator- ( const Unity< Field > &  u,
const Field &  f 
)

◆ operator/() [1/2]

template<int dim, class Field , class F >
MultiIndex< dim, Field > Dune::operator/ ( const F &  f,
const MultiIndex< dim, Field > &  m 
)

◆ operator/() [2/2]

template<class Field >
Field Dune::operator/ ( const Unity< Field > &  u,
const Field &  f 
)

◆ operator<() [1/4]

template<class Field >
bool Dune::operator< ( const Field &  f,
const Zero< Field > &   
)
inline

◆ operator<() [2/4]

template<int dim, class Field >
bool Dune::operator< ( const MultiIndex< dim, Field > &  f,
const Zero< MultiIndex< dim, Field > > &   
)

◆ operator<() [3/4]

template<class Field >
bool Dune::operator< ( const Zero< Field > &  ,
const Field &  f 
)
inline

◆ operator<() [4/4]

template<int dim, class Field >
bool Dune::operator< ( const Zero< MultiIndex< dim, Field > > &  ,
const MultiIndex< dim, Field > &   
)

◆ operator<<() [1/12]

template<int dim, class Field >
std::ostream & Dune::operator<< ( std::ostream &  ,
const MultiIndex< dim, Field > &   
)

◆ operator<<() [2/12]

template<class F , int dimD, int dimR>
std::ostream & Dune::operator<< ( std::ostream &  out,
const Derivatives< F, dimD, dimR, 0, DerivativeLayoutNS::derivative > &  d 
)

◆ operator<<() [3/12]

template<class F , int dimD, int dimR>
std::ostream & Dune::operator<< ( std::ostream &  out,
const Derivatives< F, dimD, dimR, 0, DerivativeLayoutNS::value > &  d 
)

◆ operator<<() [4/12]

template<class F , int dimD, int dimR, unsigned int deriv>
std::ostream & Dune::operator<< ( std::ostream &  out,
const Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::derivative > &  d 
)

◆ operator<<() [5/12]

template<class F , int dimD, int dimR, unsigned int deriv>
std::ostream & Dune::operator<< ( std::ostream &  out,
const Derivatives< F, dimD, dimR, deriv, DerivativeLayoutNS::value > &  d 
)

◆ operator<<() [6/12]

template<class Field >
std::ostream & Dune::operator<< ( std::ostream &  out,
const LFEMatrix< Field > &  mat 
)
inline

◆ operator<<() [7/12]

template<class F , int dimD, unsigned int deriv>
std::ostream & Dune::operator<< ( std::ostream &  out,
const LFETensor< F, dimD, deriv > &  tensor 
)

◆ operator<<() [8/12]

template<int d, class F >
std::ostream & Dune::operator<< ( std::ostream &  out,
const MultiIndex< d, F > &  val 
)

◆ operator<<() [9/12]

template<class F , int dimD, int dimR, unsigned int deriv, DerivativeLayoutNS::DerivativeLayout layout>
std::ostream & Dune::operator<< ( std::ostream &  out,
const std::vector< Derivatives< F, dimD, dimR, deriv, layout > > &  y 
)

◆ operator<<() [10/12]

template<int d, class F , int dimR1, int dimR2>
std::ostream & Dune::operator<< ( std::ostream &  out,
const std::vector< Dune::FieldMatrix< MultiIndex< d, F >, dimR1, dimR2 > > &  y 
)

◆ operator<<() [11/12]

template<int d, class F , int dimR>
std::ostream & Dune::operator<< ( std::ostream &  out,
const std::vector< Dune::FieldVector< MultiIndex< d, F >, dimR > > &  y 
)

◆ operator<<() [12/12]

template<int d, class F >
std::ostream & Dune::operator<< ( std::ostream &  out,
const std::vector< MultiIndex< d, F > > &  y 
)

◆ operator==() [1/2]

template<class Field >
bool Dune::operator== ( const Field &  f,
const Zero< Field > &  z 
)
inline

◆ operator==() [2/2]

template<class Field >
bool Dune::operator== ( const Zero< Field > &  ,
const Field &  f 
)
inline

◆ operator>() [1/2]

template<class Field >
bool Dune::operator> ( const Field &  f,
const Zero< Field > &  z 
)
inline

◆ operator>() [2/2]

template<class Field >
bool Dune::operator> ( const Zero< Field > &  z,
const Field &  f 
)
inline