5#ifndef DUNE_RANNACHER_TUREK_3D_LOCALBASIS_HH
6#define DUNE_RANNACHER_TUREK_3D_LOCALBASIS_HH
11#include <dune/common/fvector.hh>
12#include <dune/common/fmatrix.hh>
22 template<
class D,
class R >
25 static const int coefficients[ 6 ][ 6 ];
29 R, 1, FieldVector< R, 1 >,
40 std::vector< typename Traits::RangeType > &out )
const
43 RangeFieldType y[ 6 ] = { 1, in[ 0 ], in[ 1 ], in[ 2 ],
44 in[ 0 ]*in[ 0 ] - in[ 1 ]*in[ 1 ],
45 in[ 1 ]*in[ 1 ] - in[ 2 ]*in[ 2 ] };
47 for(
unsigned int i = 0; i <
size(); ++i )
49 out[ i ] = RangeFieldType( 0 );
50 for(
unsigned int j = 0; j < 6; ++j )
51 out[ i ] += coefficients[ i ][ j ]*y[ j ];
52 out[ i ] /= RangeFieldType( 3 );
58 std::vector< typename Traits::JacobianType > &out )
const
61 RangeFieldType y0[ 5 ] = { 1, 0, 0, 2*in[ 0 ], 0 };
62 RangeFieldType y1[ 5 ] = { 0, 1, 0, -2*in[ 1 ], 2*in[ 1 ] };
63 RangeFieldType y2[ 5 ] = { 0, 0, 1, 0, -2*in[ 2 ] };
66 for(
unsigned int i = 0; i <
size(); ++i )
68 out[ i ] = RangeFieldType( 0 );
69 for(
unsigned int j = 0; j < 5; ++j )
71 out[ i ][ 0 ][ 0 ] += coefficients[ i ][ j+1 ]*y0[ j ];
72 out[ i ][ 0 ][ 1 ] += coefficients[ i ][ j+1 ]*y1[ j ];
73 out[ i ][ 0 ][ 2 ] += coefficients[ i ][ j+1 ]*y2[ j ];
75 out[ i ] /= RangeFieldType( 3 );
82 std::vector<typename Traits::RangeType>& out)
const
84 auto totalOrder = std::accumulate(
order.begin(),
order.end(), 0);
85 if (totalOrder == 0) {
87 }
else if (totalOrder == 1) {
89 auto const direction = std::distance(
order.begin(), std::find(
order.begin(),
order.end(), 1));
92 RangeFieldType y[3][5] = { { 1.0, 0.0, 0.0, 2*in[0], 0.0 },
93 { 0.0, 1.0, 0.0, -2*in[1], 2*in[1] },
94 { 0.0, 0.0, 1.0, 0.0, -2*in[2] } };
96 for (std::size_t i = 0; i <
size(); ++i) {
97 out[i] = RangeFieldType{0};
98 for (std::size_t j = 0; j < 5; ++j)
99 out[i] += coefficients[i][j+1] * y[direction][j];
100 out[i] /= RangeFieldType{3};
103 DUNE_THROW(NotImplemented,
"Desired derivative order is not implemented");
119 template<
class D,
class R >
120 const int RannacherTurek3DLocalBasis< D, R >
121 ::coefficients[ 6 ][ 6 ] = {{ 2, -7, 2, 2, 4, 2 },
122 { -1, -1, 2, 2, 4, 2 },
123 { 2, 2, -7, 2, -2, 2 },
124 { -1, 2, -1, 2, -2, 2 },
125 { 2, 2, 2, -7, -2, -4 },
126 { -1, 2, 2, -1, -2, -4 }};
Definition bdfmcube.hh:18
Type traits for LocalBasisVirtualInterface.
Definition common/localbasis.hh:35
D DomainType
domain type
Definition common/localbasis.hh:43
RF RangeFieldType
Export type for range field.
Definition common/localbasis.hh:46
Definition rannacherturek3dlocalbasis.hh:24
LocalBasisTraits< D, 3, FieldVector< D, 3 >, R, 1, FieldVector< R, 1 >, FieldMatrix< R, 1, 3 > > Traits
Definition rannacherturek3dlocalbasis.hh:30
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
evaluate all shape functions
Definition rannacherturek3dlocalbasis.hh:39
unsigned int size() const
number of shape functions
Definition rannacherturek3dlocalbasis.hh:33
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
evaluate jacobian of all shape functions
Definition rannacherturek3dlocalbasis.hh:57
unsigned int order() const
polynomial order of the shape functions
Definition rannacherturek3dlocalbasis.hh:108
void partial(const std::array< unsigned int, 3 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition rannacherturek3dlocalbasis.hh:80